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Abstract

Lung endothelial cell apoptosis and injury occur throughout all stages
of acute lung injury/acute respiratory distress syndrome and impact
disease progression. Caspases 1, 4, and 5 are essential for completion
of the apoptotic program known as pyroptosis that also involves
proinflammatory cytokines. Because gasdermin D (GSDMD)
mediates pyroptotic death and is essential for pore formation, we
hypothesized that itmight direct caspase1–encapsulatedmicroparticle
(MP) release and mediate endothelial cell death. Our present work
provides evidence that GSDMD is released by LPS-stimulated THP-1
monocytic cells, where it is packaged intomicroparticles together with
active caspase 1. Furthermore, only MP released from stimulated
monocytic cells that containbothcleavedGSDMDandactive caspase 1
induce endothelial cell apoptosis. MPs pretreated with caspase 1
inhibitor Y-VAD or pan-caspase inhibitor Z-VAD do not contain
cleavedGSDMD.MPs fromcaspase 1–knockout cells are also deficient
in p30 active GSDMD, further confirming that caspase 1 regulates
GSDMD function. Although control MPs contained cleaved GSDMD
without caspase 1, these fractions were unable to induce cell death,

suggesting that encapsulation of both caspase 1 and GSDMD
is essential for cell death induction. Release of microparticulate
active caspase 1 was abrogated in GSDMD knockout cells, although
cytosolic caspase 1 activation was not impaired. Last, higher
concentrations of microparticulate GSDMD were detected in the
plasma of septic patients with acute respiratory distress syndrome
than in that of healthy donors. Taken together, these findings suggest
that GSDMD regulates the release of microparticulate active caspase 1
from monocytes essential for induction of cell death and thereby
may play a critical role in sepsis-induced endothelial cell injury.

Clinical Relevance

To our knowledge, our novel study is the first to show
that microparticulate caspase 1 and gasdermin D may play a
critical role in the regulation of sepsis-mediated pulmonary
vascular endothelial cell injury. Understanding this regulatory
mechanism has therapeutic potential and benefit.

Microparticles are small membrane-coated
structures that are released from cells upon
activation or during apoptosis (1, 2). In
pathological states, such as atherosclerosis,
sepsis, acute coronary syndrome, diabetes,
or immune disorders, elevated circulating
concentrations of microparticles have been

detected (3–9). Because microparticles
accumulate in areas of disordered blood
flow (3–5), we believe that caspase 1–
containing microparticles may have
pathological consequences to the
endothelium. Our previous studies have
demonstrated that monocyte-derived

microparticles can induce cell death
(10–12). In addition to its classical role
in IL-1/IL-18 processing (13), caspase 1
has a demonstrated role in microparticle-
mediated cell death. However, little
is known about the mechanisms of
microparticulate caspase 1–induced
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apoptosis. In this context, gasdermin D
(GSDMD) has recently been shown to
induce a pyroptotic cell death (14–18).
GSDMD is a 487–amino acid cytoplasmic
protein that contains an ill-characterized
gasdermin domain and lacks any obvious
transmembrane segment or signal peptide
(19). GSDMD has been shown to be cleaved
by inflammatory caspases, and the cleaved
p30 amino terminal fragment GSDMD is
thought to be involved in the induction
of pyroptotic cell death owing to its pore-
forming capacity (16–20). In the present
study, we show that the p30 form of
human GSDMD is released by activated
monocytes in microparticles together with
the inflammasome protein caspase 1.
Importantly, GSDMD is essential for the
release of active caspase 1 in microparticles.
GSDMD-knockout (GSDMD-KO) cells do
not release active caspase 1, despite its
continued presence in cell lysates from
LPS-activated GSDMD-KO cells. Hence, we
propose that active GSDMD regulates the
release of active caspase 1–encapsulated
microparticles, an event essential for
induction of cell death.

Methods

Microparticles (MPs) isolated from
stimulated THP-1 cells were analyzed for
the presence of cleaved GSDMD together
with inflammasome proteins such as active
caspase 1. These MPs were also cocultured
with human pulmonary vascular endothelial
cells (HPMVEC) to test the role of GSDMD
in caspase 1–mediated cell death. A detailed
description of the methods is provided in
the data supplement.

