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Abstract

Aim—The oral glucose tolerance test (OGTT), widely used as a gold standard for gestational 

diabetes mellitus (GDM) diagnosis, provides a broad view of glucose pathophysiology in response 

to a glucose challenge. We conducted the present study to evaluate metabolite changes before and 

after an oral glucose challenge in pregnancy; and to examine the extent to which metabolites may 

serve to predict GDM diagnosis in pregnant women.

Methods—Peruvian pregnant women (n = 100) attending prenatal clinics (mean gestation 25 

weeks) participated in the study with 23% of them having GDM diagnosis. Serum samples were 

collected immediately prior to and 2-hours after administration of an 75-g OGTT. Targeted 

metabolic profiling was performed using a LC-MS based metabolomics platform. Changes in 

metabolite levels were evaluated using paired Student's t tests and the change patterns were 
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examined at the level of pathways. Multivariate regression procedures were used to examine 

metabolite pairwise differences associated with subsequent GDM diagnosis.

Results—Of the 306 metabolites detected, the relative concentration of 127 metabolites were 

statistically significantly increased or decreased 2-hours after the oral glucose load (false discovery 

rate [FDR] corrected P-value < 0.001). We identified relative decreases in metabolites in 

acylcarnitines, fatty acids, and diacylglycerols while relative increases were noted among bile 

acids. In addition, we found that C58:10 triacylglycerol (β=-0.08, SE=0.04), C58:9 triacylglycerol 

(β=-0.07, SE=0.03), adenosine (β=0.70, SE=0.32), methionine sulfoxide (β=0.36, SE=0.13) were 

significantly associated with GDM diagnosis even after adjusting for age and body mass index.

Conclusions—We identified alterations in maternal serum metabolites, representing distinct 

cellular and metabolic pathways including fatty acid metabolism, in response to an oral glucose 

challenge. These findings offer novel perspectives on the pathophysiological mechanisms 

underlying GDM.
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Introduction

Gestational diabetes mellitus (GDM), or impaired glucose intolerance first diagnosed during 

pregnancy, is one of the most common medical complications of pregnancy [1]. Annually, it 

is estimated to affect approximately 8% of pregnancies in the US [2] and 5% globally [3, 4]. 

GDM is associated with increased risk of caesarean and operative vaginal delivery, 

macrosomia, intrauterine growth retardation, shoulder dystocia, neonatal hypoglycaemia, 

hypocalcaemia, and hyperbilirubinemia [5-7]. Recently, the International Diabetes 

Federation reported that approximately 16% of live births were complicated by 

hyperglycaemia during pregnancy and the frequency of GDM affected pregnancies is most 

likely to increase concurrently with the increase in risk factors like obesity and physical 

inactivity [3].

In uncomplicated pregnancies, maternal tissues have been shown to progressively become 

insensitive to insulin and insulin-mediated whole-body glucose disposal decreases by 50% 

and insulin secretion by 200%-250%, in order to maintain a euglycaemic state [8]. In 

pregnancies complicated by GDM, however, the increased demand for insulin is not met due 

to inadequate pancreatic β-cell function leading to inadequate compensation for the body's 

insulin needs [9]. Of note, a subgroup of women with the history of GDM are at increased 

risk of developing type 2 diabetes mellitus (T2DM) postpartum [10]. However, the 

underlying metabolic pathophysiology of GDM is not well understood [11].

Emerging metabolomics technologies, that enable systemic analysis of small molecules in 

biological specimens, have been successfully used to provide a novel and deeper insight in 

the etiopathogenesis of diseases [11]. Metabolomics provides an integrated profile of 

biological status by identifying biochemical changes before the onset of overt clinical 

disease [12-16]. Relatively few studies have been conducted to assess the underlying 
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metabolic pathophysiology of GDM and no adequate predictive methods are available for 

GDM thus posing a clear need to develop non-invasive and objective diagnostic methods 

[11, 12, 17, 18].

The oral glucose tolerance test (OGTT) is widely used as a gold standard for GDM 

diagnosis and provides a broad view of glucose pathophysiology in response to a glucose 

challenge [19]. Therefore, we designed a study to systematically characterize acute maternal 

metabolic changes subsequent to a 75-g oral glucose challenge in late pregnancy. We 

reasoned that the application of metabolomics methods in the context of clinical obstetrics 

will yield insights into metabolic alternations underlying GDM pathogenesis and lead to the 

discovery of additional diagnostic or prognostic biomarkers [20].

Methods

Participants and Study Setting—This analysis used data initially gathered for the 

Screening, Treatment and Effective Management of Gestational Diabetes Mellitus (STEM-

GDM) study, a cohort study designed to evaluate the prevalence of GDM using the new 

diagnostic criteria proposed by the International Association of Diabetes and Pregnancy 

Study Groups (IADPSG) among Peruvian women attending perinatal care at Instituto 

Nacional Materno Perinatal (INMP) in Lima, Peru [21, 22]. The INMP, overseen by the 

Peruvian Ministry of Health, is the primary referral hospital for maternal and perinatal care. 

