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Abstract

During aging, the cellular milieu of the brain exhibits tell-tale signs of compromised bioenergetics, 

impaired adaptive neuroplasticity and resilience, aberrant neuronal network activity, dysregulation 

of neuronal Ca2+ homeostasis, the accrual of oxidatively modified molecules and organelles, and 

inflammation. These alterations render the aging brain vulnerable to Alzheimer’s and Parkinson’s 

diseases and stroke. Emerging findings are revealing mechanisms by which sedentary 

overindulgent lifestyles accelerate brain aging, whereas lifestyles that include intermittent 

bioenergetic challenges (exercise, fasting, and intellectual challenges) foster healthy brain aging. 

Here we provide an overview of the cellular and molecular biology of brain aging, how those 

processes interface with disease-specific neurodegenerative pathways, and how metabolic states 

influence brain health.

Introduction

As with other organ systems, the functional capabilities of the brain decline progressively 

during aging, which manifests as decrements in learning and memory, attention, decision-

making speed, sensory perception (vision, hearing, touch, smell, and taste), and motor 

coordination (Alexander et al., 2012; Dykiert et al., 2012; Levin et al., 2014). As we age, 

cognitive performance generally declines in multiple domains including executive function, 

working memory (particularly task switching), and episodic memory (Alexander et al., 

2012). Older adults often have difficulty understanding rapid speech as a result of cognitive 

slowing and hearing loss, and they also have reduced comprehension of syntactically 

complex sentences and impaired word retrieval ability (Alexander et al., 2012). The time 

course of the age-related decline in brain performance roughly parallels the reduced 

performance of other organ systems with notable acceleration beyond 50 years of age 

(Mendonca et al., 2017).
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As individuals traverse their sixth, seventh, and eighth decades, they become increasingly 

prone to the development of a neurodegenerative disorder, with Alzheimer’s disease (AD) 

and Parkinson’s disease (PD) being the most common (Mattson, 2004; Kalia and Lang, 

2015; Scheltens et al., 2016; Aarsland et al., 2017). Aging is also the major risk factor for 

stroke (Krishnamurthi et al., 2013). Most industrialized countries are experiencing a rapid 

increase in the proportion of the population over the age of 65, an age range that can be 

considered the “danger zone” for AD, PD, and stroke. Within the next 30 years, the number 

of Americans living with diagnosed AD will more than double from the current number of 5 

million to more than 12 million (Alzheimer’s Association, 2016). Between the years 2000 

and 2013, the number of deaths from heart disease, cancer, and stroke decreased by more 

than 10%, whereas the number of deaths attributable to AD increased by 70%. In the United 

States, there are approximately 1 million individuals living with diagnosed PD. Globally, 

approximately 12 million people suffer a stroke each year with nearly 3 million of them 

dying (Bennett et al., 2014).

The human brain shrinks during normal aging, with reductions in both gray and white matter 

and an associated enlargement of the cerebral ventricles (Drayer, 1988). Longitudinal 

magnetic resonance imaging (MRI) studies have shown that age-related reductions in gray 

matter are most prominent in the temporal and frontal lobes (Jack et al., 1997). The rate of 

brain atrophy during aging can predict whether or not someone develops cognitive 

impairment and dementia (Jack et al., 2005). Cross-sectional histological analyses suggest 

that the atrophy results from a combination of dendritic regression and neuronal death 

(Dumitriu et al., 2010). While there is inter-individual variability in the rate of brain atrophy 

during aging, it has been suggested that brain imaging data can be used to establish a 

“biological age” of one’s brain (Cole and Franke, 2017). Environmental factors can 

influence the rate of brain structural changes during aging. For example, aerobic exercise 

increases hippocampal volume (Erickson et al., 2011), whereas excessive energy intake and 

obesity accelerate hippocampal atrophy (Cherbuin et al., 2015). Caloric restriction (CR) and 

intermittent fasting (IF) retard structural and functional decline during aging in laboratory 

rodents and monkeys (Duan et al., 2003; Willette et al., 2010).

Interrogation of the brain at the cellular and molecular levels reveals many of the hallmarks 

of aging evident in other tissues (López-Otín et al., 2013). As detailed below, these 

hallmarks include (1) mitochondrial dysfunction; (2) the intracellular accumulation of 

oxidatively damaged proteins, nucleic acids, and lipids; (3) dysregulated energy metabolism; 

(4) impaired cellular “waste disposal” mechanisms (autophagylysosome and proteasome 

functionality); (5) impaired adaptive stress response signaling; (6) compromised DNA 

repair; (7) aberrant neuronal network activity; (8) dysregulated neuronal Ca2+ handling; (9) 

stem cell exhaustion; and (10) inflammation (Figure 1). Cellular senescence and telomere 

attrition, two hallmarks of aging in proliferative peripheral tissues (López-Otín et al., 2013), 

may occur in some types of glial cells in the brain, but this remains to be established.

Environmental factors experienced during early and midlife can affect the risk for poor brain 

function and neurodegenerative disease late in life. For example, similar to joint injuries and 

the risk of osteoarthritis later in life, traumatic brain injury (TBI) and emotional trauma 

during early or midlife can increase the risk for late life cognitive impairment and AD and 
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PD (Blennow et al., 2016). In addition, considerable evidence has accumulated 

demonstrating that the amount, type, and frequency of dietary energy intake, and energy 

expenditure (exercise), are major determinants of brain health throughout the life course 

(Mattson et al., 2018). Here we review the current understanding of mechanisms of brain 

aging with a focus on energy metabolism and its interactions with pathways involved in 

cellular stress resistance, repair, and growth. We then consider how usual aging processes 

impact both upstream and downstream of the disease-defining proteopathic lesions in AD 

(amyloid plaques and Tau tangles) and PD (α-synuclein inclusions). We describe 

mechanisms by which a chronic positive energy balance accelerates brain aging, and how 

intermittent metabolic challenges (intermittent energy restriction and exercise) and drugs 

that target neuronal bioenergetics can protect the brain against age-related dysfunction and 

disease.

Cellular and Molecular Hallmarks of Brain Aging

Mitochondrial Dysfunction

Mitochondria are distributed throughout the dendrites and axons of neurons, where they 

generate the ATP required to support electrochemical neurotransmission, and cell 

maintenance and repair (Mattson et al., 2008). Mitochondria can grow in size and divide 

(mitochondrial biogenesis) and can be removed by degradation in lysosomes (mitophagy). In 

addition to their fundamental role in cellular energy metabolism, mitochondria play critical 

roles in cellular Ca2+ homeostasis and as a source of signals that regulate nuclear gene 

transcription (Hou et al., 2012; Yun and Finkel, 2014; Raefsky and Mattson, 2017). 

Moreover, the formation of mitochondrial membrane permeability transition pores (mPTPs) 

is a pivotal event in apoptosis, a form of programmed cell death that occurs normally during 

brain development and pathologically in a range of neurodegenerative conditions (Mattson, 

2000).

Several technical approaches have been used to determine if and how aging impacts 

mitochondria in brain cells. They include analysis of mitochondria-specific proteins, 

functional interrogation of isolated mitochondria or mitochondria in synaptosome 

preparations, and manipulation of genes that encode mitochondrial proteins (Grimm and 

Eckert, 2017). Comparisons of mitochondria isolated from brain tissue of animals reveal 

numerous age-related alterations, including mitochondrial enlargement or fragmentation 

(Stahon et al., 2016; Morozov et al., 2017), increased oxidative damage to mitochondrial 

DNA (Kim and Chan, 2001; Santos et al., 2013), impaired function of the electron transport 

chain (ETC) (Yao et al., 2010; Pandya et al., 2015, 2016; Pollard et al., 2016), increased 

numbers of mitochondria with depolarized membranes (Lores-Arnaiz et al., 2016), impaired 

Ca2+ handling (Leslie et al., 1985; Pandya et al., 2015), and a reduced threshold for 

triggering mPTP formation (Brown et al., 2004). The decrement in mitochondrial function 

during brain aging involves a decline in cellular NAD+ levels and the NAD:NADH ratio 

(Braidy et al., 2014), which would be expected to compromise the activities of NAD+-

dependent enzymes critical for neuronal function and viability, including protein 

deacetylases of the sirtuin family (Fang et al., 2017). Most cell types in the brain likely 

experience the accumulation of dysfunctional mitochondria during aging as suggested from 
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studies of neurons and astrocytes established from brains of young and old mice, or allowed 

to “age” in culture (Lin et al., 2007; Ghosh et al., 2012).

CR reduces multiple readouts of brain mitochondrial aging including oxidative damage, 

ETC function, membrane destabilization, Ca2+ handling, and susceptibility to apoptotic 

triggers (Gabbita et al., 1997; Sanz et al., 2005; Lin et al., 2014; Amigo et al., 2017). Studies 

of muscle and liver cells have shown that mitochondrial biogenesis declines during aging 

and that both CR and exercise can stimulate mitochondrial biogenesis (Martin-Montalvo and 

de Cabo, 2013; Hood et al., 2016). Emerging evidence suggests that neural signaling 

pathways activated by exercise and CR can also stimulate mitochondrial biogenesis in 

neurons in the brain (Cheng et al., 2012; Raefsky and Mattson, 2017; Mattson et al., 2018). 

Roles of such mitochondrial adaptations to CR and exercise in structural and functional 

manifestations of brain aging remain to be determined.