Results

Caspases 1, 4, 5, and 11 can cleave GSDMD
to an active fragment that mediates
pyroptotic cell death by its induction of
cell membrane pores (17, 21–23). Because
our recent work established the novel
involvement of caspase 1 in microparticle-
induced apoptosis, we examined the
possible role of GSDMD as a key
component of monocyte-derived, caspase-
containing microparticles. We detected
the cleaved active p30 form of GSDMD in
the microparticles released from THP-1
monocytic cells upon stimulation with
LPS (1 mg/ml) for 2 hours (Figure 1A). This

presence of GSDMD was further confirmed
using confocal microscopy. As shown
in Figure 1B, THP-1 cells contain
endogenous GSDMD; however, upon
stimulation with LPS for 2 hours, GSDMD
colocalized with released LPS-induced
microparticles (LPS MPs). Pretreating
THP-1 cells with the caspase 1 inhibitor
Y-VAD or the pan-caspase inhibitor
Z-VAD reduced the LPS-induced release
of p30 GSDMD in MPs (Figure 1A). The
release of cleaved GSDMD coincided
with the release of active p20 caspase 1 in
the MP fractions (Figure 1A, lower left
panel). As shown in Figure 1C, GSDMD
(green) and caspase 1 (white) were
colocalized in released LPS MPs (red). This
concurrence of GSDMD and caspase 1
in microparticles was further confirmed
using OptiPrep density gradients
(AXIS-SHIELD). Active p30 GSDMD
and p20/enzymatically active caspase 1
colocalized only in the LPS-generated
fractions. Although GSDMD was
detected in several fractions of both control
and LPS MPs, active GSDMD and p20
enzymatically active caspase 1 were
codetected only in fractions 7–9 (Figure
1D). The absence of caspase 1 activity in
less dense OptiPrep fractions 1–5 of both
control and LPS MPs was not due to lack
of MPs, because we detected almost equal
numbers of MPs by DilC16 staining of
the fractions (see Figure E1 in the data
supplement). Of note, MPs also contained
the inflammasome protein ASC, critical for
caspase 1 activation (Figure 1A).

When MPs were disrupted into
membrane (M) and content components
(C), cleaved GSDMD and active caspase 1
associated with the membrane of the LPS
MPs (Figure 1E) because neither was
detected in the soluble content of MPs.
In contrast, ASC was detectable in the
soluble fraction. This finding suggests that
GSDMD and active caspase 1 association
within the MP membrane may work in
concert to induce cell death in target cells.
To test this hypothesis, we then asked if
GSDMD and caspase 1 association and
encapsulation in LPS MPs was essential for
its release and cell death induction. First,
control MPs and LPS MPs released by
THP-1 cells were analyzed for their
cytotoxic capacity against HPMVEC. As
shown in Figure 2A, only LPS MPs induced
cell death, whereas control MPs and LPS
non-MP fractions did not. Interestingly,
LPS non-MP fractions contained p30

GSDMD (Figure E2), but they did not
induce cell death of HPMVEC, suggesting
that encapsulation of GSDMD together
with active caspase 1 in MPs is essential for
cell death. Furthermore, although control
MPs sometimes contained p30 GSDMD,
possibly owing to activation of GSDMD by
a nonclassical pathway, they did not induce
cell death, likely because control MPs did
not contain active caspase 1. The fact that
control MPs did not induce cell death
suggests that GSDMD in MPs is essential
for caspase 1–encapsulated MP release and
thereby caspase 1 for death induction. To
further confirm this observation, cell death
induction capacity was measured from the
density gradient fractions of both control
and LPS MPs. As shown in Figure 1D, only
fractions 7–9 of LPS MPs contained both
p30 GSDMD and p20 caspase 1. Accordingly,
only fractions 7–9 from LPS MPs
(i.e., containing both GSDMD and active
caspase 1) induced cell death, whereas
corresponding fractions from control MPs
did not. It is noteworthy that control
fractions 7–9 did contain p30 GSDMD, as
shown in Figure 2A. Other fractions from
both control and LPS MPs did not induce
cell death.

