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Aim: African–Americans (AA) have increased prostate cancer risk and a greater 
mortality rate than European–Americans (EA). AA exhibit a high prevalence of 
vitamin D deficiency. We examined the global prostate transcriptome in AA and EA, 
and the effect of vitamin D3 supplementation. Patients & methods: Twenty-seven 
male subjects (ten AA and 17 EA), slated to undergo prostatectomy were enrolled 
in the study. Fourteen subjects received vitamin D3 (4000 IU daily) and 13 subjects 
received placebo for 2 months prior to surgery. Results: AA show higher expression of 
genes associated with immune response and inflammation. Conclusion: Systems level 
analyses support the concept that Inflammatory processes may contribute to disease 
progression in AA. These transcripts can be modulated by a short course of vitamin D3 
supplementation. 
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There are considerable and persistent racial 
disparities in prostate cancer outcomes. 
Prostate cancer disproportionately affects 
African–American (AA) men in terms of 
incidence, morbidity, and mortality, even 
after adjustment for stage. AA men have a 
two- to three times increased risk of develop-
ing prostate cancer and have a greater mor-
tality rate compared with European–Ameri-
can (EA) men. Reduced access to healthcare 
services contributes to racial disparities in 
prostate cancer outcomes, but even in equal 
access healthcare systems such as the Vet-
erans Administration (VA), AA veterans 
have higher serum prostate-specific anti-
gen (PSA) values and higher-grade tumors 
than EA  veterans even when presenting at 
the same stage of disease [1,2]. Thus, access 
to healthcare is necessary but not sufficient 
for eliminating racial differences in prostate 
cancer outcomes. A better understanding of 
the biological mechanisms underlying these 

disparities is needed to develop strategies to 
overcome them.

Exposure of skin to sunlight in the ultra-
violet B (UVB) range of the spectrum 
(290–315 nm) results in the photolytic con-
version of 7-dehydrocholesterol to previta-
min D

3
, which is transformed to vitamin D

3
 

(cholecalciferol) by thermally induced isom-
erization [3,4]. Vitamin D

3
 can be obtained 

from the diet; however, it is distributed very 
poorly in natural foodstuffs. Dark skin pig-
mentation, due to increased melanin levels, 
likely evolved in equatorial regions to pro-
tect individuals from skin cancers. Increased 
skin pigmentation, however, limits one’s 
ability to produce vitamin D

3
 [5,6]. Vita-

min D deficiency occurs when serum levels 
of 25(OH)D are at <50 nmol (<20 ng/ml); 
as a result, a majority of AA are vitamin D 
deficient [6]. Until recently, higher dose vita-
min D

3
 supplementation was not viewed as 

a viable treatment modality due to concerns 
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about potential toxicity. However, Vieth et al. [7] exam-
ined the efficacy and safety of relatively high intakes 
of vitamin D

3
 by assessing the effects of 1000 and 

4000 international units (IU) per day in 61 adults for 
up to 5 months. They found that vitamin D

3
 at a dose 

of 4000 IU/day was effective in elevating the serum 
25(OH)D concentration to values ≥40 ng/ml of serum. 
Our own clinical experience with prolonged supple-
mentation with 4000 IU/day for 12 months has dem-
onstrated the safety of this regimen. We have observed 
that 4000 IU/day are extremely effective at raising cir-
culating 25(OH)D across racial groups [8,9], to levels 
measured in athletes during  summer  training [10].

Prostate cells express the vitamin D receptor 
(VDR), vitamin D-25-hydroxylase, 25-hydroxy-
vitamin D-1-alpha-hydroxylase and the 25-hydroxy-
vitamin D-24-hydroxylase [11–16]. Therefore, normal 
prostate cells can synthesize 25(OH)D

3
 (calcidiol) 

from vitamin D
3
 (cholecalciferol), and 1,25(OH)

2
D

3
 

(calcitriol) from 25(OH)D
3
 [17,18]. 1,25(OH)

2
 D

3
 is 

the hormonal, most potent form of vitamin D and in 
 prostate cells it acts in a paracrine/autocrine fashion.

Several mechanisms of vitamin D-mediated anti-
cancer action have been identified [19]. Vitamin D sup-
presses the expression of cyclo-oxygenase-II, the key 
enzyme for the synthesis of prostaglandins, mediators 
of inflammation and thought to be important for can-
cer progression [20]; cyclo-oxygenase-II expression in 
biopsy cores and prostate cancer surgical specimen is 
an independent predictor of recurrence [21]. Further-
more, there is considerable evidence that calcitriol 
inhibits nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-κB) signaling, and decreases the 
levels of the angiogenic and pro-inflammatory cyto-
kine IL-8 in prostate cancer cells [22]. NF-κB is a tran-
scription factor that plays a central role in the control 
of inflammation and is expressed at high levels in pros-
tate cancers with high Gleason scores [23]. This is only 
a very limited list of the many molecular pathways and 
mechanisms affected by vitamin D, as it is now well 
established that VDR may recognize cognate VDRE 
present within the regulatory sequences of hundreds of 
human genes, implicating vitamin D in a vast network 
of gene regulation, and underlying its broad physio-
logical actions [24,25]. While it is well established that 
vitamin D and calcium are crucial for normal skel-
etal growth and for maintenance of the mechanical 
and structural integrity of the skeleton [26], the recent 
emphasis on nonskeletal functions of vitamin D has to 
do with the realization that vitamin D deficiency has 
major implications for human health in general, and 
cancer biology in particular [9].