Accumulation of Oxidatively Damaged Molecules

During aging, neurons tend to accumulate dysfunctional and aggregated proteins and 

mitochondria as a result of an oxidative imbalance: increased production of reactive oxygen 

species (ROS) and/or reduced antioxidant defenses. The major ROS produced in neurons are 

superoxide anion radical generated during mitochondrial respiration and by various 

oxidases, hydroxyl radical produced by the reaction of hydrogen peroxide with Fe2+ or Cu+, 

and nitric oxide (NO) generated in response to elevated intracellular Ca2+ levels (Halliwell, 

2001). Diminished olfaction is a common feature of aging, and studies of mice show that 

levels of carbonylated proteins in neurons and astrocytes, and nitrated proteins in blood 

vessels, are increased in the olfactory bulb during aging. Aberrant NO-mediated oxidative 

damage is also implicated in vascular dysfunction in the aging cerebral cortex (Park et al., 

2007). Peroxynitrite (formed when superoxide interacts with NO) and hydroxyl radical are 

highly reactive and can initiate the autocatalytic process of membrane lipid peroxidation 

(Mattson, 2009). The brains of very old dogs exhibit accumulations of the lipid peroxidation 

product 4-hydroxynonenal (HNE), associated with amyloid deposits and neurofibrillary 

tangles (Papaioannou et al., 2001). Modification of proteins on cysteine, lysine, and histidine 

residues by HNE, and on tyrosine residues by NO, impairs the function of numerous 

membrane proteins critical for cell metabolism and survival including glucose transporters, 

neurotrophic factor receptors, and ion-motive ATPases (Guix et al., 2005; Mattson, 2009; 

Perluigi et al., 2014).

Evidence that diminished antioxidant defenses and impaired ability to remove oxidatively 

damaged molecules are sufficient to accelerate aging comes from studies showing that 

genetic reduction in SOD2 levels in mice and Drosophila results in accelerated onset of 

neurological phenotypes associated with aging, including motor dysfunction, neuronal DNA 

damage, and neurodegeneration (Melov et al., 1998; Paul et al., 2007). In C. elegans, 

oxidative damage increases markedly in the postreproductive period, and interestingly, in 

long-lived insulin signaling pathway mutants there occurs a burst of oxidative stress in 

young adults and a subsequent maintenance of low levels of oxidative damage (Labuschagne 

et al., 2013). Oxidatively modified proteins are often targeted for proteasomal degradation 

by ubiquitination, while oxidatively damaged membranes and mitochondria are targeted to 
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lysosomes in the process of autophagy (Nixon, 2013). However, excessive oxidative stress 

can impair of the function of proteasomes and lysosomes (Keller et al., 2002; Butler and 

Bahr, 2006; Zhang et al., 2017).

Impaired Lysosome and Proteasome Function

Because they are post-mitotic and must maintain their complex structural and function 

integration into neuronal networks throughout the lifespan of the organism, the ability to 

remove damaged and dysfunctional molecules and organelles is particularly important for 

neurons. This is accomplished by molecular machineries that identify damaged cellular 

constituents and move them to the lysosomes (autophagy) or proteasomes where they are 

degraded. The current understanding of the molecular mechanisms of autophagy and 

proteasomal degradation of proteins is reviewed in detail elsewhere (Galluzzi et al., 2017; 

Ver-Plank and Goldberg, 2017). In autophagy, cargo is enclosed within a membranous 

phagophore that then fuses with a lysosome and releases its contents into the acidic 

lysosomal lumen wherein hydrolases degrade the contents of the phagophore. Proteins are 

targeted for proteasomal degradation by ubiquitination, a process that involves three 

enzymes (E1, E2, and E3) with the E3 being a ligase that transfers the ubiquitin to a lysine 

residue of the target protein. Multiple other ubiquitins are then conjugated to each other to 

form a ubiquitin chain that is recognized by the 19S regulatory subunit of the proteasome, is 

unfolded, and then enters the barrel of the 20S subunit, where it is degraded. The importance 

of proteasomal degradation in brain aging is highlighted by the fact that mutations in the E3 

ubiquitin ligase Parkin, or overexpression of the Parkin substrate α-synuclein, are sufficient 

to cause early-onset PD (Shimura et al., 2001).

Evidence that autophagic and proteasomal degradation is impaired in neurons during aging 

comes from studies showing age-related intracellular accumulation of autophagosomes with 

undegraded cargos, dysfunctional mitochondria, and polyubi-quitinated proteins (Nixon, 

2013; Graham and Liu, 2017; Kerr et al., 2017). The ability of neuronal lysosomes to 

maintain a low luminal pH occurs during aging as a consequence of oxidative impairment of 

membrane vesicular ATPases (Colacurcio and Nixon, 2016). Indeed, HNE can impair 

lysosome function in cerebral cortical neurons, resulting in the accumulation of undegraded 

cargos and subsequent cell death (Zhang et al., 2017). Lipids also accumulate in autophagic 

vesicles (lipofuscin) or lipid-laden vesicles (Sulzer et al., 2008; Shimabukuro et al., 2016) in 

neurons during aging. Proteasome dysfunction and overload also occur during brain aging, 

which manifests as accumulations of polyubiquitinated proteins in neurons (Graham and 

Liu, 2017). Measurements of proteasome activity in different brain regions of aging rats 

revealed significant decreases in some brain regions (hippocampus and cerebral cortex), but 

not others (cerebellum and brainstem), suggesting differential vulnerability of neuronal 

populations to proteasome dysfunction during aging (Keller et al., 2000).

Interventions that stimulate autophagy, including dietary energy restriction (DER), protein 

restriction, and treatment with rapamycin, can extend lifespan in animal models (Madeo et 

al., 2015; Xilouri and Stefanis, 2016). Causal roles for impaired autophagy and proteasome 

function in brain aging come from studies in which autophagy is increased by either genetic 

or pharmacological manipulations. For example, genetic deletion of cystatin B, an inhibitor 
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of lysosomal hydrolases, enhances autophagy and ameliorates learning and memory deficits 

in a mouse model of AD (Yang et al., 2011); overexpression of transcription factor EB, a key 

regulator of autophagy, rescues memory deficits in a mouse model of Tauopathy (Wang et 

al., 2016); and upregulation of autophagy ameliorates neurodegeneration in a zebrafish 

model (Lopez et al., 2017). Such findings reveal pivotal roles of lysosomes and autophagy in 

protecting neurons against the adversities of aging.

Dysregulation of Neuronal Calcium Homeostasis

The calcium ion (Ca2+) regulates neuronal function and structural adaptations of neuronal 

networks across timescales ranging from seconds to days, and even years in the case of long-

term memory (Cohen et al., 2015). Upon release from presynaptic axon terminals, the 

excitatory neurotransmitter glutamate activates Na+-fluxing AMPA receptors on the 

postsynaptic dendrite, resulting in membrane depolarization and Ca2+ influx through the 

NMDA glutamate receptor channel and voltage-dependent Ca2+ channels. This results in a 

transient elevation of the cytoplasmic Ca2+ concentration as K+ channels and Na+ “pumps” 

are activated to restore the membrane potential and Ca2+ is removed via the activity of Ca2+ 

ATPases located in the plasma membrane and endoplasmic reticulum membrane. The 

transient Ca2+ elevation activates cytosolic kinases and phosphatases that alter the 

phosphorylation of various proteins in the dendrite including those involved in glutamate 

receptor trafficking to and from the membrane, cytoskeletal remodeling, and local protein 

synthesis. For example, synaptic activity-dependent Ca2+ influx stimulates the rapid 

insertion of AMPA glutamate receptors into the postsynaptic membrane while also inducing 

the translation of mRNA encoding the protein Arc, which mediates endocytosis of AMPA 

receptors (Kindler and Kreienkamp, 2012). Via activation of kinases, synaptic Ca2+ influx 

also activates transcription factors including cyclic AMP response element-binding protein 

(CREB) and PGC-1α (Cohen et al., 2015; Vaarmann et al., 2016), which then upregulate the 

expression of genes encoding various proteins involved in neuronal plasticity and cellular 

stress resistance (Mattson, 2012). Additional fine-tuning of subcellular Ca2+ dynamics is 

conferred by Ca2+ uptake and release mechanisms operative in the endoplasmic reticulum 

and mitochondria.

The ability of neurons to control Ca2+ dynamics within physiological limits is compromised 

during aging. Studies of hippocampal pyramidal neurons demonstrated that aging impairs 

Ca2+-induced after-hyperpolarizations, and thereby increases Ca2+ influx through L-type 

voltage-dependent Ca2+ channels and Ca2+ release from the endoplasmic reticulum (through 

ryanodine receptor channels), resulting in an aberrant elevation of cytoplasmic Ca2+ levels 

and consequent dysregulation of protein phosphorylation, cytoskeletal dynamics, and gene 

expression (Thibault et al., 2001; Toescu et al., 2004; Gant et al., 2006; Porte et al., 2008). 

The perturbed Ca2+ regulation is causally involved in age-related cognitive deficits because 

experimental manipulations that restore neuronal Ca2+ homeostasis also ameliorate 

cognitive deficits in aged rats (Deyo et al., 1989; Fukushima et al., 2008; Gant et al., 2015). 

Hippocampal neurons in old mice exhibit increased vulnerability to Ca2+-mediated 

excitotoxic degeneration and death (Camandola and Mattson, 2011). Likely contributing to 

such neuronal Ca2+ dysregulation during aging are compromised Ca2+ buffering resulting 

from reduced expression of Ca2+-binding proteins such as calbindin (Iacopino and 
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Christakos, 1990; Mattson et al., 1991; de Jong et al., 1996) and impaired mitochondrial and 

endoplasmic reticulum Ca2+ handling (Mattson et al., 2008; Stutzmann and Mattson, 2011). 

The mechanisms by which sustained elevation of intracellular Ca2+ levels can damage and 

kill neurons include activation of Ca2+-dependent proteases (calpains) and triggering of 

caspase-mediated apoptosis and PARP1-mediated cell death (Mattson, 2000; Nixon, 2003; 

Fatokun et al., 2014).