These observations suggest that active
GSDMD regulates MP release and requires
caspase 1 to be able to induce cell death.
To further test this hypothesis, we repeated
cell death experiments using control and
LPS MPs in the presence or absence of
Y-VAD (specific caspase 1 inhibitor) and
Z-VAD (pan-caspase inhibitor). As shown
in Figure 2B, both Y-VAD and Z-VAD
completely abrogated the LPS MP–mediated
cell death. The nonmicroparticulate
fractions (LPS non-MPs) did not induce
cell death, providing a specificity control
(Figure 2B). To confirm that GSDMD
association with active caspase 1 is critical
to induction of cell death, untransformed
THP-1 cells, CAS9-expressing THP-1 cells,
and CAS9/Casp1-KO THP-1 cells were
either left untreated or stimulated with
LPS in the presence or absence of Z-VAD.
Cell extracts (CE) were first tested for the
presence of caspase 1 and GSDMD. No
caspase 1 was detected in the CAS9/Casp1-
KO cells as compared with both regular
THP-1 and CAS9 cells (Figure 2C).
Although full-length GSDMD was detected
in equal amounts in all three cell types,
active p30 GSDMD was higher in the LPS
CE and partially suppressed by Z-VAD. No
cleaved p30 GSDMD was detected in the
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Figure 1. Cleaved gasdermin D (GSDMD) colocalizes with active caspase 1 (Casp1) in microparticles (MPs) released from LPS-stimulated THP-1 cells.
THP-1 cells were cultured at a concentration of 50 million per milliliter and stimulated with LPS (1 mg/ml) for 2 hours or left untreated. Casp1 inhibitor
Y-VAD and pan-caspase inhibitor Z-VAD were used both before and after LPS treatment as indicated. DMSO and Z-FA were used as inhibitor controls. MPs
were isolated from each condition and normalized by total protein for analysis. (A) Immunoblots of GSDMD, p20 caspase 1, and ASC from MPs after
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CAS9/Casp1-KO CE, suggesting that
GSDMD cleavage is regulated by caspase 1
activation.

We then analyzed the MPs generated
from these cells. Both active GSDMD and
active caspase 1 (p20) were released in LPS
MPs from THP-1 and Cas9 cells (Figure 2C,
bottom panel). This release of active p30
GSDMD and caspase 1 was significantly
inhibited by Z-VAD, although some
amount of full-length GSDMD was still
released in Z-VAD conditions. That this
GSDMD cleavage was related to caspase 1
function was further supported by caspase 1
activity measurements (Figure 2D).
Notably, neither full-length nor cleaved
GSDMD was easily detected in the
microparticles from CAS9/Casp1-KO
cells, although full-length p52 GSDMD
expression was not impaired in the CE
(Figure 2C), suggesting that cleavage of
microparticulate GSDMD depends on
caspase 1 activation. Subjecting HPMVEC
to these microparticles further confirmed
the need for the caspase 1–GSDMD
association for cell death induction. As
expected, LPS MPs containing both active
caspase 1 and active GSDMD from THP-1
and CAS9 cells induced significant cell
death (Figure 2E). MPs induced by
LPS treatment in the presence of Z-VAD
did not induce cell death. MPs from
CAS9/Casp1-KO cells also did not induce
HPMVEC cell death (Figure 2E), further
confirming the role of caspase 1 in the
regulation of GSDMD activation, release of
MPs, and thereby induction of cell death.

To test active GSDMD’s ability to
regulate the release of microparticles
containing active caspase 1 from stimulated
monocytes, CAS9-expressing and
CAS9/GSDMD-KO THP-1 cells were either
left untreated or stimulated with LPS (as
described in previous experiments), and
CE and MP fractions were analyzed for
active caspase 1 and GSDMD. As shown
in Figure 3, CE from both CAS9- and
GSDMD-KO cells detected active p20 caspase 1

upon LPS stimulation, indicating that
knocking out GSDMD did not impair LPS-
mediated caspase 1 activation. However,
when MPs were analyzed, no active caspase 1
was detected in LPS MPs from CAS9/GSDM-
KO cells as compared with LPS MPs
from Cas9 cells (Figure 3, middle panel),
confirming the role of active GSDMD in
regulating the release of MPs encapsulating
caspase 1.