Recruitment period was between February 2013 and February 2014. Women who initiated 

prenatal care before 28 weeks' gestation were eligible to participate. Women were ineligible 

if they were younger than 18 years of age, did not speak and read Spanish, did not plan to 

carry the pregnancy to term or deliver at INMP, and/or were past 28 weeks' gestation.

Enrolled subjects were asked to participate in a structured interview that gathered 

information regarding sociodemographic, lifestyle, medical, and reproductive characteristics 

between 24-28-week gestation (25 weeks' gestation, on average). After an 8-hour, overnight 

fast, participants underwent a 75g, 2-hour OGTT. Fasting and 2-hour blood samples were 

collected, processed, and stored at −80°C until analysed. Following the blood sample 

collection, a brief physical examination was administered by a trained research nurse who 

took anthropometric measures including standing height and weight. All participants 

provided informed consent and the research protocol was approved by the Institutional 

Review Boards of the INMP, Lima, Peru and the Harvard T. H. Chan School of Public 

Health Office of Human Research Administration, Boston, MA, USA.

Analytical Population—The analytical population was derived from participants who 

enrolled in the STEM-GDM Cohort between February 2013 and February 2014. During this 

period, a total of 1,032 women participated in the study. A total of 100 women were 

randomly selected for the present metabolomics analysis. The 100 randomly selected 

women for this analysis did not differ in regards to sociodemographic and lifestyle 

characteristics as compared with the total cohort.

Metabolic Profiling—Fasting blood samples were collected at 25 weeks of gestation, on 

average, after an overnight fast, both immediately prior to and 2-hours after administration 

Gelaye et al. Page 3

Diabetes Metab. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of 75-g OGTT. Samples were protected from ultraviolet light, kept on wet ice and 

centrifuged within 20 minutes of phlebotomy. Serum samples were stored at −80°C until 

assayed. Four liquid chromatography-tandem mass spectrometry (LC-MS) methods were 

used to profile serum polar metabolites and lipids. Negative ion mode, targeted MS analyses 

of polar metabolites were conducted as described previously [23]. Briefly, LC-MS samples 

were prepared from serum (30 μL) via protein precipitation with the addition of four 

volumes of 80% methanol containing inosine-15N4, thymine-d4 and glycocholate-d4 

internal standards (Cambridge Isotope Laboratories; Andover, MA). The samples were 

centrifuged (10 min, 9,000 × g, 4°C) and the supernatants were analysed using an 

ACQUITY UPLC (Waters, Milford MA) coupled to a 5500 QTRAP triple quadrupole mass 

spectrometer (AB SCIEX, Framingham, MA). Extracts (10 μL) were injected directly onto a 

150 × 2.0 mm Luna NH2 column (Phenomenex; Torrance, CA). The column was eluted at a 

flow rate of 400 μL/min with initial conditions of 10% mobile phase A (20 mM ammonium 

acetate and 20 mM ammonium hydroxide in water) and 90% mobile phase B (10 mM 

ammonium hydroxide in 75:25 v/v acetonitrile/methanol) followed by a 10 min linear 

gradient to 100% mobile phase. MS data were acquired using multiple reaction monitoring 

scans tuned for each compound using authentic reference standards. The ion spray voltage 

was -4.5 kV and the source temperature was 500°C. Raw data were processed using 

MultiQuant 2.1 software (SCIEX, Framingham MA). Nontargeted, positive ion mode 

analyses of polar metabolites and lipids were conducted using two separate methods as 

described previously [24]. Data for both methods were acquired using a Nexera X2 U-HPLC 

system (Shimadzu Scientific Instruments; Marlborough, MA) coupled to a Q Exactive 

Orbitrap mass spectrometer (Thermo Fisher Scientific; Waltham, MA). Polar metabolites 

were extracted from body fluids and tissue homogenates (10 μL) using addition of nine 

volumes of 74.9:24.9:0.2 v/v/v acetonitrile/methanol/formic acid containing stable isotope-

labelled internal standards (valine-d8, Isotec; and phenylalanine-d8, Cambridge Isotope 

Laboratories; Andover, MA). The extracts were centrifuged (10 min, 9,000 × g, 4°C), and 

the supernatants were injected onto a 150 × 2 mm Atlantis HILIC column (Waters; Milford, 

MA). The column was eluted isocratically at a flow rate of 250 μL/min with 5% mobile 

phase A (10 mM ammonium formate and 0.1% formic acid in water) for 1 minute followed 

by a linear gradient to 40% mobile phase B (acetonitrile with 0.1% formic acid) over 10 

minutes. Polar metabolite MS analyses were carried out using electrospray ionization in the 

positive ion mode using full scan analysis over m/z 70-800 at 70,000 resolution and 3 Hz 

data acquisition rate. Additional MS settings were: ion spray voltage, 3.5 kV; capillary 

temperature, 350°C; probe heater temperature, 300 °C; sheath gas, 40; auxiliary gas, 15; and 