Compromised Adaptive Cellular Stress Responses

Neurons are continually subjected to metabolic, ionic, and oxidative stress arising from their 

normal electrochemical activity, and from extrinsic factors imposed upon them by systemic 

bioenergetic challenges, and physical and psychological stress. Numerous signaling 

pathways have evolved to respond to cellular stresses adaptively so as to alleviate the 

immediate threat, alert other cells to the stressful situation, and bolster defenses against 

future stressors. Three major initiators of adaptive cellular stress responses are ATP 

consumption, Ca2+, and ROS. Action potentials and synaptic activity are mediated by Na+ 

and Ca2+ influx through plasma membrane channels, followed by their subsequent extrusion 

by membrane ion-motive ATPases (Na+ and Ca2+ “pumps”); the attendant consumption of 

ATP increases the AMP/ATP ratio, resulting in the activation of AMP-activated protein 

kinase (AMPK). AMPK then phosphorylates and thereby regulates the activities of proteins 

involved in energy metabolism (glucose transporters and the mTOR pathway), autophagy, 

and neuronal excitability (Weisová et al., 2009; Ikematsu et al., 2011; Lin and Hardie, 2018; 

Shah et al., 2017). Calcium is an important signal mediating cellular stress adaptation; Ca2+ 

binds to the protein calmodulin, resulting in the activation of kinases that promote the 

activation of transcription factors including CREB and nuclear factor κB (NF-κB) (Cohen et 

al., 2015; Saura and Cardinaux, 2017; Snow et al., 2014). One of the Ca2+-activated kinases, 

CamKII, also activates NO synthase. The NO then activates soluble guanylate cyclase to 

generate cyclic GMP, which engages downstream pathways that protect neurons against 

excitotoxic and metabolic stress (Knott et al., 2017). Ca2+ is also transported into 

mitochondria, where it engages mechanisms that increase oxidative phosphorylation and 

ROS production. Those ROS (superoxide and hydrogen peroxide) function as signaling 

molecules that can activate redox state-responsive transcription factors including NF-κB and 

nuclear regulatory factor 2 (NRF2) (Shih et al., 2005; Marosi et al., 2016). CREB, NF-κB, 

and NRF2 induce the expression of genes encoding proteins that mitigate cellular stress and 

eliminate or repair damaged molecules. For example, CREB induces the expression of the 

neurotrophic factor BDNF and the DNA repair enzyme APE1 (Yang et al., 2010, 2014); NF-

κB upregulates the antioxidant enzyme SOD2, the Ca2+-binding protein calbindin, and the 

anti-apoptotic protein Bcl-2 (Sullivan et al., 1999; Mattson and Meffert, 2006); and NRF2 

upregulates the antioxidant enzymes HO-1 and NQO1 (Son et al., 2010).

Adaptive stress response signaling pathways may become impaired during aging, thereby 

rendering neurons vulnerable to injury and neurodegenerative disorders (Stranahan and 

Mattson, 2012). For example, BDNF, NGF, and IGF-1 signaling is compromised during 

brain aging as a result of decreased expression of the neurotrophic factors and altered 

receptor expression or downstream signaling (Mattson et al., 2004; Tapia-Arancibia et al., 

2008; Schliebs and Arendt, 2011; Neidl et al., 2016). Neurotrophic factor deficits likely 
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contribute to impaired neuronal mitochondrial function, Ca2+ handling, and antioxidant 

defenses during aging (Mattson et al., 2004). Plasma membrane Ca2+-ATPase activity also 

declines in synaptic terminals in the aging brain (Zaidi et al., 1998), which may be caused by 

membrane lipid peroxidation (Mark et al., 1997). Dysregulation of Ca2+-CaMKII signaling 

adversely affects neuronal mitochondrial dynamics, which may contribute to neuronal 

dysfunction during aging (Jiang et al., 2015). Perturbed NO generation and downstream 

signaling are impaired in the hippocampus during normal aging, and restoration of NO 

metabolism and signaling can ameliorate age-related cognitive deficits in mice (Zhang et al., 

2017). Finally, chronic uncontrolled stress (psychological or physical) impairs neuronal 

plasticity and can predispose neurons to degeneration by mechanisms involving 

hyperactivation of the hypothalamic—pituitary—adrenal axis and elevation of 

glucocorticoid levels (cortisol in humans and corticosterone in rodents). Sustained elevation 

of glucocorticoid levels inhibits the expression of BDNF and thereby impairs synaptic 

plasticity and increases neuronal vulnerability to degeneration (McEwen and Morrison, 

2013).

Aberrant Neuronal Network Activity

The general organization of neuronal circuits throughout the brain is based upon excitatory 

glutamatergic neurons with elaborate dendritic arbors and long axons that form synapses 

with other glutamatergic neurons and with inhibitory GABAergic interneurons (Figure 2). 

Synaptic inputs to the dendrites of excitatory neurons are arranged such that glutamatergic 

synapses are on distal dendrites, GABAergic synapses are on or adjacent to the cell body, 

and modulatory inputs from brainstem serotonergic and noradrenergic neurons, basal 

forebrain cholinergic neurons, and midbrain dopaminergic neurons are located proximal to 

the distal glutamatergic inputs. The structural integrity and proper integration of the synaptic 

activities of these different neurotransmitter systems are required for normal brain function. 

During brain aging, the fidelity of neuronal network activity within and between brain 

regions is perturbed, in some individuals relatively subtly and in others pathologically. 

Excitatory imbalances occur in the aging brain as a result of impaired GABAergic signaling, 

particularly reduced signaling via GABA-A receptors (Heise et al., 2013; Richardson et al., 

2013; McQuail et al., 2015; Porges et al., 2017). Several hallmarks of brain aging can render 

neuronal circuits vulnerable to hyperexcitability and excitotoxic damage, including oxidative 

stress, mitochondrial dysfunction, impaired adaptive stress responses, and inflammation 

(Camandola and Mattson, 2011). Degeneration and dysfunction of G protein-coupled 

serotonergic, noradrenergic, dopaminergic, and cholinergic neurons that occur during normal 

aging may predispose to one or more age-related neurodegenerative disorders (Richter-Levin 

and Segal, 1996; Collier et al., 2011; Schliebs and Arendt, 2011; Mather and Harley, 2016). 

The latter neurotransmitter systems play key roles in learning and memory, decision making, 

and the regulation of mood. Their dysregulation can therefore contribute to cognitive 

impairment and depression in the elderly (Eyre et al., 2015).

Communication between different brain regions occurs primarily via myelinated axonal 

projections of glutamatergic neurons, with the axons located in white matter tracts for inter-

hemispheric communication (corpus callosum) and intra-hemispheric communication (e.g., 

superior and inferior longitudinal fasciculi, and uncinate fasciculus). White matter integrity 
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is compromised during normal human brain aging, and this is exacerbated in subjects with 

cognitive impairment (Bennett and Madden, 2014; Liu et al., 2017). The mechanism 

underlying such demyelination involves oxidative DNA damage to oligodendrocytes (Tse 

and Herrup, 2017).

Functional MRI (fMRI) analyses of brain neuronal network activities in human subjects 

have revealed alterations associated with normal aging and age-related cognitive 

impairment. When a person closes their eyes and ceases interactions with their environment, 

activity is increased in a network that includes the precuneus, posterior cingulate cortex, 

medial prefrontal cortex, and angular gyrus. This “default mode network” (DMN) is 

believed to play important roles in remembering the past and thinking about the future and 

“mind wandering.” Reduced functional connectivity of the DMN occurs during normal 

aging and is considerably exacerbated in cognitively impaired elderly subjects (Leal and 

Yassa, 2013; Sala-Llonch et al., 2015). Whereas young adults engage fronto-parietal and 

salience networks in the resting state, older adults do not; these fMRI differences are 

associated with reduced gray matter volume and white matter integrity (Marstaller et al., 

2015). During a memory task in older adults, the functional connectivity of the DMN and 

hippocampus is correlated with memory ability (Li et al., 2015). A DMN has also been 

described in rodents that exhibit disrupted functional connectivity in cognitively impaired 

compared to unimpaired aged animals (Ash et al., 2016). Future studies in which the effects 

of genetic and pharmacological manipulations on DMN activity are determined may reveal 

the cellular and molecular mechanisms underlying age-related disruption of functional 

connectivity of neuronal networks.

Impaired DNA Repair

DNA in the mitochondria and nucleus is regularly damaged by ROS during the normal 

course of cellular function and aging, and in neurons such DNA damage is increased 

following excitatory synaptic activity (Chow and Herrup, 2015; Yang et al., 2010). In 

healthy, young cells, damaged DNA bases are rapidly removed and replaced with 

undamaged bases by the coordinated activities of proteins in DNA repair pathways that 

include homologous recombination, mismatch repair, nucleotide excision repair, and base 

excision repair (BER). In neurons, BER is critical for the repair of oxidative DNA damage; 

the BER process involves a glycosylase (OGG1, UDG, and NEIL1) that recognize the 

damaged base, an endonuclease (APE1) that excises the damaged base, and a polymerase 

(Polβ) that integrates a new undamaged base into the DNA strand (Leandro et al., 2015). 

Analyses of brain tissue samples from humans and rodents have documented increases in the 

amount of damaged nuclear and mitochondrial DNA, and reductions in the expression 

and/or enzymatic activities of some DNA repair proteins, during aging. During human brain 

aging, certain regions of nuclear DNA are prone to the accumulation of oxidative damage, 

with promoters of genes involved in synaptic plasticity and mitochondrial function being 

particularly affected (Lu et al., 2004). Mitochondrial OGG1 and UDG activities (but not 

their expression levels) are reduced in hippocampus, frontal cortex, brainstem, and 

cerebellum of old mice compared to young mice (Imam et al., 2006). The expression of Polβ 
is decreased in the aging brain and this decrease is prevented by DER (Cabelof et al., 2003). 

While BER is generally considered particularly important for neurons, which are post-
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mitotic, there is also evidence that nucleotide excision repair and transcription-coupled 

repair are impaired during brain aging (Jaarsma et al., 2011). These changes may occur 

primarily in neural stem cells and glial cells, although this remains to be determined.