To determine whether caspases 4 and 5
could regulate MP-mediated cell death, MPs
from either THP-1– or CAS9/Casp1-KO
cells were analyzed for the presence of these
proteins. As shown in Figure E3, Casp4,
Casp5, and lamin B were not detected
in either control MP or LPS MP cells,
although these proteins were clearly
detected in the cell extracts. This finding
suggests that although caspases 4 and 5 are
known to be able to cleave GSDMD, these
caspases are not involved in MP-mediated
cell death. Lamin B blots document
separation of MPs from cell nuclei.

GSDMD has been linked to various
diseases, including sepsis (14, 19, 24–27).
Researchers in our laboratory previously
described the presence of circulating
microparticulate active caspase 1 in septic
patient plasma and demonstrated a possible
correlation of circulating caspase 1 with
lymphocyte cell death in septic patients
(12). Therefore, we performed a pilot
study using plasma from either healthy
donors or septic patients with acute
respiratory distress syndrome (ARDS).
Six plasma samples from healthy donors
and seven plasma samples from patients
with ARDS were collected during Day 1
of ICU admission and were subjected to
microparticle isolation. As shown in
Figure 4A, cleaved p30 GSDMD was
detected in varying amounts in patients
with ARDS. Almost no detectable p30
GSDMD was observed in healthy plasma
MPs. MPs were loaded on the basis of
protein quantification, which we have
found to be representative of MP numbers

for analytical purposes (Figure E4). To
confirm the specificity of the GSDMD band
detected in the patient samples, MPs
isolated from three patients and LPS CE
and LPS MPs from THP-1 cells (used as
markers) were analyzed by either regular
immunoblotting (using both primary and
secondary antibodies) or with secondary
antibody alone. As shown in Figure 4B,
both pro-GSDMD (p52) and cleaved p30
GSDMD bands were detected during
regular immunoblotting, whereas both
bands were completely absent when
only secondary antibody was used. This
confirmed that the p30 cleaved GSDMD
band that was observed only in patient
samples and not in healthy donors was
not due to detection of human IgG by
the secondary antibody. Caspase 1 activity
was also measured from these MPs.
When compared between healthy donors
and patients with ARDS, circulating
microparticulate caspase 1 activity was also
significantly increased in samples from
patients with ARDS as compared with
those from healthy donors (P, 0.015)
(Figure 4C).

Discussion

Vascular injury is the central component
of acute lung injury (ALI)/ARDS and is a
hallmark of disease progression. Our
in vitro model of HPMVEC monocyte
interactions was developed to study the
potential role of microparticles as mediators
of vascular injury. MPs are known to carry
various factors and proteins upon release
by activated or apoptotic cells (1–9). For
example, monocyte/macrophage-derived
microparticles have been shown to transport
phosphatidylserine and tissue factor (8,
28–31). We have described that packaging
of exogenous caspase 1 into microparticles
(11, 12) regulates endothelial cell injury (10).
On the basis of the present work, we provide
clear evidence that cleaved GSDMD is

Figure 1. (Continued). various treatments. Densitometric scan analysis using ImageJ software (NIH) with immunoblots is representative of four
experiments. (B) Cells and MP fractions were analyzed by fluorescence microscopy for colocalization of GSDMD with MPs recovered from control and
LPS-treated THP-1 cells. Cells and MPs were stained with DilC16 (lipid stain, red), GSDMD (green), and DAPI (blue). (C) Colocalization of Casp1 and GSDMD in
MPs visualized by fluorescence microscopy with DiLC16 (red), GSDMD (green), and Casp1 (white). Quantification of colocalization of GSDMD with MPs
was calculated as the percentage of the number of MPs colocalized with GSDMD among the total number of MPs in each field. Quantification of colocalization
of Casp1 with GSDMD in MPs was calculated as the percentage of the number of MPs colocalized with Casp1 and GSDMD among the total number of MPs
in each field. (D) OptiPrep fractions of control and LPS MPs were analyzed for p30 GSDMD and active p20 Casp1. Casp1 activity in each fraction was
determined by fluorimetry of WEHD-afc cleavage. (E) Control and LPS MPs were further fractionated into membrane (M) and MP content (C). Both membrane
and content fractions from control and LPS MPs were then analyzed by immunoblotting for p30 GSDMD, Casp1, ASC, LAMP, Hsp90, and Na1/K1-ATPase.
*P, 0.05; arrow shows colocalization, inset is 1003 magnification. Data are representative of four experiments. AFU= arbitrary fluorescence units.
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released into supernatants of LPS-stimulated
THP-1 cells and that this exogenous
GSDMD is packaged into microparticles
together with the inflammasome proteins
active caspase 1 and ASC. Although
GSDMD was found to be released by control
THP-1, GSDMD colocalized with active
caspase 1 only under stimulated conditions.
This colocalization of GSDMD in MPs was
confirmed by immunoblotting as well as
fluorescence confocal microscopy.