Racial disparities in prostate cancer outcomes mirror 
racial differences in circulating levels of vitamin D [27]. 

Furthermore, about 60% of AA men have suboptimal 
levels of circulating 25(OH)D

3
 [28,29]. For this reason, 

vitamin D
3
 supplementation is likely to benefit these 

men. Vitamin D supplementation has no effect on free 
or total prostate-specific antigen (PSA) in AA men [30]. 
The effects of 25-OHD levels on the risk of total, low- 
and high-grade prostate cancer were examined in two 
separate studies, the SELECT [31] and the PCPT [32]. In 
the former, plasma 25-OHD levels were associated with 
a linear decrease in prostate cancer risk for high-grade 
cancers in AA men and an apparent ‘U’-shaped effect in 
other men reflecting detection bias. In the latter, which 
minimized detection bias, serum 25-OHD levels were 
associated with a linear decrease in the risk of high-
grade prostate cancers. These data support the hypo-
thesis that circulating levels of 25-OHD decrease the 
risk of clinically relevant prostate cancers and emphasize 
the need to further assess the influence of  vitamin D 
 supplementation on  prostate cancer  prevention.

Vitamin D promotes the differentiation of prostate 
cancer cells and maintains the differentiated pheno-
type of prostate epithelial cells, raising the possibility 
that long-term vitamin D deficiency may contribute 
to the progression from subclinical prostate cancer to 
clinical disease, especially among AA men [27]. There-
fore, eliminating racial disparities in circulating levels 
of vitamin D could help reduce disparities in prostate 
cancer outcomes.

We completed an open-label clinical trial aimed 
at assessing the safety and potential efficacy of vita-
min D

3
 supplementation at 4000 IU per day for one 

year in patients diagnosed with low-risk prostate can-
cer [33]. The combination of active surveillance and 
vitamin D

3
 supplementation resulted in a decreased 

number of positive cores at repeat biopsy in half of sub-
jects enrolled in this trial, and a comparison between 
supplemented subjects and historical controls suggested 
that supplementation with vitamin D

3
 at 4000 IU per 

day may benefit patients with low-risk prostate cancer 
on active surveillance [33].

These observations prompted us to initiate a pro-
spective clinical study aimed at examining the effects 
of vitamin D

3
 supplementation at 4000 IU per day 

for 2 months in male subjects who selected surgical 
removal of the prostate (prostatectomy) as a defini-
tive treatment for their prostate cancer. According to 
current standard of care, a 2-month interval between 
biopsy and prostatectomy is recommended to resolve 
the inflammation due to the biopsy procedure. More-
over, we reported that the initial 2 months of vita-
min D

3
 supplementation register the fastest raise in 

serum levels of 25(OH)D
3
 [8,9].

The primary goal of this study was to examine 
molecular differences in gene expression patterns rel-
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evant to prostate cancer disparities between AA and 
EA men, and investigate the global effects of vita-
min D

3
 supplementation on the prostate transcrip-

tome. To further this objective, we undertook a series 
of genome wide expression profiling experiments 
using high-throughput (HT) RNA sequencing. RNA 
was purified from prostate tissue specimens obtained 
at surgery from subjects enrolled in the study. Tran-
scriptional profiles of each of the patient’s tissue sam-
ples were  generated and systems level analyses were 
performed.

Patients & methods 
Human subjects
This human study was approved by the Institutional 
Review Board (IRB) of the Medical University of 
South Carolina (MUSC; SC, USA), and the Ralph H 
Johnson VA Medical Center (VAMC; SC, USA) and 
by the Research and Development (R&D) Commit-
tee of the VAMC. This interventional study was per-
formed under investigational new drug (IND) 77839, 
granted to SGC by the US FDA. Male subjects enrolled 
in this study were diagnosed with localized prostate 
cancer. The study enrolled 27 subjects (ten AA and 
17 EA men), who had selected surgical removal of the 
prostate (prostatectomy) as a definitive treatment for 
their prostate cancer. According to current standard of 
care, a 2-month interval between biopsy and prosta-
tectomy is recommended to resolve the inflammation 
due to the biopsy procedure. Enrolled subjects were 
randomized to vitamin D

3
 (Carlson Laboratories, IL, 

USA) supplementation at 4000 IU per day or placebo 
for 2 months prior to surgery. Two blood samples were 
obtained from each subject (at enrollment and on the 
day of surgery) to measure serum levels of 25-hydroxy-
vitamin D

3
 (25[OH]D

3
) in nanograms (ng) per milli-

liter (ml). In total 14 subjects (five AA and nine EA 
men) took 4000 IU of vitamin D3 per day for 2 months 
prior to surgery; 13 subjects (five AA and eight EA 
men) received placebo for 2 months prior to surgery. 
Based on the serum levels of 25(OH)D at study exit, 
we concluded that there was a high level of compliance 
by all enrolled subjects.

Tissue sample procurement & RNA purification
Surgical specimens were received in the frozen section 
laboratory of the MUSC or the VAMC, depending 
on where the prostatectomy was performed. Non-
malignant tissue samples were excised from the periph-
eral zone of the prostate under the supervision of the 
attending pathologist, to ensure that the excision of 
tissue samples did not interfere with the diagnostic pri-
orities of standard of care. Specifically, the attending 
pathologist identified for us nonmalignant tissue away 

from cancer lesions, based on his knowledge of the 
location, within the prostate, of cancer-positive biopsy 
cores prior to surgery. Tissue samples were transferred 
to sterile tubes, quick-frozen in liquid nitrogen and 
transported to the Hollings Cancer Center Genom-
ics Core Facility (SC, USA). Total RNA from each 
de-identified tissue sample was purified on a Qiagen 
RNeasy column (Qiagen, CA, USA) according to 
manufacturer’s instructions. RNA integrity was veri-
fied using RNA 6000 Nano Assay chips run in Agilent 
2100 Bioanalyzer (Agilent Technologies, CA, USA).