Impaired DNA repair is sufficient to cause accelerated aging phenotypes. People with 

Cockayne syndrome, Werner syndrome, and ataxia telangiectasia exhibit the rapid 

progression of multiple aging phenotypes beginning when they are young (Scheibye-

Knudsen, 2016). All three premature aging syndromes are caused by mutations in proteins 

involved in DNA repair (CSB, Werner, and ATM) and affected individuals exhibit 

neurological deficits consistent with accelerated brain aging. Cockayne patients exhibit 

degeneration of cerebellar Purkinje cells and cochlear and retinal neurons (Weidenheim et 

al., 2009), and CSB-deficient mice exhibit early hearing loss and mitochondrial dysfunction 

in hippocampal and cortical neurons at an early age (Nagtegaal et al., 2015; Thomsen et al., 

2018). Werner syndrome is characterized by AD-like neuropathology and cognitive deficits 

(Leverenz et al., 1998; Rekik et al., 2017). ATM deficiency results in progressive death of 

cerebellar Purkinje and granule neurons and consequent impaired control of body 

movements (Rothblum-Oviatt et al., 2016). Interestingly, DER significantly reduces 

neurodegeneration and neurological deficits, and increases the lifespan of DNA excision 

repair-deficient mice (an animal model of accelerated aging) by attenuating the accrual of 

oxidative DNA lesions (Vermeij et al., 2016). Presumably, by retarding other hallmarks of 

brain aging, DER can compensate for a genetic defect that causes a dramatic accelerated 

aging phenotype.

Inflammation

Similar to other organ systems, local inflammation is a common feature of brain aging. Glial 

cells, particularly microglia, often exhibit an activated state in the aged brain that is 

characterized by the acquisition of an ameboid morphology and the production of pro-

inflammatory cytokines including interleukin 1β (IL-1β), IL-6, and tumor necrosis factor α 
(TNF-α) (Cribbs et al., 2012; Norden and Godbout, 2013). The complement cascade, a 

sequence of protein-protein interactions that “attacks” and damages cell membranes, may 

also be activated in the aging brain and is implicated in the pathogenesis of AD and ischemic 

stroke (Arumugam et al., 2009; Stephan et al., 2013; Hong et al., 2016). Genetic or 

pharmacological inhibition of the complement cascade can ameliorate synapse loss and 

neuronal death that occurs during normal aging and in mouse models of AD and stroke 

(Arumugam et al., 2007; Shi et al., 2015; Hong et al., 2016). In addition, activated microglia 

express an inducible form of NO synthase and produce large amounts of NO that can cause 

oxidative damage to neurons. Moreover, toll-like receptors (TLRs), best known for immune 

cell responses to invading pathogens, are increasingly implicated in neuroinflammation in 

age-related brain disorders (Okun et al., 2011). Experimental activation of microglial TLR4 

receptors can exacerbate neuronal degeneration in models of age-related neurodegenerative 

conditions, whereas pharmacological inhibition of microglial activation is neuroprotective 

(Colonna and Butovsky, 2017). Aberrant activation of innate immune responses likely 

contributes to and results from other hallmarks of brain aging (Figure 1).
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While aberrant activation of immune cells contributes to synaptic degeneration and 

functional impairment in brain aging and neurodegenerative conditions, when properly 

regulated the same pathways play important roles in neuroplasticity and neuronal stress 

resistance. For example, (1) TNF-α plays an important role in hippocampal synaptic 

plasticity and learning and memory (Snow et al., 2014); (2) complement proteins mediate 

adaptive synaptic remodeling in the healthy developing and adult brain (Schafer et al., 2012; 

Stevens et al., 2007); (3) TLRs are expressed in neurons, where they play roles in regulating 

developmental and adult neuroplasticity (Okun et al., 2011, 2012); (4) hippocampal neurons 

in TNF-α receptor-deficient mice exhibit increased vulnerability to dysfunction and 

degeneration in models of epileptic seizures, TBI, and AD (Bruce et al., 1996; Sullivan et 

al., 1999; Montgomery et al., 2011); and (5) TLRs 2 and 4 regulate food intake, the 

parasympathetic nervous system, and body weight (Okun et al., 2014). Astrocytes may also 

contribute to adaptive responses to age-related neuronal stress. They produce neurotrophic 

factors, remove glutamate from synapses, and bolster neuronal bioenergetics (Mattson and 

Rychlik, 1990; Camandola and Mattson, 2017; Rose et al., 2018). These functions of 

astrocytes may be compromised during aging, thereby exacerbating pathological 

neuroinflammatory processes.

Impaired Neurogenesis

While the vast majority of neurons in the adult mammalian brain are produced during 

embryonic or early postnatal development, new hippocampal dentate gyrus granule neurons 

and olfactory bulb interneurons are generated from neuronal stem cells in the adult brain 

(Ming and Song, 2011). Dentate granule neurons play critical roles in learning and memory 

in general, and spatial pattern separation (memory of spatial relationships between objects in 

the environment) in particular. Reductions in hippocampal and olfactory neurogenesis occur 

during normal aging and may contribute to cognitive and olfactory deficits (Lazarov et al., 

2010). Several other hallmarks of aging may contribute to impaired neurogenesis during 

aging. Aging neural progenitor cells exhibit reduced mitochondrial oxidative metabolism 

(Stoll et al., 2011), and genetic compromise of mitochondrial ETC function in hippocampal 

neuronal progenitor cells in adult mice impairs neurogenesis in a manner similar to that seen 

in normal aging (Beckervordersandforth et al., 2017). Oxidative stress, impaired DNA 

repair, and inflammation may also contribute to age-related reductions in neurogenesis 

(Ekdahl et al., 2003; Kim et al., 2008; Regnell et al., 2012; L’Episcopo et al., 2013).

Cell Senescence and Telomere Attrition?

Mitotic cells throughout the body experience telomere shortening and senescence during 

aging. With successive rounds of cell division, the ends of chromosomes (telomeres), which 

are comprised of a repeating hexanucleotide DNA sequence (TTAGGG), can shorten, which 

can be prevented by the telomerase reverse transcriptase. During interphase, the telomeric 

DNA is protected by several telomere-associated proteins. Extensive telomere shortening 

and impaired protection of telomeric DNA can trigger a DNA damage response and either 

apoptosis or cell senescence (Zhang et al., 2016a). Because neurons are post-mitotic, their 

telomeres do not shorten (although they can be damaged by oxidative stress) and they do not 

undergo senescence. However, during the first few days of differentiation from stem cells, 

newly generated neurons are particularly sensitive to apoptosis triggered by telomere 
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damage (Cheng et al., 2007). Hippocampal neurogenesis is reduced, and hippocampus-

dependent spatial learning and memory are impaired, in telomerase-deficient mice (Rolyan 

et al., 2011). Reactivation of telomerase in late-generation telomerase-deficient mice restores 

olfactory neurogenesis to normal levels with a consequent amelioration of an olfactory 

deficit (Jaskelioff et al., 2011).

When cells undergo senescence, they cease dividing and grow in size, express the proteins 

p21 and p16Ink4a, are resistant to apoptosis, and produce pro-inflammatory cytokines (Childs 

et al., 2014). Senescence may be the fate of some neural progenitor cells and glial cells 

during aging as indicated by increased expression of p16Ink4a associated with reduced 

numbers of proliferating progenitors in the subventricular zone (Molofsky et al., 2006). 

Moreover, when human neural progenitors are maintained in culture they exhibit a limited 

number of population doublings and then undergo senescence (Wright et al., 2006). Future 

studies in which senescent cells are selectively removed from the brain in animal models of 

aging and age-related neurodegenerative disorders should clarify whether cell senescence is 

a bona fide hallmark of brain aging.

Dysregulated Energy Metabolism

During aging, the metabolism of glucose and lipids is impaired in cells in peripheral tissues 

and in the brain. Circulating glucose concentrations generally increase during aging as a 

result of a compromised ability of cells to increase glucose transport in response to insulin. 

Insulin resistance is characterized by elevated fasting blood insulin and glucose levels, and is 

a major risk factor for diabetes, cardiovascular disease, and stroke. Peripheral insulin 

resistance is also associated with poorer cognitive function during aging (Thambisetty et al., 

2013) and may be a risk factor for AD (Neth and Craft, 2017). Neurons may exhibit insulin 

resistance and impaired glucose transport in aging as suggested by progressive reductions in 

glucose utilization demonstrated by PET imaging of radiolabeled glucose uptake; this 

impaired glucose metabolism is particularly prominent in the temporal, parietal, and frontal 

lobes, and motor cortex (Goyal et al., 2017). Reduced glucose utilization in the temporal and 

parietal lobes is much more profound in elderly subjects with mild cognitive impairment and 

AD compared to age-matched neurologically normal subjects (Kato et al., 2016).

When insulin binds to its membrane receptor, the cytoplasmic tyrosine kinase domain of the 

receptor is activated, resulting in phosphorylation of the insulin receptor-interacting protein 

IRS-1. Insulin resistance is characterized by reduced tyrosine phosphorylation of IRS-1 and 

increased phosphorylation on serine 312 of IRS-1. Analyses of postmortem brain tissue from 

elderly subjects demonstrate increased serine 312 IRS-1 phosphorylation, suggesting 

neuronal insulin resistance (Moloney et al., 2010; Yarchoan et al., 2014). Circulating extra-

cellular vesicles (EVs) believed to be released from neurons also exhibit an insulin 

resistance phosphorylation profile in cognitively impaired elderly subjects (Kapogiannis et 

al., 2015). In addition to insulin resistance, the neuronal glucose transporter GLUT3 is 

vulnerable to impairment by oxidative stress and HNE (Mark et al., 1997; Mattson, 2009). 

However, while neuronal glucose metabolism is compromised during aging, the ability of 

neurons to acquire and utilize the ketone bodies β-hydroxybutyrate (BHB) and acetoacetate 

is maintained, apparently even in neurons in patients with AD (Cunnane et al., 2016). As 
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described below in Metabolic Factors Can Accelerate or Decelerate Brain Aging, 

interventions that bolster neuronal bioenergetics have considerable potential to mitigate 

multiple hallmarks of brain aging and may thereby forestall neurodegenerative disorders.