Recent studies have identified GSDMD
protein as critical to pyroptosis (14–17, 19,
20). Several gasdermins are associated with
genetic diseases, but their function and
activation mechanisms are still unknown.
Besides GSDMD, the gasdermin family
includes other GSDMs that are insensitive
to inflammatory caspases (21). Gasdermin
has been shown to associate with the
plasma membrane, resulting in its

permeabilization and pore formation
(22, 23). Current concepts suggest that
caspase 1/5 cleaves GSDMD such that
the p30 amino terminus now exposes a
hydrophobic face that interacts with
membrane lipids, forming a pore (17, 19,
22). This pore formation capacity of
GSDMD has been shown to regulate cell
death by compromising the integrity of
the cell membrane. By dividing MPs into
membrane and content components,
we show that p30 GSDMD is in fact
associated with the membrane of
the microparticles together with p20
active caspase 1 after LPS challenge. We
further demonstrate that this release of
microparticulate GSDMD is regulated by
caspase 1. Knocking down caspase 1 using
the CRISPR/CAS9 system completely
abrogated the cleavage and release of p30
GSDMD, as well as affected the release

of microparticles in general. This suggests
that caspase 1 cleaves GSDMD to its active
form, which leads to packaging of p30
GSDMD into microparticles.

The mechanism by which GSDMD
triggers pyroptosis is beginning to be
understood. As described earlier, GSDMD
regulates cell death by forming pores that
compromise the integrity of the cell
membrane and release of calcium (21–23).
In our previous work, we have described
the novel role of caspase 1 in splenic
B-lymphocyte apoptosis and sepsis survival
(12, 13), in smooth muscle cell apoptosis in
atherosclerosis (11), and in endothelial cell
death (10). The present study provides
evidence that the encapsulation of active
caspase 1 into MPs is dependent on GSDMD.
Thus, a cooperation between caspase 1 and
GSDMD drives exogenous caspase 1 release
in MPs and thereby induction of cell
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death by MP-receiving cells. We demonstrate
that LPS MPs containing both GSDMD and
active caspase 1 induced HPMVEC death,
whereas the MPs from control cells or cells
treated with caspase inhibitor Z-VAD did
not. Although both control MPs and
non-MP fractions from control and LPS-
stimulated conditions contained GSDMD,
neither was able to induce HPMVEC death.
This association of GSDMD with MPs is
abrogated by inhibition of caspase 1 activity
or absence of caspase 1, as seen in the
caspase 1–KO model. The absence of
GSDMD-containing MPs in caspase 1–KO
cells leads us to believe that caspase 1
regulates the packaging of GSDMD in MPs,
which in turn may regulate the release of
these microparticles. This may be due to the
fact that p30 GSDMD activation by caspase 1

is required for the formation and/or
release of MPs containing GSDMD. We
believe that GSDMD’s pore-forming
capacity may be critical to the ability of
MPs to target cells. The absence of
caspase 1, as seen in CRISPR/CAS9/Casp1
KO, abrogates the necessity of this
encapsulation of GSDMD into MPs and
thereby its release. This was further
confirmed by our observation that
knocking down GSDMD using
the CRISPR/CAS9 system completely
abrogated the release of active caspase 1–
containing microparticles, although
activation of caspase 1 was not affected in
the CE upon stimulation. Further support
for the role of GSDMD in assisting caspase 1
in the cell death of targeted cells is the fact
that although some amount of p30 GSDMD

is detected in control MPs (probably due
to autoactivation), control MPs were unable
to induce cell death. Thus, we hypothesize
that the presence of active caspase 1
together with GSDMD encapsulated in
microparticles is essential for apoptosis
induction of endothelial cells. This concept
is also supported by our observation that
although non-MP fractions contain active
GSDMD, they do not induce cell death. We
suggest that, taken together, our data show
that microparticulate caspase 1 induces cell
death and that GSDMD assists in the
process, possibly by assisting the MPs in
release of and/or fusion with cells or by
allowing release of p20 caspase 1 from MPs.