RNA sequencing (RNA-seq) & analyses
Around 100–200 ng of total RNA was used to pre-
pare RNA-Seq libraries using the TruSeq RNA Sample 
Prep Kit (Illumina, CA, USA), following the proto-
col described by the manufacturer. High-throughput 
sequencing (HTS) was performed using an Illumina 
HiSeq2500 with each sample sequenced to a mini-
mum depth of ∼50 million reads. Data were subjected 
to Illumina quality control (QC) procedures (>80% of 
the data yielded a Phred score of 30). Secondary analy-
sis was carried out on an OnRamp Bioinformatics 
Genomics Research Platform (OnRamp Bioinformat-
ics, CA, USA). OnRamp’s advanced Genomics Analy-
sis Engine utilized an automated RNAseq workflow to 
process the data, including data validation and quality 
control, read alignment to the human genome (hg19) 
using TopHat2 [34], which revealed >93% mapping of 
the paired end reads, generation of gene-level count 
data with HTSeq and differential expression analysis 
with DEseq2 [35], which enabled the inference of dif-
ferential signals with robust statistical power. (Genom-
ics Research Platform with RNAseq workflow v1.0.1, 
including FastQValidator v0.1.1a, Fastqc v0.11.3, 
Bowtie2 v2.1.0, TopHat2 v2.0.9, HTSeq v0.6.0, 
DEseq v1.8.0).

The resulting SAM files were sorted and inputted 
into the Python package HTSeq to generate count 
data for gene-level differential expression analyses. In 
order to infer differential signal within the datasets 
with robust statistical power, we utilized DEseq2 [35]. 
Transcript count data from DESeq2 analysis of the 
samples were sorted according to their adjusted p-value 
or q-value, which is the smallest false discovery rate 
(FDR) at which a transcript is called significant. FDR 
adjustment is needed with large datasets such as RNA-
seq. FDR is the expected fraction of false-positive tests 
among significant tests and was calculated using the 
Benjamini–Hochberg multiple testing adjustment pro-
cedure. Statistical analysis of pathways and gene ontol-
ogy (GO) terms was carried out using this sorted tran-
script list as described by us previously [36,37] and using 
Ingenuity Pathway Analysis (Qiagen) and the Topp-
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Gene Suite [38]. Area-proportional Venn diagrams were 
created using BioVenn [39].

Results
Patient cohort
The study enrolled 27 subjects (ten AA and 17 EA 
men), who had selected surgical removal of the pros-
tate (prostatectomy) as a definitive treatment for their 
prostate cancer. Table 1 highlights the characteristics 
of enrolled subjects, their age and race distribution, 
disease stage and serum levels of 25(OH)D

3
. Baseline 

and exit values of serum levels of 25(OH)D
3
 are shown 

in ng/ml. Baseline Gleason grade refers to the pathol-
ogy assessment of the prostate biopsy at diag nosis. 
Exit Gleason grade refers to the pathology assessment 
on the entire prostate after surgery, which may have 
resulted in upgrade, downgrade or no change of the 
pathology assessment. Overall, there was no signifi-
cant change in pathology assessment on the prostate 
after surgery, compared with the previous biopsy, 
either by race or by supplementation. All 14 sub-
jects receiving vitamin D

3
 supplementation had an 

increase in their serum concentration of 25(OH)D
3
. 

There were no significant changes in circulating lev-
els of vitamin D in the 13 subjects receiving placebo. 
Differences in serum concentration of 25(OH)D

3
 

measured at study entry between AA and EA sub-
jects were erased after 2 months of supplementation 
(Supplementary Figure 1).

Differential prostate gene expression between 
AA and EA patients
We set EA subjects (17 samples) as the control and AA 
subjects (ten samples) as the test to uncover genes dif-
ferentially expressed in AA. These cumulative patient 
datasets were analyzed to identify race-associated dif-
ferences in prostate gene expression between samples 
from AA and EA subjects, as well as differences in 
molecular changes in the prostate associated with 
vitamin D

3
 supplementation. Fold-change (FC) esti-

mation and hypothesis testing for differential expres-
sion were performed using the DESeq2 Bioconducter 
library [35,40,41]. For each gene, DESeq2 reported 
an estimated FC, and provided an adjusted p- or 
q-value equivalent to the smallest FDR incurred when 
 declaring that test significant.

When we assessed differences in prostate gene 
expression between AA subjects (ten samples) com-
pared with EA subjects (17 samples), this revealed 
that 3107 genes were differentially expressed between 
the two groups (q < 0.1). Pathway and GO analy-
sis using (QIAGEN Ingenuity Pathway Analysis) 
with the 3107 differentially expressed genes uncov-
ered major differences between the two groups 

(Supplementary Tables 1–3). The significant canonical 
pathways enriched in this dataset are presented with 
AA displaying elevated expression of transcripts related 
to immune response and inflammation (Figure 1 & 
Table 2; Supplementary Table 3). Examples of these 
canonical pathways include, ‘regulation of immune 
response’, ‘lymphocyte activation and T-cell activation’ 
(Figure 2) and ‘dendritic cell maturation’, ‘complement 
system’, ‘crosstalk between dendritic cells and natural 
killer cells’ and ‘NF-κB signaling’ (Figure 3).