Dyslipidemia (elevated blood concentrations of low-density lipoproteins and triglycerides) is 

a risk factor for stroke and vascular dementia, and may also increase one’s risk for AD 

(Appleton et al., 2017). Within the brain, the metabolism of multiple lipid species is altered 

during aging as indicated by the accumulation of long-chain ceramides (Cutler et al., 2004) 

and lipid-laden cells (Shimabukuro et al., 2016), and a decline in brain tissue levels of 

omega-3 fatty acids (Denis et al., 2013). Genetic evidence also links lipid metabolism to 

poor brain outcomes during aging. Thus, the strongest genetic risk factor for late-onset 

sporadic AD is having an ε4 allele of the gene encoding apolipoprotein E, a protein that 

transports cholesterol and lipoproteins (Lane-Donovan et al., 2014). Despite considerable 

investigation, however, the mechanism by which the ε4 APOE isoform endangers neurons is 

unclear and may not be the result of altered cholesterol metabolism. Two possibilities are 

that APOE ε4 lacks the antioxidant (HNE-scavenging) ability of APOE ε2 and ε3 (Pedersen 

et al., 2000), and that APOE ε4 alters trafficking of proteins (including APP) through the 

endosomal pathway (Lane-Donovan et al., 2014).

Perspective on How Mechanisms of Aging Impact Neurological Disorders

Previous review articles provide comprehensive descriptions of alterations in brain cellular 

metabolism that occur in aging and their interface with neurodegenerative disorders 

(Kapogiannis and Mattson, 2011; Ryan et al., 2015; Yin et al., 2016; Swerdlow, 2016; 

Camandola and Mattson, 2017). PET imaging studies reveal impaired cerebral glucose 

utilization occurring very early in AD pathogenesis, even before overt clinical symptoms are 

evident (Friedland et al., 1989; Ceravolo et al., 2008). Findings from postmortem analyses 

reveal reductions in levels of glucose transporters and decrements in ETC complex activities 

and glycolytic flux in vulnerable brain regions of AD patients (Simpson et al., 1994; Valla et 

al., 2001; An et al., 2018). PD patients exhibit reduced glucose utilization in brain regions 

involved in motor control, and deep brain stimulation of the globus pallidus (which 

alleviates motor symptoms) increases glucose utilization in those brain regions (Fukuda et 

al., 2001). Neurons affected in PD exhibit reduced mitochondrial respiratory chain function 

(Bose and Beal, 2016; Grünewald et al., 2016). In stroke, neuronal energy failure results 

from catastrophic oxygen and glucose deprivation caused by occlusion of a cerebral artery, 

usually as the result of clot formation at the site of an atherosclerotic lesion in the vessel 

(Moskowitz et al., 2010). The extent of brain damage is greater and functional recovery 

poorer in older compared to younger stroke patients (Umarova, 2017).

Aging is the major risk factor for AD, PD, and stroke, but major advances in the genetics of 

AD and PD have not yet led to effective disease-modifying treatments. In this section we 

present one view of how hallmarks of brain aging impact and are impacted by specific 

disease processes in AD, PD, and stroke (Figure 3), recognizing the fact that specific 

sequences of events remain to be established.
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Alzheimer’s Disease and Related Dementias

The diagnosis of probable AD is ascribed to individuals that exhibit age-related cognitive 

decline that first manifests as mild short-term memory impairment and then progresses 

inexorably to severe deficits in essentially all cognitive domains. The final diagnosis of AD 

is established upon histological examination of the brain at autopsy for cases in which levels 

of Aβ plaques and Tau neurofibrillary tangles exceed diagnostic levels (Geddes et al., 1997). 

The Aβ precursor protein (APP) has been a major focus of AD research because mutations 

in APP or the presenilin-1 enzyme (γ-secretase) that cleaves APP to generate Aβ cause rare 

cases of inherited early-onset AD. APP is processed by three enzyme activities: β- and γ-

secretases cleave at the N terminus and C terminus of Aβ to generate amyloidogenic Aβ, 

while α-secretase cleaves in the middle of the Aβ sequence and so prevents Aβ production. 

The α-secretase cleavage releases a secreted form of APP (sAPPα) that activates signaling 

pathways in neurons that enhance synaptic plasticity and cellular stress resistance (Mattson 

et al., 1993; Nigam et al., 2017). While AD is the most common form of dementia, Tau 

mutations can cause fronto-temporal dementia, which manifests abundant neurofibrillary 

tangles with negligible Aβ pathology (Rademakers et al., 2012; Arendt et al., 2016). 

Moreover, in approximately 25% of patients diagnosed with probable AD, the levels of Aβ 
plaques and Tau tangles do not reach the AD threshold; instead, these patients often exhibit 

extensive loss of hippocampal pyramidal neurons with moderate numbers of neurons bearing 

Tau, α-synuclein, and/or TDP43 aggregates (Mattson, 2015a). In addition, many individuals 

who live into their eighth and ninth decades with minimal decline in cognitive function 

exhibit extensive Aβ plaque accumulation at autopsy, but have minimal neuronal loss. The 

mechanisms by which neurons are able to resist the neurotoxic effects of Aβ in some elderly 

individuals have not been established, but experimental data suggest potential roles for 

neurotrophic factor signaling and robust adaptive cellular stress response pathways 

(Mattson, 2012).

Cell culture and animal models in which one or more of the gene mutations that cause 

inherited AD are expressed, together with studies in which neurons are exposed directly to 

Aβ, have provided valuable information as to the molecular and cellular mechanisms of AD 

pathogenesis both upstream and downstream of the Aβ and Tau pathologies (Figure 3). The 

gist of the cumulative data is that (1) hallmarks of aging promote amyloidogenic APP 

processing and Tau pathology, (2) Aβ and Tau accumulations accelerate hallmarks of aging, 

and (3) there is no common linear pathway to synaptic dysfunction and neuronal death in 

AD. For indepth information on the roles of different hallmarks of brain aging in AD and 

related dementias, we refer the reader to the following review articles: oxidative stress (Texel 

and Mattson, 2011), mitochondrial dysfunction (Mattson et al., 2008; DuBoff et al., 2013), 

impaired autophagy (Nixon, 2013; Kerr et al., 2017), impaired DNA repair (Madabhushi et 

al., 2014; Leandro et al., 2015), aberrant neuronal network excitability (Palop and Mucke, 

2016; Vossel et al., 2017), impaired adaptive stress response signaling (Stranahan and 

Mattson, 2012), dysregulated neuronal Ca2+ homeostasis (Bezprozvanny and Mattson, 2008; 

Stutzmann and Mattson, 2011), impaired energy metabolism (Dauncey, 2014), 

neuroinflammation (Heppner et al., 2015), and stem cell deficits (Lazarov et al., 2010). Due 

to space limitations, in this section we describe one specific example of how oxidative 

damage, impaired autophagy, Ca2+ dyshomeostasis, and aberrant neuronal network activity 
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can interact reciprocally with Aβ pathology to cause synaptic dysfunction and neuronal 

death in AD.

Proteins modified by the lipid peroxidation product HNE accumulate in the brain during 

aging and HNE increases the production a particularly neurotoxic form of Aβ (Aβ42) by 

increasing γ-secretase cleavage of APP; this occurs as a result of covalent modification of 

the γ-secretase substrate receptor nicastrin by HNE (Gwon et al., 2012). Administration of 

an HNE-scavenging histidine analog reduces the production of Aβ42 in the brains of 

3xTgAD mice, suggesting the possibility of developing therapeutic interventions that 

suppress HNE accumulation. As Aβ self-aggregates and accumulates on the membrane of 

neurons, ROS are generated, membrane lipid peroxidation occurs, and HNE is produced 

(Keller et al., 1997). Data suggest that HNE contributes to the neurotoxicity of Aβ by 

impairing the function of membrane ion-motive ATPases and glucose and glutamate 

transporters, resulting in neuronal hyperexcitability and disruption of neuronal Ca2+ 

homeostasis, thereby rendering neurons vulnerable to excitotoxicity and metabolic failure 

(Mattson et al., 1992; Mark et al., 1997; Mattson, 2009). Aberrant and sustained elevation of 

intracellular Ca2+ levels can further exacerbate oxidative stress and lysosome dysfunction. 

HNE also directly impairs lysosome function, and lysosome dysfunction results in the 

accumulation of Aβ in neurons, which is then expelled from the neurons in EVs. EVs are 

small vesicles (50–150 nm diameter) released from multivesicular bodies upon their fusion 

with the plasma membrane or from budding of the plasma membrane (Budnik et al., 2016). 

EVs may propagate Aβ pathology between, within, and across neuronal networks as AD 

progresses (Eitan et al., 2016; Zhang et al., 2017). Even moderate deficits in DNA repair, 

neurotrophic factor signaling, and mitochondrial function can render neurons vulnerable to 

death when they are concomitantly exposed to Aβ (Sykora et al., 2015; Camandola and 

Mattson, 2017).

Parkinson’s Disease

The diagnosis of PD is based on the symptoms of postural instability, rigidity, bradykinesia, 

and tremor resulting in part from the dysfunction and degeneration of dopaminergic neurons 

in the substantia nigra (SN) that innervate the striatum (Rodriguez-Oroz et al., 2009). 

Dopaminergic neurons in PD often manifest “Lewy bodies,” which are large accumulations 

of α-synuclein in their cytoplasm, an abnormality akin to Tau tangles in neurons affected in 

AD. While the clinical diagnosis of PD is based on motor symptoms, non-motor symptoms 

associated with α-synuclein pathology in the autonomic and enteric nervous systems are 

also evident and may precede SN-striatal pathology (Klingelhoefer and Reichmann, 2015).