Much remains to be understood about
the relationship between GSDMD and
caspase 1 in microparticles. It will be
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important to determine whether p30
GSDMD creates pores in MPs themselves.
If so, do these pores provide a conduit for
the transfer of active p20/p10 tetramers to
MP-targeted cells? Also, why are MPs not
induced to rupture in the presence of p30
GSDMD? Possibly, MPs are somehow
protected from GSDMD pore-mediated
rupture owing to constraints on membrane
stress as a result of the small radius of MPs
or because of unique aspects of the MP
cytoskeleton. Furthermore, a critical role of
caspase 1 in membrane reconstitution has
been shown previously, which may be
important in the replenishment of MP
membranes (32). Clearly, the present
findings support the need for more specific
questions about the GSDMD-caspase 1
relationship in MPs.

GSDMD has been described to be
involved in immune regulation in various
inflammatory disease models, including sepsis
(19). When septic patients were analyzed for
the presence of circulating microparticulate
GSDMD, significantly higher concentrations
of p30 GSDMD and active caspase 1 were
detected in MPs isolated from plasma of septic
patients with ARDS than those in healthy
control subjects. Our previous work had
described elevated concentrations of
microparticulate active caspase 1 in septic
patients (12). That GSDMD and active caspase 1
concentrations are also significantly higher
in plasma MPs from septic patients further
supports our hypothesis that GSDMD

regulates release of circulatory microparticulate
caspase 1 and thereby cell death.

We conducted a pilot study with
only seven patient samples. Researchers at
our laboratory are currently working on
actively recruiting patient samples as well
as generating sensitive alternative detection
techniques to screen patient samples
from limited sample volumes. Further
investigation of that aspect of GSDMD
kinetics is needed. Much remains to be
understood about the role of GSDM in sepsis
and the pathobiology of the critical role of
caspase 1 and pyroptosis in ALI- or sepsis-
induced endothelial dysfunction. Notably,
caspase 1–deficient mice have been reported
to have a prolonged inflammatory response,
suggesting more pronounced or longer
inflammation (33). However, in our
previous work, we have shown that although
systemic Escherichia coli infections are
relatively benign in caspase 1–KO animals
(13), there was a relationship between
pyroptotic death of cells (albeit in the spleen)
and survival. Researchers at our laboratory
are actively working on experiments involving
in vivo studies to evaluate the pathogenic
effect of microparticle-encapsulated GSDMD
in models of sepsis (e.g., systemic or
pulmonary LPS). However, there are many
limitations to performing such studies using
MPs. The generation and purification of
sufficient numbers of mouse-specific MPs is
a technical challenge that we are currently
attempting to surmount.

In summary, the present work provides
evidence that cleaved GSDMD is released
from cells packaged in microparticles
together with active caspase 1 and other
inflammasome proteins such as ASC. This
cleavage of p30 GSDMD is likely essential
for the formation of caspase 1–encapsulated
MPs that are capable of inducing pyroptosis
of affected cells.

Conclusions
Although much is known about the
pathogenesis of lung cell injury and death
in ALI/ARDS, knowledge gaps remain.
Our present work provides evidence that
GSDMD is packaged in microparticles
together with active caspase 1 and released
by LPS-stimulated THP-1. This association
of GSDMD and active caspase 1 can induce
HPMVEC death. We believe that GSDMD
encapsulation in microparticles together
with caspase 1 may be essential for effective
release of caspase 1–encapsulated MPs
from monocytes to vascular cells, thereby
regulating caspase 1–mediated endothe-
lial cell death. Significantly higher
concentrations of microparticulate GSDMD
were detected in septic patients with ARDS.
We report that, taken together, our data
show that microparticle-encapsulated
GSDMD plays a critical role in caspase 1–
mediated endothelial cell injury. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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