Differential prostate gene expression between 
AA supplemented with vitamin D3 or placebo
We subsequently identified differentially expressed 
genes in prostate tissue specimens from five AA sub-
jects supplemented with vitamin D

3
 at 4000 IU/day 

for 2 months compared with five AA subjects receiv-
ing placebo. 817 transcripts were significantly dif-
ferentially expressed between these two groups 
(q < 0.4). GO analysis using the 817 differen-
tially expressed genes revealed chemo kine activity, 
chemo kine receptor binding and G-protein coupled 
receptor binding as significantly enriched terms 
(Table 3, Supplementary Table 4). Pathway analy-
sis indicated that transcripts belonging to the ‘cal-
cium signaling’ (BioSystems: KEGG, 1.26E-05), and 
‘chemo kine receptors bind chemokines’ (BioSystems: 
REACTOME, 1.53E-02) pathways were significant 
in the vitamin D

3
 or placebo comparison. It must be 

noted that vitamin D
3
 supplementation in EA patients 

had no significant effect on gene expression (of the 
17 samples examined, nine were  supplemented with 
vitamin D

3
 and eight received placebo).

Comparison of transcripts regulated by 
vitamin D3 supplementation in AA with those 
differentially expressed between AA & EA
We examined the lists of transcripts regulated by vita-
min D

3
 for overlap with those that were differentially 

expressed between AA and EA (Figure 4). Among 
those that overlapped were unc-5 netrin receptor C 
(UNC5C), fibroblast growth factor 10 (FGF10), 
a junctional protein associated with coronary artery 
disease (KIAA1462), ADAM-like decysin 1, (ADAM-
DEC1), vitrin (VIT ), tachykinin receptor 2 (TACR2), 
FRMD6 antisense RNA 2 (FRMD6-AS2), adaptor 
related protein complex 1 sigma 3 subunit (AP1S3), 
pleckstrin homology domain containing N1 (PLE-
KHN1), coiled-coil domain containing 27 (CCDC27), 
FGF10 antisense RNA 1 (FGF10-AS1), myosin, heavy 
chain 6, cardiac muscle, alpha (MYH6 ), cingulin-
like 1 (CGNL1), ventricular zone expressed PH domain 
containing 1 (VEPH1) and collagen, type IV, alpha 3 
(COL4A3) (q < 0.1) in both comparisons.
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Furthermore, comparison of the 8238 transcripts 
that were differentially expressed between AA and 
EA subjects (q < 0.4) and the 817 genes that were 
differentially expressed in AA subjects supplemented 
with vitamin D

3
 compared with AA subjects receiv-

ing placebo (q < 0.4) revealed an overlap of 346 genes 
(Figure 4). This overlap suggested that a consider-
able number of genes that are differentially expressed 
between across racial groups, can be affected by a 
very short course of vitamin D

3
 supplementation in 

AA subjects.
GO and pathway analysis of these 346 genes 

using Toppfun revealed enriched terms gener-

ally related to development and differentiation 
(Supplementary Table 1). Co-expression analysis with 
this list of 346 revealed a signature related to ‘M19391; 
genes downregulated in prostate cancer samples’, 
MSigDB C2: Broad Institute (2.121E-9). GO and 
pathway analysis of the 471 genes that did not over-
lap revealed primarily immune signatures including 
‘CXCR chemokine receptor binding’, ‘cytoskeletal 
protein binding’, ‘chemokine activity’ and ‘ chemokine 
receptor binding’ (Supplementary Table 2).

Comparison of transcripts differentially expressed 
between AA & EA in patients who were treated with 
placebo versus those treated with vitamin D

3
.

Table 1. Characteristics of subjects enrolled in the prostatectomy study.

Subect ID Age
(years)