Compelling evidence suggests that mitochondrial dysfunction and the accumulation of α-

synuclein aggregates in neurons are mechanistically linked pivotal events in the pathogenesis 

of PD. A historical summary of the evidence includes (1) the discovery that chemicals that 

selectively inhibit mitochondrial ETC complex I (MPP+, paraquat, 6-hydroxydopamine, and 

rotenone) can cause dopaminergic neuron degeneration, with clinical symptoms 

indistinguishable from PD (Langston, 1996); (2) mitochondria in brain cells of PD patients 

exhibit reduced complex I activity and excessive DNA damage (Di Monte, 1991); and (3) 

the identification of the genetic abnormalities that cause early-onset familial PD converge on 
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mitochondria and autophagy. The mutations include autosomal dominant mutations in α-

synuclein that result in aberrant accumulation of α-synuclein aggregates, which can 

overload the autophagy pathway and cause mitochondrial dysfunction (Wong and Krainc, 

2017), and autosomal recessive mutations in Parkin and PINK1, which impair the ability of 

neurons to recognize and remove (via autophagy) dysfunctional mitochondria (Pickrell and 

Youle, 2015), although other studies suggest that mitophagy may not be impaired in some 

cases of familial PD (Lee et al., 2018). Mutations in the gene encoding LRRK2 that cause 

early-onset PD impair vesicle trafficking to lysosomes and may thereby promote the 

accumulation of α-synuclein and dysfunctional mitochondria (Cookson, 2016). LRRK2 

mutations may also promote neuronal degeneration by causing aberrant protein synthesis 

(Martin et al., 2014).

PD provides a remarkable example of a disease underlain by a molecular pathogenesis that 

involves an exacerbation of hallmarks of aging. Oxidative damage, dysregulated neuronal 

Ca2+ homeostasis, impaired DNA repair, impaired adaptive cellular stress responses, 

aberrant neuronal network activity, and neuroinflammation all occur in affected brain 

regions during the course of PD, and each of these age-related alterations increases the 

vulnerability of neurons to α-synuclein pathology, and mitochondrial and autophagy 

dysfunction (Olanow et al., 2015; Ransohoff, 2016; Sepe et al., 2016; Jahanshahi and 

Rothwell, 2017; Menzies et al., 2017; Surmeier et al., 2017a). Conversely, aggregating α-

synuclein and mitochondrial dysfunction exacerbate oxidative stress and DNA damage, 

destabilize neuronal Ca2+ homeostasis, and promote neuroinflammation (Schapira et al., 

2014). Support for the latter two statements comes from studies of cultured neurons and 

transgenic mice that overexpress mutant or wild-type human α-synuclein. For example, 

exposure of neurons to agents that induce oxidative stress, inhibit mitochondrial complex I, 

or impair lysosome function can trigger the accumulation of α-synuclein aggregates 

(Schildknecht et al., 2013). Such accumulation is sufficient to trigger neuronal degeneration 

as demonstrated in a study in which suppression of α-synuclein production using RNAi 

technology prevented degeneration of dopaminergic neurons in a rat rotenone model of PD 

(Zharikov et al., 2015). On the other hand, overexpression of mutant or wild-type α-

synuclein is sufficient to trigger the appearance of hallmarks of aging in young mice, 

including the accumulation of oxidatively modified proteins, DNA damage, mitochondrial 

dysfunction, microglial activation, and impaired autophagy (Martin et al., 2006; Lin et al., 

2012).

Finally, mechanisms that may explain how α-synuclein pathology is propagated trans-

neuronally in a retrograde manner within the CNS are emerging. Similar to prions, 

aggregating forms of α-synuclein can “seed” the aggregation of monomeric α-synuclein. 

For example, injection of pathogenic “strains” of α-synuclein into one brain region will 

trigger the spread of α-synuclein to other brain regions (Brundin and Melki, 2017). 

However, because α-synuclein is a cytoplasmic protein and pathogenic α-synuclein 

aggregates accumulate intracellularly, the prion-like mechanism does not readily explain 

how α-synuclein pathology is transferred from one neuron to adjacent neurons (Surmeier et 

al., 2017b). One potential mechanism involves extracellular vesicles (EVs). Lysosome 

dysfunction and oxidative stress can trigger the release of EVs containing aggregating α-

synuclein, and those EVs can then be internalized and trigger the accumulation of toxic α-
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synuclein aggregates in previously healthy neurons (Emmanouilidou et al., 2010; Poehler et 

al., 2014; Zhang et al., 2018). Another potential mechanism for spreading of α-synuclein 

pathology is suggested by a study showing that misfolded preformed fibrils bind to LAG3 

(lymphocyte-activation gene 3) and that LAG3 initiates α-synuclein preformed fibril 

endocytosis, transmission, and cytotoxicity (Mao et al., 2016).

Stroke

A stroke occurs when blood flow in a cerebral artery is interrupted by the formation of a 

clot, which is usually followed by dissolution of the clot and reperfusion of the brain tissue 

supplied by the artery. Depending upon which cerebral vessel is affected, stroke symptoms 

may include sudden weakness, facial numbness, slurred speech, impaired vision, and 

paralysis on the side of the body contralateral to the stroke (Yew and Cheng, 2015). Cerebral 

ischemia results in the development of a core region of brain damage wherein cells die 

rapidly by necrosis and a surrounding penumbra in which cells experience partial ischemia 

and neurons may undergo delayed apoptotic cell death (Moskowitz et al., 2010). The cellular 

and molecular mechanisms responsible for the death of neurons in stroke involve many of 

the same alterations that occur during normal brain aging (Figure 3) including energy 

deprivation and mitochondrial dysfunction, excitotoxicity, cellular Ca2+overload, 

mitochondrial dysfunction, oxidative stress, DNA damage, and inflammation (Weinstein et 

al., 2004).

Complete cessation of brain tissue perfusion results in rapid catastrophic ATP depletion in 

neurons in the ischemic core, resulting in sustained membrane depolarization, Na+ influx, 

cell swelling, and membrane rupture (necrosis). Neurons in the ischemic penumbra 

experience an incomplete ischemia that may result in an acute membrane depolarization 

from which they initially recover. However, during reperfusion there occurs dysregulation of 

Ca2+ homeostasis that can trigger apoptosis mediated by formation of mitochondrial 

permeability transition pores and activation of cysteine proteases called caspases (Mattson, 

2000; Broughton et al., 2009). Caspase 3 cleaves multiple substrate proteins that execute the 

cell death process in a manner that enables the neuron to die without membrane rupture, 

enabling microglia to recognize and remove the dead cell. In addition, some neurons in the 

ischemic penumbra may die by another recently described type of death called pyroptosis, 

which involves caspase 1 activation, formation of pores in the plasma membrane, and release 

of IL-1β (Fann et al., 2013; Adamczak et al., 2014). Inflammation plays a particularly 

prominent role in stroke pathogenesis. Release of damage-associated pattern molecules 

(DAMPs) such as high-mobility group box 1 (HMGB1) protein and interleukin 1α (IL-1 α) 

from the ischemic core region activates inflammatory cascades in cells in the penumbra 

(Fann et al., 2013, 2018). DAMPs activate the receptor for advanced glycation end products, 

TLRs, the C-type lectin mincle, and Notch, all of which contribute to neuronal death in the 

penumbra (Tang et al., 2007, 2013; Arumugam et al., 2017; Fann et al., 2018). In addition, 

the complement cascade arm of the innate immune system and the infiltration of circulating 

leukocytes into the cerebral parenchyma contribute to neuronal degeneration in stroke 

(Arumugam et al., 2007; Gelderblom et al., 2009).
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Interventions that target core mechanisms of aging (metabolic impairment, hyperexcitability, 

Ca2+ dysregulation, oxidative stress, impaired adaptive stress response signaling, and 

inflammation) and apoptosis can reduce brain damage and improve functional outcome in 

animal models of stroke. Examples include glutamate receptor antagonists (Simon and 

Shiraishi, 1990), K+ channel openers (Liu et al., 2002), neurotrophic factors, and 

complement inhibitors (Arumugam et al., 2007; Chen et al., 2018). However, clinical trials 

of such neuroprotective agents have not yet demonstrated efficacy in human stroke patients. 

Likely contributing to this lack of success in stroke patients are the facts that most 

preclinical stroke studies are in young animals, whereas stroke patients are mostly elderly; 

treatment is often initiated prior to the onset of ischemia in animal studies, whereas there is 

typically a delay of at least several hours in human stroke patients; and stroke site and 

ischemia duration are uniform in animal studies, but highly variable in human stroke patients 

(Fisher et al., 2009), making it difficult to discern modest beneficial effects in clinical trials.

Metabolic Factors Can Accelerate or Decelerate Brain Aging

An important feature of brain aging is that there is considerable inter-individual variability. 

Some individuals in their 90s are “sharp as a tack,” while others exhibit cognitive decline 

before the age of 60. While there are undoubtedly genetic factors that influence the rate of 

brain aging, there is also a major environmental component. Indeed, even in inbred strains of 

mice and rats, some individuals exhibit impaired learning and memory capacity in old age 

whereas others do not (Gallagher et al., 2006). In this section, we summarize evidence that 

energy intake and expenditure during the life course have a major impact on the rate of brain 

aging and the risk for AD, PD, and stroke.

Chronic Metabolic Morbidity Accelerates Brain Aging

There are strong positive associations between metabolic morbidities (obesity, dyslipidemia, 

and insulin resistance) and the risk of all major age-related diseases including diabetes, 

cardiovascular and cerebrovascular diseases, and many types of cancer. In animal models of 

the latter disorders, the disease processes are accelerated by feeding diets high in saturated 

fat and simple sugars (Hariri and Thibault, 2010; Koopmans and Schuurman, 2015). 

Individuals who are sedentary and overindulgent are also prone to impaired brain function 

and neurodegenerative disorders as they age. On average, the cognitive performance of 

individuals who are metabolically morbid is poorer than their age-matched healthy 

counterparts (Kullmann et al., 2016; Stillman et al., 2017). Brain imaging studies have 

documented reduced gray matter volumes and white matter integrity in multiple brain 

regions, and reduced functional connectivity between brain regions in obese individuals, 

particularly those with abdominal obesity and insulin resistance (Debette et al., 2014; 

Janowitz et al., 2015; Kullmann et al., 2015). Generally similar abnormalities in brain 

structure and neuronal network connectivity occur in individuals with type 2 diabetes 

(Macpherson et al., 2017). Even among individuals who are not obese, higher body mass 

index is associated with perturbed resting state connectivity in the DMN and sensory-motor 

networks (Beyer et al., 2017; Doucet et al., 2018). In addition, body mass index is inversely 

associated with glucose utilization in the prefrontal cortex, a brain region that plays critical 

roles in executive function, attention, memory, and insight (Volkow et al., 2009). Brain 
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function and structure are also adversely affected by obesity and diabetes in animal models. 

