Skip to main content
. Author manuscript; available in PMC: 2020 Apr 15.
Published in final edited form as: Neuroimage. 2018 Jan 11;190:94–106. doi: 10.1016/j.neuroimage.2018.01.021

Table 3.

Hierarchical multiple linear regression model for the Stroop conflict effect in PD.

coefficients model statistics power
B β T p R2 Δ R2 Δ F sig.

Δ F
Model
Fit F
Model

Fit p
1−β
step 1 model .09 .09 13.42 ** 13.42 ** .95
  constant .00 .00 1.000
  age .30 .30 3.66 **
step 2 model .13 .04 1.78 .155 4.7 .001 .96
  constant .00 .00 1.000
  age .26 .26 3.05 .003
  caudate DVR 18 −.18 −2.07 .040
  thalamic k3 .03 .03 .33 .739
  cortical k3 06 −.06 −.60 .550
step 3 model .15 .03 4.06 .046 4.7 .001 .97
  constant 04 −.53 .601
  age .25 .25 2.88 .005
  caudate DVR 24 −.24 −2.65 .009
  thalamic k3 .04 .04 .39 .696
  cortical k3 −.04 −.04 −.43 .670
  caudate DVR * cortical k3 .16 .17 2.01 .046

All variables standardized before being entered in the model. B, unstandardized coefficient; β, standardized coefficient.

**

indicates p < .0005