Race Baseline Exit Baseline Exit Randomized Pathology

 AA = 1; 
EA = 0

25(OH)D 
level

25(OH)D 
level

Gleason 
score

Gleason 
score

D3 = 1 Staging

01 64 1 16.6 69.7 3 + 4 3 + 4 1 pT2apN0

02 61 0 11.7 36.7 3 + 4 4 + 3 1 pT2cpNX

03 68 0 35.4 43.2 3 + 3 3 + 4 1 pT2bpNX

04 61 0 26.6 20.9 3 + 4 3 + 4 0 pT2cpN0

05 66 0 21.3 19.3 3 + 3 3 + 4 0 pT2cpN0

06 65 0 31.0 27.1 3 + 4 3 + 4 0 pT3apN0

07 61 0 24.7 25.9 3 + 4 4 + 3 0 pT3 pN0

08 62 0 36.4 55.0 4 + 4 3 + 4 1 pT2cpN0

09 57 0 27.1 23.7 3 + 4 4 + 3 0 pT2cpN0

10 60 0 46.9 58.2 4 + 3 3 + 4 1 pT2cpN0

11 63 0 51.1 41.8 3 + 3 3 + 4 0 pT2cpNX

12 69 0 32.1 37.2 3 + 4 3 + 4 1 pT2cpN0

13 58 0 39.7 36.8 3 + 3 3 + 3 0 pT2cpNX

14 50 0 56.9 41.3 3 + 4 3 + 3 0 pT2cpN0

15 56 0 36.7 70.8 3 + 4 3 + 3 1 pT2apN0

16 58 0 23.4 50.1 4 + 3 3 + 4 1 pT2cpN0

17 67 1 32.7 34.1 Intraductal 4 + 3 0 pT3bpN0

18 71 1 22.4 40.2 3 + 4 3 + 4 1 pT2cpN0

19 70 1 30.3 39.5 3 + 4 3 + 4 1 pT2cpN0

20 65 1 24.9 62.0 3 + 4 3 + 4 1 pT3bpNX

21 54 1 15.6 21.6 3 + 4 3 + 4 0 pT2cpN0

22 61 1 14.1 32.8 3 + 4 3 + 4 1 pT2c

23 58 1 19.5 18.4 4 + 3 3 + 4 0 pT2cpN0

24 63 0 19.9 35 3 + 3 3 + 3 1 pT2cpN0

25 66 0 26.1 36.3 3 + 4 3 + 4 1 pT2cpN0

26 62 1 33.7 29.4 3 + 3 3 + 3 0 pT2cpNX

27 62 1 28.8 20.9 3 + 4 3 + 3 0 pT3apN0

Twenty-seven subjects completed the study. Age, race and randomization assignment for each enrolled subject are shown. Baseline and exit values of serum levels of 
25(OH)D3 are shown in ng/ml. Baseline Gleason grade refers to the pathology assessment of the prostate biopsy preceding the surgery. Exit Gleason grade refers to 
the pathology assessment on the entire prostate after surgery, which may result in upgrade, downgrade or no change of the pathology assessment.
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Figure 1. Immune and inflammatory canonical pathways enriched in prostate tissue specimens from African–
American men compared with European–American men (see facing page). Analysis of the 3107 differentially 
expressed genes (q < 0.1) using Ingenuity Pathway Analysis (QIAGEN, CA, USA) uncovered altered immune system 
and inflammatory signatures between these two groups. Significant enriched canonical pathways are displayed 
along the y-axis. The x-axis (top) displays the -log of the p-value (calculated by Fisher’s exact test right-tailed and 
adjusted for false discovery rate using Benjamini–Hochberg. Taller bars correspond to increased pathway significance. 
Orange colored bars indicate pathway activation in African–American relative to European–American. White bars 
indicate significant pathways in African–American compared with European–American that are neither activated 
nor inhibited. Gray bars indicate pathways that are significant but no prediction as to their activation or inhibition 
can be made. The orange points connected by a thin line represent the ratio (x-axis bottom). The ratio is calculated 
as follows: the number of genes in a particular pathway that are significantly enriched in the RNA-seq dataset are 
divided by the total number of genes that make up that pathway and are present in the reference gene set.
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We explored the lists of transcripts differentially reg-
ulated between AA and EA subjects who received pla-
cebo and observed that 1984 and 6896 transcripts were 
significantly differentially expressed at FDR values of 
<0.1 and <0.4, respectively. Subsequently we examined 
transcripts differentially regulated between AA and EA 
subjects who received vitamin D and noted that 2855 
and 6383 transcripts were significantly differentially 
expressed at FDR values of <0.1 and <0.4, respectively. 
We next examined the overlap in transcripts between 
these two comparisons. 3701 transcripts were unique 
to the vitamin D treatment. A total of 4216 transcripts 
were unique to the placebo treatment. G0 and path-
way analysis of the 3701 transcripts are presented in 
Supplementary Table 5. This revealed cytokine receptor 
activity (3.33E-03), immune response (8.87E-26), inflam-
matory response (7.51E-20), regulation of immune sys-
tem process (1.05E-19), leukocyte aggregation (4.49E-17), 
leukocyte cell–cell adhesion (4.76E-17) and leukocyte 
activation (5.05E-17). Significantly enriched pathways 
included the TCR signaling pathway (2.96E-04), hema-
topoietic cell lineage (2.96E-04), cytokine-cytokine 
receptor interaction (2.96E-04), inflammation medi-
ated by chemokine and cytokine signaling pathway 
(2.96E-04) and the B-cell receptor signaling pathway 
(2.96E-04). Examination of the 4216 transcripts unique 
to the placebo treatment did not reveal inflamma-
tory signatures (Supplementary Table 6). Significantly 

enriched GO terms included cell projection organiza-
tion (2.66E-12), neurogenesis (2.79E-06) and generation 
of neurons (4.71E-06). Pathways that were significantly 
enriched included Focal adhesion (1.02E-04), vascular 
smooth muscle contraction (1.02E-04) and nonintegrin 
 membrane–extracellular matrix  interactions (2.01E-04).

Analysis of the expression patterns of growth 
 differentiation factor 15 (GDF15) mRNA.

GDF15 is one example of a vitamin D sensitive gene 
‘captured’ by our research approach. Low expression 
of GDF15 is associated with prostate cancer progres-
sion [42,43]. We examined the expression pattern of 
GDF15 mRNA in our RNAseq datasets (Figure 5). 
GDF15 expression was significantly downregulated 
in from AA subjects compared with EA subjects 
(q = 0.16). In AA subjects receiving vitamin D

3
 supple-

mentation, GDF15 mRNA expression was signifi-
cantly upregulated relative to those receiving placebo 
(q = 0.09). In EA subjects receiving vitamin D

3
 supple-

mentation, GDF15 mRNA expression was upregu-
lated (although this was not statistically significant, 
q = 0.99) relative to those receiving placebo.

Discussion
The objective of this clinical study was to investigate 
the molecular effects of vitamin D

3
 supplementation 

(4000 IU per day for 2 months) on prostate tissue 
specimens obtained at surgery, by means of HT RNA-

Table 2. GO analysis of differences in prostate gene expression between African–American subjects 
and European–American subjects.