For example, when rats are fed a diet high in saturated fats and sugar, they perform worse on 

a place recognition task and exhibit elevated markers of oxidative stress and inflammation in 

their hippocampus (Beilharz et al., 2014). High-fat feeding impairs cognitive flexibility in a 

delayed matching to position task in rats (McNeilly et al., 2011). Insulin resistance and 

obesity induced by diet or genetic mutation of the leptin receptor in rats or mice result in a 

reduction in synaptic spine density on dendrites of hippocampal dentate granule neurons, 

and impaired hippocampal synaptic plasticity and neurogenesis (Stranahan et al., 2008a, 

2008b). Thus, both correlational data from human studies and controlled trials in animals 

demonstrate that a chronic positive energy balance adversely affects brain structure and 

function.

Data suggest that metabolic morbidity accelerates most, if not all, of the hallmarks of brain 

aging. Impaired cerebral glucose utilization in the prefrontal cortex is inversely associated 

with body mass index in human subjects (Volkow et al., 2009), suggesting an adverse effect 

of a chronic positive energy balance on neuronal bioenergetics. Rats or mice maintained on 

high-fat and/or high-sugar diets, and diabetic animals, exhibit many of the cellular and 

molecular hallmarks of brain aging including oxidative damage (Elahi et al., 2016), 

neuroinflammation (Jayaraman et al., 2014), impaired neuronal Ca2+ homeostasis (Thibault 

et al., 2013), impaired autophagy (Li et al., 2017), and dysregulation of neuronal network 

activity (Margineanu et al., 1998). Insulin-resistant mice exhibit impaired hippocampal 

neurogenesis, which is associated with oxidative stress, inflammation, and impaired 

hippocampus-dependent spatial learning and memory (Lindqvist et al., 2006; Stranahan et 

al., 2008a; Gurung et al., 2016). Activation of inflammatory microglia may contribute to the 

loss of synapses on hippocampal dentate granule neuron dendrites caused by obesity and 

diabetes (Stranahan et al., 2008b; Hao et al., 2016). The ability of neurons to respond 

adaptively to bioenergetic and oxidative stress is compromised by excessive energy intake as 

indicated by reduced expression of BDNF (Stranahan et al., 2008b), PGC-1α (Morselli et 

al., 2014), and SIRT1 (Heyward et al., 2016). Obese and diabetic rodents exhibit elevated 

glucocorticoid levels, which can suppress BDNF expression and impair hippocampal 

synaptic plasticity and neurogenesis (Stranahan et al., 2008a; Wosiski-Kuhn et al., 2014). In 

this regard, the mechanisms by which chronic uncontrolled stress and metabolic morbidity 

compromise the ability of neurons to respond to stress are similar and involve an 

acceleration of aging processes (Sapolsky, 1999).

Sedentary and overindulgent lifestyles accelerate pathological processes underlying age-

related brain diseases by mechanisms involving hallmarks of brain aging. This is established 

in the case of ischemic stroke (Lucke-Wold et al., 2012). Findings from both cross-sectional 

and longitudinal epidemiological studies suggest that obesity, diabetes, and insulin 

resistance are also risk factors for AD and PD (Luchsinger and Gustafson, 2009). In 

transgenic mouse models of AD, diet-induced obesity and diabetes exacerbate cognitive 

deficits by mechanisms involving or in addition to Aβ and Tau pathologies (Takeda et al., 

2010; Walker et al., 2017). Obesogenic diets accelerate the development of motor and non-

motor phenotypes and associated α-synuclein pathology in transgenic PD mouse models 

(Griffioen et al., 2013). Such findings suggest that interventions that improve one’s 
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metabolic status may counteract brain aging. Evidence summarized in the next section 

supports this possibility.

Physiological Bioenergetic Challenges Retard Brain Aging

The evolutionarily pressure to compete successfully for limited food sources resulted in 

selection for individuals whose brains and bodies functioned well (perhaps optimally) when 

in a food-deprived (fasted) state (Mattson, 2015b). Fast forward to the present day and the 

common pattern of meal consumption of three meals plus snacks spaced throughout waking 

hours. The latter eating pattern is abnormal when viewed in the light of our ancestors prior 

to the agricultural revolution who ate less frequently. A compelling scientific literature 

shows that, compared to animals fed ad libitum, those fed intermittently (alternate day 

fasting or daily time-restricted feeding) exhibit improvements in many health indicators and, 

as reviewed elsewhere, their lifespan is extended and hallmarks of aging are diminished 

(Longo and Mattson, 2014; López-Otín et al., 2016; Mattison et al., 2017). Intermittent 

energy restriction improves cognitive and motor performance, and can protect neurons 

against dysfunction and degeneration in animal models of epilepsy, stroke, PD, and AD 

(Bruce-Keller et al., 1999; Duan and Mattson, 1999; Yu and Mattson, 1999; Halagappa et 

al., 2007; Alirezaei et al., 2010; Fann et al., 2014; Parikh et al., 2016; Prehn et al., 2017). 

Regular aerobic exercise, which is necessary for the survival of many animals, can also 

enhance brain health throughout the life course; exercise reduces anxiety and improves 

cognition in laboratory animals and human subjects (Intlekofer and Cotman, 2013; 

Boraxbekk et al., 2016; Castellano et al., 2017; Chirles et al., 2017; Raichlen and Alexander, 

2017). While fasting and vigorous exercise are different challenges to the body and brain, 

emerging findings are revealing that they each elicit similar adaptive cellular responses that 

can enhance neuroplasticity and stress resistance. As reviewed elsewhere (Mattson, 2012; 

Mattson et al., 2018), these include upregulation of neurotrophic factor signaling, autophagy, 

and DNA repair; suppression of oxidative stress and inflammation; stabilization of neuronal 

calcium homeostasis and neuronal network activity; and stimulation of mitochondrial 

biogenesis and neurogenesis (Figure 4).

Emerging findings suggest that depletion of liver glycogen stores and mobilization of fatty 

acids from adipose cells are important metabolic responses to fasting and extended exercise 

with regard to brain health and neuroprotection (Mattson et al., 2018). The fatty acids are 

metabolized to the ketone bodies β-hydroxybutyrate (BHB) and acetoacetate (AcAc) in the 

liver. Neurons utilize the ketones to generate acetyl-coenzyme A and thence ATP in their 

mitochondria. But BHB also functions as a signaling molecule that stimulates Bdnf gene 

expression by modifying histone acetylation and by activating the transcription factor NF-

κB (Marosi et al., 2016; Sleiman et al., 2016). Generally similar to the physiological 

responses of muscle cells to exercise, it appears that neurons respond to intermittent energy 

restriction and exercise by enhancing their tolerance of metabolic stress and by growing in 

size. A picture is emerging in which pathways activated during the metabolic challenges of 

exercise and fasting prepare the cells to grow during the recovery period (rest, feeding, and 

sleep) (Mattson et al., 2018). In the case of neurons, such intermittent metabolic switching 

may stimulate mitochondrial biogenesis to enable neurite outgrowth and the formation of 

new synapses (Cheng et al., 2012; Vaarmann et al., 2016). In addition, recent findings 
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suggest that intermittent metabolic switching enhances the function, stress resistance, and 

quality control of mitochondria, in part by inducing the expression of the mitochondrial 

protein deacetylase SIRT3. The activities of ETC proteins and the mitochondrial antioxidant 

enzyme SOD2 are enhanced when deacetylated by SIRT3, while deacetylation of 

cyclophilin D can inhibit formation of mPTPs, thereby preventing neuronal excitotoxicity 

and apoptosis (Cheng et al., 2016; Shi et al., 2017).

While adaptive cellular stress response pathways are upregulated in brain cells during 

periods of energy restriction and exercise, a recovery period (eating, resting, and sleeping) is 

required to enable the structural and functional plasticity of neuronal circuits that are 

believed to sustain optimal brain function and resilience throughout the life course (Mattson 

et al., 2018). In this view, the metabolic challenge suppresses mTOR and overall protein 

synthesis, and autophagy and gene expression pathways involved in cellular stress resistance 

are upregulated. During the recovery period, mTOR is activated and protein synthesis is 

increased to provide the new proteins required for cell growth (neurite outgrowth, synapse 

formation, and neurogenesis) and the increased bioenergetics (mitochondrial biogenesis) 

required to support the cell growth (Figure 4; Camandola and Mattson, 2017; Mattson et al., 

2018).

Neuroprotection with Bioenergetic Challenge-Based Pharmacological Interventions

While brain health can be bolstered by intermittent metabolic switching, pharmacological 

approaches that tap some of the key adaptive cellular stress response pathways engaged by 

fasting and exercise are being pursued for the purposes of enhancing cognition and 

forestalling or treating age-related neurological disorders. A few such pharmacological 

agents with demonstrated efficacy in animal models of neurodegenerative disorders are 

listed in Table 1. One approach is to bolster mitochondrial function and SIRT3 activity by 

administration of ketone esters or the NAD+ precursor nicotinamide riboside, both of which 

have been demonstrated to be beneficial in AD models (Gong et al., 2013; Kashiwaya et al., 

2013; Hou et al., 2018). Another approach is to induce mild intermittent bioenergetic 

cellular stress by administering mitochondrial uncoupling agents, mitochondrial ATP-

dependent K+ channel openers, or 2-deoxyglucose (which impairs cellular glucose 

utilization). The mitochondrial uncoupler 2, 4-dinitrophenol protects neurons and improves 

functional outcome in animal models of TBI, AD, and PD (Pandya et al., 2007; Liu et al., 

2015a; Geisler et al., 2017). The K+-ATP channel opener diazoxide is very effective in 

protecting neurons in stroke, PD, and AD models (Liu et al., 2002, 2010; Yang et al., 2005). 