ID Name q-value 
Bonferroni

Hit count in 
query list

Hit count in 
genome

GO:0002684 Positive regulation of immune 
system process

6.54E-17 172 732

GO:0006955 Immune response 4.60E-16 276 1416

GO:0045321 Leukocyte activation 2.20E-15 162 695

GO:0001775 Cell activation 1.87E-14 195 916

GO:0002682 Regulation of immune system 
process

4.74E-14 239 1212

The top 5 GO terms are presented. A more detailed analysis is presented in Supplementary Table 3.
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Figure 2. Heat map of gene expression changes in AA men compared with EA men involving transcripts involved in regulation of 
immune response, lymphocyte activation and T-cell activation (see facing page). Red and blue boxes colors depict relative over- 
and under-expression in AA relative to EA. The range of colors is between -115.3-fold and +115.3-fold and preserves qualitative 
relationships among individual values. All fold changes outside of this range have been truncated to ±115.3. Only transcripts found 
significant at the level q < 0.1 in the comparison, are shown. 
AA: African–American; EA: European–American
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sequencing, with special emphasis on differential gene 
expression patterns in AA men compared with EA 
men, and between supplemented and placebo groups 
in both. As we demonstrate in this study, advanced 
sequencing technologies and big data analytic tools, 
such as the OnRamp Genomic Research Platform can 
be easily applied to the analysis of prostate tissue sam-
ples obtained from prostate cancer patients undergoing 
prostatectomy as part of their standard medical care.

A major objective of this study was to investigate 
the molecular mechanisms relevant to prostate can-
cer disparities between AA and EA men, and explore 
the potentially beneficial effects of vitamin D

3
 supple-

mentation on the prostate in AA men. We noted that 
the global transcriptomes of AA and EA men were 
considerably different. Our observations of increased 
inflammatory and immune signatures are consistent 
with a previous report by Wallace and colleagues 
(Supplementary Figures 2 & 3) [44]. The goal of this ear-
lier study was to apply Affymetrix array based genome-
wide gene expression profiling of prostate tumors 
to determine differences in tumor biology between 
33 AA and 36 EA patients. Their analysis uncovered 
162 significant genes (q < 0.05) that were differently 
expressed between AA and EA patients. Using a dis-
ease association-based approach analysis, a common 
theme among these transcripts was autoimmunity and 
inflammation, including ‘immune response’, ‘stress 
response’, ‘cytokine signaling’ and ‘chemotaxis’ path-
ways. The authors showed that metastasis-promoting 
genes, including autocrine mobility factor receptor, 
chemokine (C-X-C motif) receptor 4 (CXCR4) and 
matrix metalloproteinase 9 (MMP-9), were expressed 
at higher levels in AA relative to EA, highlighting the 
existence of a distinct tumor microenvironment in 
these two patient groups. The results of our transcrip-
tomic analyses using a newer technology (RNA-seq) 
applied to prostate tissue samples acquired prospec-
tively as part of a randomized, interventional clinical 
study further support the existence of considerable 
biological differences within the prostate between AA 
and EA men, and suggest that overexpression of genes 
linked to inflammatory processes likely contribute to 
the increased severity and faster progression of prostate 
cancer in AA even at the early stage of disease. Using 
IPA canonical pathway analyses, we noted activation of 
‘FCγ receptor mediated phagocytosis in macrophages 
and mononcytes’, ‘TREM1 signaling’, ‘role of NFAT 

in the regulation of the immune response’, ‘iCOS–
iCOSL signaling in T helper cells’, ‘NF-κB signal-
ing and leukocyte-extravasation signaling’ (Figure 1) 
in AA subjects, all of which highlight differences in 
immune and inflammatory response. A general trend 
we observed with GO and pathway analyses were 
upregulation of transcripts in AA compared with EA, 
that were relevant to the immune system: segulation 
of immune response, lymphocyte activation and T-cell 
activation (Figure 2) and dendritic cell maturation and 
complement system activation (Figure 3).

We also identified differentially expressed genes 
in prostate tissue specimens from five AA subjects 
supplemented with vitamin D

3
 at 4000 IU/day for 

2 months compared with five AA subjects receiving 
placebo. Expression of 124 genes was significantly 
different between these two groups with a stringent 
FDR <0.1 cut-off, while expression of 817 genes was 
significantly different between these two groups at a 
less stringent FDR <0.4 cut-off. These results high-
light the impact that even a short period of vitamin D

3
 

supple mentation can have on gene expression within 
the prostate. Comparison of the 124 genes (FDR <0.1) 
affected by vitamin D

3
 supplementation with the 

3107 genes (FDR <0.1) differentially expressed 
between AA and EA subjects revealed a 15 genes over-
lap: UNC5C, FGF10, KIAA1462, ADAMDEC1, VIT, 
TACR2, FRMD6-AS2, AP1S3, PLEKHN1, CCDC27, 
FGF10-AS1, MYH6, CGNL1, VEPH1 and COL4A3. 
We released the FDR stringency to explore overlap 
between the differentially expressed transcripts in pros-
tate tissue specimens from AA subjects compared with 
EA subjects, i.e., 8237 unique transcripts (FDR <0.4), 
and differentially expressed genes in prostate tissue 
specimens from AA subjects supplemented with vita-
min D3 compared with AA subjects receiving placebo, 
i.e., 817 unique transcripts (FDR <0.4). This analysis 
revealed an overlap of 346 genes (Figure 3) and sug-
gested that a considerable number of genes that are dif-
ferentially expressed between AA and EA subjects, can 
also be affected by a very short course of vitamin D

3
 

supplementation. Of note, when we performed co-
expression analysis with this short gene list, we uncov-
ered a signature corresponding to genes downregulated 
in prostate cancer samples, further indicating that at a 
molecular level, vitamin D has potentially beneficial 
effects. Furthermore, vitamin D

3
 supplementation in 

EA patients had no significant effect on gene expres-
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Figure 3. Heat map of gene expression changes in AA men compared with EA men involving transcripts involved in dendritic cell 
maturation, complement system, crosstalk between dendritic cells and natural killer cells and NF-κB signaling. Red and blue boxes 
colors epict relative over- and under-expression in AA relative to EA. The range of colors is presented for each category and preserves 
qualitative relationships among individual values. All fold changes outside of these ranges have been truncated to ± the value noted. 
Only transcripts found significant at the level q < 0.1 in the comparison are shown. 
AA: African–American; EA: European American.
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Table 3. GO, pathway and co-expression analysis of differences in in prostate gene expression between African–
Americans supplemented with vitamin D3 or placebo.

Category ID Name Source q-value 
Bonferroni

Hit count 
in query 
list

Hit 
count in 
genome

GO: Molecular 
Function

GO:0008092 Cytoskeletal protein 
binding

 5.46E-04 60 792

GO: Molecular 
Function

GO:0032403 Protein complex 
binding

 1.16E-03 66 924

GO: Molecular 
Function

GO:0008009 Chemokine activity  1.31E-03 11 46

GO: Molecular 
Function

GO:0015631 Tubulin binding  6.18E-03 26 251

GO: Molecular 
Function

GO:0042379 Chemokine receptor 
binding

 1.24E-02 11 57

Pathway 83050 Calcium signaling 
pathway

Bio-Systems: KEGG 1.26E-05 26 181

Pathway 198906 Calcium regulation in 
the cardiac cell

Bio-Systems: Wiki-
Pathways

2.40E-05 23 149

Pathway P00031 Inflammation 
mediated by 
chemokine and 
cytokine signaling 
pathway

PantherDB 3.96E-05 26 191

Pathway 154409 Gastric acid secretion Bio-Systems: KEGG 1.70E-03 14 75

Pathway 908257 Adrenergic signaling 
in cardiomyocytes

Bio-Systems: KEGG 2.19E-03 20 149

Coexpression 17297478-SuppTable5 Human Intestine_
Vecchi07_1024genes

GeneSigDB 2.50E-16 82 781

Coexpression 18498629-GeneList Human Breast_
Loi08_239genes

GeneSigDB 1.90E-14 36 178

Coexpression M8124 Genes upregulated 
in basal subtype of 
breast cancer samles

MSigDB C2: Broad 
Institute

3.47E-14 70 647

Coexpression 20421987-TableS1 Human Lung_
Hou10_1067genes

GeneSigDB 1.09E-12 72 724

Coexpression M19391 Genes downregulated 
in prostate cancer 
samples

MSigDB C2: Broad 
Institute

1.32E-11 55 480

The top five results for each are presented. A more detailed analysis is presented in Supplementary Table 4.

sion (of the 17 samples examined, nine were supple-
mented with vitamin D

3
 and eight received placebo), 

consistent with the concept that even a short course 
of supplementation will especially impact transcription 
in the prostate of AA men, possibly because of their 
 pronounced  vitamin D deficiency.

GDF15 is a protein belonging to the TGF-β super-
family. It functions in regulating inflammatory and 
apoptotic pathways in injured tissues and during dis-
ease processes [42]. We examined the expression pattern 

of GDF15 mRNA in our RNAseq datasets (Figure 5). 
GDF-15 is highly expressed in the prostate and has been 
associated with inflammation and tumorigenesis. In a 
recent study of prostatic inflammation, GDF-15 expres-
sion was determined via immunohistochemical staining 
of human prostatectomy specimens containing inflam-
mation. Expression in luminal epithelial cells was found 
to be reduced with increasing inflammation severity, 
suggesting an inverse association between GDF-15 and 
inflammation [43].
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Figure 4. Area-proportional Venn diagram highlighting 
the overlap of differentially expressed transcripts 
by race and vitamin D3 supplementation. Overlap 
between differentially expressed transcripts in prostate 
tissue specimens from AA subjects compared with EA 
subjects (8237 unique transcripts), and differentially 
expressed genes in prostate tissue specimens from AA 
subjects supplemented with vitamin D3 at 4000 IU per 
day for 2 months compared with AA subjects receiving 
placebo (817 unique transcripts). 
AA: African–American; EA: European–American.

Figure 5. Analysis of the expression patterns of GDF15 mRNA. GDF15 mRNA expression was significantly downregulated investigated 
in from AA subjects compared with EA subjects. In AA subjects receiving vitamin D3 supplementation, GDF15 mRNA expression was 
significantly upregulated relative to those receiving Pl. In EA subjects receiving vitamin D3 supplementation, GDF15 mRNA expression 
was upregulated (although not significantly) relative to those receiving placebo. 
AA: African–American; EA: European–American: PI: Placebo; VitD: Vitamin D.
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In our patient cohort we observed that GDF-15 was 
down regulated in AA compared with EA (-1.65 fold 
and highly significant at an FDR = 0.16), suggesting 

increased prostatic inflammation in AA (Figure 5). 
Vitamin D

3
 supplementation in AA subjects resulted 

in upregulated GDF-15 expression, (2.45-fold in tis-
sue samples from supplemented subjects relative to 
subjects receiving placebo, and highly significant at an 
FDR = 0.091). Based on the previously reported inverse 
association between GDF-15 and inflammation, a 
reduction in inflammatory processes would be expected 
in supplemented subjects. As accumulating evidence 
suggests that chronic prostatic inflammation may lead 
to prostate cancer development, vitamin D

3
 supplemen-

tation in AA is likely beneficial [43]. In supple mented 
EA subjects, we observed an upregulation of GDF-15 
(1.28-fold but not statistically  significant) compared 
with EA subjects receiving  placebo.