When administered once daily (which induces a mild transient cellular metabolic stress), 2-

deoxyglucose induces adaptive cellular stress responses in neurons and protects them against 

degeneration in stroke and PD models (Yu and Mattson, 1999; Duan and Mattson, 1999). 

Similar to what occurs in response to fasting and exercise, administration of rapamycin 

stimulates autophagy while reducing overall protein synthesis; this results from inhibition of 

the mTOR pathway. Such pharmacological treatments that impact cellular signaling 

pathways that are also activated by fasting and exercise can suppress the accrual of 

hallmarks of brain aging and, indeed, rapamycin and nicotinamide riboside treatment can 

increase the lifespan of mice (Harrison et al., 2009; Zhang et al., 2016b).
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Two final examples of therapeutic approaches that target fundamental mechanisms of brain 

aging focus on the insulin-sensitizing hormone glucagon-like peptide 1 (GLP1) and the 

small molecule drug metformin. GLP-1 receptors are coupled to cyclic AMP production and 

CREB activation. GLP-1 receptor agonists increase insulin sensitivity and are 

neuroprotective in animal models of AD, PD, and stroke (Li et al., 2009, 2010; Liu et al., 

2015b). A recent clinical trial revealed a therapeutic benefit of the GLP-1 analog exanatide 

in PD patients (Athauda et al., 2017). Metformin, which has been prescribed for diabetes for 

decades, inhibits liver glucose production, but also activates multiple cellular pathways that 

counteract aging processes, including activation of AMPK and inhibition of mTOR and 

inflammatory pathways (Barzilai et al., 2016). Metformin treatment ameliorates 

neurodegenerative and behavioral phenotypes in animal models of PD and AD (Bayliss et 

al., 2016; Niccoli et al., 2016). Such findings support the potential application of 

pharmacological agents that target metabolism to counteract brain aging and associated 

neurodegenerative disorders.

Concluding Remarks

Research in the fields of aging and neuroscience has revealed multiple hallmarks of brain 

aging at the molecular, cellular, and systems levels. Because they involve highly 

interdependent and interactive signaling pathways and regulatory systems, none of the 

hallmarks of brain aging occur in isolation. Given this complexity of the aging process, one 

might conclude that developing approaches for promoting optimal brain function and 

disease resistance during aging is a daunting challenge. However, studies of animal models 

have shown that the amount and frequency of energy intake can have a major impact on 

brain health span and vulnerability to AD, PD, and stroke. Optimism that prescriptions for 

healthy brain aging are within our grasp is supported by an emerging understanding of the 

mechanisms by which energy restriction and exercise enhance neuronal neuroplasticity and 

resistance of the brain to stress and aging. Recent findings suggest that feeding and exercise 

regimens that result in intermittent metabolic switching from liver-derived glucose to fat-

derived ketones facilitates brain neuroplasticity and resilience (Mattson et al., 2018). As 

summarized in the preceding section and in Figure 4, accumulating data suggest that regular 

intermittent metabolic switching can counteract all of the hallmarks of aging. When viewed 

in the light of evolution, the latter findings are not surprising because success in the 

competition for scarce and sporadic food availability has been the major determinant of 

survival and reproductive success during evolution of all mammals, including humans 

(Mattson, 2015b). Accordingly, brains and the bodies they control evolved to function 

optimally in the setting of intermittent food deprivation. The evidence now justifies 

implementation by the medical community of strategies for enhancing the brain health of 

their patients by the prescription and active facilitation of daily and weekly patterns of meal 

consumption and exercise that result in intermittent metabolic switching. We would argue 

that the failure of the pharmaceutical industry to develop drugs that impact outcomes in age-

related brain disorders is because of their focus on disease-specific targets. A novel approach 

grounded in the neurobiology of aging is to develop pharmacological interventions that 

impose intermittent bioenergetic challenges that activate many of the same adaptive cellular 

responses engaged by intermittent energy restriction and exercise. Recent findings from 
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studies of animal models of age-related neurological disorders support this approach (Table 

1). A new mindset for the design of preclinical studies and clinical trials will be required in 

which the goal is to develop safe agents with a relatively short halflife and a dosing schedule 

that imposes a moderate metabolic challenge followed by a recovery period.
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Figure 1. Hallmarks of Brain Aging
There are ten established hallmarks of brain aging. The illustration depicts nine of the 

hallmarks as colored slices of pie interacting prominently with “dysregulated energy 

metabolism,” which is shown as an inner ring of the aging wheel. Also shown are two slices 

(telomere damage and cell senescence) that are considered hallmarks of aging in 

proliferative peripheral tissues, but have not yet been established as hallmarks of brain 

aging.
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Figure 2. Core Neuronal Circuitry and Glial Cells of the Mammalian Brain
Excitatory neurons deploy the neurotransmitter glutamate and typically elaborate long axons 

that project relatively long distances within and between brain regions. Ca2+ is the principal 

second messenger mediating both presynaptic and postsynaptic plasticity at excitatory 

synapses. The major inhibitory neurons within brain regions are GABAergic and function to 

constrain excitatory neuronal circuits within physiological limits. Glutamatergic neurons 

also receive inputs from neuromodulatory transmitters including norepinephrine, serotonin, 

and acetylcholine. Astrocytes are the most abundant type of glial cell in the brain; they 

remove glutamate from the extracellular milieu and produce neurotrophic factors, lactate, 

and ketones to support neuronal growth and bioenergetics. Oligo-dendrocytes are glia that 

myelinate axons to increase the speed of action potential propagation along the axon. 

Microglia are the major innate immune cell in the brain; they produce reactive oxygen 

species (ROS) and cytokines and remove apoptotic cells and extracellular debris.
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Figure 3. Examples of Roles for Aging Processes, Acting Both Upstream and Downstream of 
Disease-Defining Molecular Lesions, in the Pathogenesis of AD, PD, and Stroke
There is considerable evidence that the indicated hallmarks of brain aging act upstream of 

the disease-defining Aβ plaques and pTau neurofibrillary tangles. On the other hand, 

aggregating Aβ and pTau can cause oxidative stress, dysregulation of Ca2+ homeostasis, 

mitochondrial dysfunction, and other hallmarks of aging in neurons. In PD, core aging 

processes result in the intracellular accumulation of neurotoxic forms of α-synuclein, and 

conversely, the accumulation of α-synuclein exacerbates aging processes resulting in 

neuronal dysfunction and death. Aging renders the brain vulnerable to stroke by promoting 

atherosclerosis and by compromising the ability of neurons to withstand and recover from 

the ischemic stress.
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Figure 4. Working Model for How Intermittent Metabolic Challenges Bolster Brain Health 
during Aging, Whereas a Chronic Positive Energy Balance Hastens Brain Aging and Associated 
Brain Diseases
Left: eating and lifestyle patterns that result in intermittent depletion of liver glycogen stores 

and mobilization of fatty acids to generate ketones (fasting and exercise) also typically 

increase neuronal network activity in many brain regions. Signaling pathways are activated 

in brain cells that upregulate the expression of trophic factors and activate transcription 

factors that induce the expression of genes encoding proteins that enhance neural plasticity 

and resilience during aging. These adaptations to intermittent metabolic switching include 

mitochondrial biogenesis and stress resistance; adaptive modifications of neurotransmitter 

signaling pathways; upregulation of autophagy, antioxidant defenses, and DNA repair; 

stimulation of neurogenesis; and suppression of inflammation. In these ways intermittent 

metabolic switching counteracts core brain aging mechanisms, thereby slowing age-related 

declines in neurological function and reducing the risk of AD, PD, and stroke. Right: 

sedentary overindulgent lifestyles accelerate brain aging and increase the risk of AD, PD, 

and stroke. A chronic positive energy balance results in metabolic morbidity (insulin 

resistance and dyslipidemia) and reduced activation of signaling pathways that promote 

synaptic plasticity and cellular stress resistance. As a consequence, neurons suffer: impaired 

mitochondrial function, autophagy, and DNA repair; excessive oxidative stress; dysregulated 

neuronal network activity and Ca2+ homeostasis; the accumulation of potentially toxic 

protein aggregates; and inflammation. In these ways, metabolic complacency accelerates 

age-related decrements in brain function and increases the risk of AD, PD, and stroke.
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Table 1

Examples of Adaptive Metabolic Cellular Stress Response-Based Pharmacological Strategies to Ameliorate 

Age-Related Neurological Deficits and Diseases

Agent Mechanism of Action Preclinical Findings References

Ketone (ester) energy substrate improves cognition and 
endurance

Murray et al., 2016; Kashiwaya et 
al., 2000, 2013; Marosi et al., 
2016

induces BDNF expression beneficial in seizure, AD, and PD 
models

Nicotinamide riboside bolsters bioenergetics and sirtuin 
activity

extends lifespan and beneficial in 
AD model

Gong et al., 2013; Zhang et al., 
2016a; Hou et al., 2018

2,4-dinitrophenol mild mitochondrial uncoupling beneficial in TBI, AD, and PD 
models

Pandya et al., 2007; Geisler et al., 
2017; Lee et al., 2017

adaptive cellular stress responses

Diazoxide K-ATP channel opener beneficial in stroke, PD, and AD 
models

Liu et al., 2002, 2010; Yang et al., 
2005

2-deoxyglucose induces adaptive cellular stress 
responses

neuroprotective in stroke and PD 
models

Duan and Mattson, 1999; Yu and 
Mattson, 1999

Rapamycin mTOR inhibitor and autophagy inducer beneficial in stroke, AD, and PD 
models

Buckley et al., 2014; Spilman et 
al., 2010; Siddiqui et al., 2015

extends lifespan

Exendin-4 and liraglutide GLP-1R agonist and insulin sensitizer beneficial in stroke, AD, and PD 
models

Li et al., 2009, 2010

induces BDNF expression

Metformin inhibits liver glucose production, 
activates AMP, and inhibits mTOR

beneficial in PD and AD models Martin-Montalvo et al., 2013; 
Bayliss et al., 2016; Niccoli et al., 
2016extends lifespan
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