It has recently been reported that in vitamin D 
deficient men initial biopsies are more likely to show 
prostate tumors with high Gleason grade and more 
advanced clinical stage than biopsies from men who 
are not vitamin D deficient [45]. Furthermore, this 
association was particularly strong for AA men who 
were vitamin D deficient [45], suggesting that vita-
min D

3
 supplementation may prove helpful especially 

in the highest-risk group of AA men. Although there 
is some understanding of the vitamin D driven bio-
chemical mechanisms and pathways affecting prostate 
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cancer [46], the main objective of our research effort is 
to fill existing gaps in knowledge by identifying those 
mechanisms and pathways that are especially relevant 
to understand the effects of vitamin D on the pros-
tate, as well as on prostate cancer disparities between 
AA and EA men. These data are needed to inform 
treatment recommendations for vitamin D

3
 supple-

mentation and provide prescription guidelines to be 
used in the clinical setting as a treatment strategy for 
 early-stage prostate cancer.

Finally we examined the expression patterns of 
vitamin D associated genes CYP27A1, GC (group-
specific component [vitamin D binding protein]), 
CYP3A4, CYP2R1, DHCR7, NADSYN1, CYP27B1 
and CYP24A1. We interrogated our datasets for any 
differences in expression patterns of these transcripts 
between supplemented and placebo-receiving AA 
subjects but noted that they were not differentially 
expressed. This result is not surprising because we have 
consistently observed that vitamin D

3
 supplementa-

tion normalizes all the vitamin D related bio chemical 
parameters that we have measured in AA compared 
with EA. If there were physiologically relevant genetic 
differences mapped through single nucleotide varia-
tions associated with these genes, we would have 
expected transcriptomic differences.

Conclusion
This report represents an important first step in our 
effort to elucidate the molecular underpinnings of 

health disparities in prostate cancer. The results of 
our RNA-seq analyses highlight significant differ-
ences in the transcription profiles in prostate tissue 
samples between AA and EA men. Additional differ-
ences were observed between subjects supplemented 
with vitamin D

3
 and subjects receiving placebo, sug-

gesting that even a short period of vitamin D
3
 supple-

mentation can have a significant impact on prostate 
gene expression. In view of the widespread vitamin D 
deficiency among AA men and their increased risk of 
developing prostate cancer, a deeper understanding of 
race-based transcriptomic differences and vitamin D 
driven pathways in prostate tissue will allow us to 
better justify vitamin D

3
 supplementation as a thera-

peutic option for early-stage prostate cancer, especially 
in AA men.

We acknowledge that the sample size is a limitation 
of this study. Therefore, in future studies we plan to 
enlarge the enrollment of eligible subjects by expand-
ing the scope of RNA-seq analyses to single-core pros-
tate biopsy samples obtained prospectively. The results 
of the RNA-seq analyses reported here were obtained 
with tissue samples of <50 mg, equivalent to the weight 
of a single-core biopsy. These additional subjects will 
also be stratified according to race, serum levels of vita-
min D, serum levels of PSA, Gleason score, and sup-
plementation. These future clinical studies will allow 
us to validate the concept that the prostate appears to 
be, at the molecular level, a ‘sentinel’ organ for health 
 disparities.

Executive summary

•	 Prostate cancer disproportionately affects African–American (AA) men in terms of incidence, morbidity and 
mortality, even after adjusting for stage.

•	 Racial disparities in prostate cancer outcomes mirror racial differences in circulating levels of vitamin D. AA 
men exhibit a high prevalence of vitamin D deficiency.

•	 The first goal of this study was to determine whether there are significant differences in the transcription 
profile of prostate tissue specimens between AA and European–American (EA) men.

•	 The second goal of this study was to determine whether vitamin D3 supplementation could affect these 
differences.

•	 Twenty-seven subjects (ten AA and 17 EA men), slated to undergo prostatectomy, were enrolled in the study.
•	 Fourteen of these subjects received vitamin D3 supplementation (4000 IU/day) and 13 subjects received 

placebo for 2 months before surgery.
•	 RNA was purified from prostate tissue specimens obtained at surgery and RNA-seq analyses were performed 

on all samples.
•	 A total of 3107 genes were differentially expressed (FDR <0.1). Pathway and GO analysis indicated that AA 

show higher expression of genes associated with immune response and inflammation.
•	 A total of 817 genes were differentially expressed in AA subjects supplemented with vitamin D3 compared 

with those receiving placebo.
•	 These results support the existence of fundamental biological differences within the prostate between AA 

and EA men and suggest that overexpression of genes linked to the inflammatory process may contribute to 
the increased severity and faster progression of prostate cancer in AA men.

•	 These findings also suggest that a considerable number of genes that are differentially expressed in AA 
compared with EA subjects, can be affected by a short course of vitamin D3 supplementation.

•	 The prostate appears to be, at the molecular level, a ‘sentinel’ organ for health disparities.
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