S-lens RF level 40. Lipids were extracted from plasma and lung tissue homogenates (10 μL) 

using 190 μL of isopropanol containing 1-dodecanoyl-2-tridecanoyl-sn-glycero-3-

phosphocholine as an internal standard (Avanti Polar Lipids; Alabaster, AL). After 

centrifugation (10 min, 9,000 × g, ambient temperature), supernatants (2 μL) were injected 

directly onto a 100 × 2.1 mm ACQUITY BEH C8 column (1.7 μm; Waters; Milford, MA). 

The column was eluted at a flow rate of 450 μL/min isocratically for 1 minute at 80% 

mobile phase A (95:5:0.1 vol/vol/vol 10 mM ammonium acetate/methanol/acetic acid), 

followed by a linear gradient to 80% mobile-phase B (99.9:0.1 vol/vol methanol/acetic acid) 

over 2 minutes, a linear gradient to 100% mobile phase B over 7 minutes, and then 3 

minutes at 100% mobile-phase B. MS analyses were carried out using electrospray 
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ionization in the positive ion mode using full scan analysis over m/z 200-1100 at 70,000 

resolution and 3 Hz data acquisition rate. Additional MS settings were: ion spray voltage, 

3.0 kV; capillary temperature, 320°C; probe heater temperature, 300 °C; sheath gas, 50; 

auxiliary gas, 15; and S-lens RF level 60.

Laboratory Analytical Procedures—Fasting blood samples were collected and 

processed in accordance with standard international procedures using the glucose oxidase 

method. The diagnosis of GDM was determined using the new IADPSG recommendations 

[25]. With this definition, the diagnosis of GDM was made when any of the following values 

from the 75-g OGTT is equaled or exceeded: fasting plasma glucose 5.1 mmol/L, 1-h 

plasma glucose 10.0 mmol/L, or 2-h plasma glucose 8.5 mmol/L.

Other Covariates—Maternal body mass index (BMI) was calculated as weight in 

kilograms divided by height in square meters (kg/m2). Categories of BMI were characterized 

as normal weight (<25 kg/m2), overweight (25-29.9 kg/m2), and obese (≥30 kg/m2). 

Maternal age was categorized as follows: < 19, 20-29, 30-34, ≥ 35 years. Other social and 

demographic variables were categorized as: maternal education (≤ 6, 7-12, and > 12 

completed years of schooling), nulliparous (yes vs. no), marital status (married or living with 

partner vs. single or living alone/divorced), difficulties to pay for necessities like food (very 

hard/hard, somewhat hard, and not hard), and difficulties to access medical care (very hard/

hard, somewhat hard, and not hard).

Statistical Analysis

After excluding 19 metabolites with more than 20% missing or undetectable values, a total 

of 306 metabolites were analysed. Metabolites were transformed on the natural logarithm 

scale due to skewed distribution. Paired Student's t-tests were performed to examine the 

difference in metabolite levels between the two-time points (fasting and 2-hours post-

glucose challenge). To account for multiple testing, a false discovery rate (FDR) procedure 

was applied [26]. For each metabolite, fold change was determined by taking the mean of 

the ratios of the log-transformed values between the two-time points for everyone. Then, we 

used two approaches to compute risk scores of metabolites associated with GDM. In the first 

approach, we used principal component analysis (PCA) and evaluated the association 

between the first principal component and GDM status using logistic regression as the first 

principal component is the one that explains the maximum amount of variance possible in 

the dataset. The risk score was defined as the product of the estimated regression coefficient 

and the value of the first principal component. For the second approach, we used logistic 

regression models to examine the relation between each metabolite within pathways and 

GDM status. Scores were computed by multiplying the delta value of each metabolite with 

its corresponding effect size then summing these products across all metabolites. A leave-

one-out cross-validation procedure was implemented to protect against model over-fitting. 

Thus, successively one observation was left out from the sample (n), the remaining 

observations (n-1) constituted the training set and the left-out one the validation set. Each 

time, and for both approaches, regression coefficients were estimated on the training set. 

This process was repeated n times until all observations were validated. Scores were 

calculated for the validation set using estimated regression coefficients from the training set. 
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Once all scores were computed a logistic regression model was fit to examine the 

association of the scores with GDM status. All statistical analyses were conducted using R 

[27].

Results

The socio-demographic characteristics of the participants are presented in Table I. A total of 

100 pregnant women between the ages of 18 and 45 years (mean age = 28.6 years, standard 

deviation = 6.6 years) with mean gestational age of 25.6 weeks' (SD = 1.2 weeks) 

participated in the study. Most participants were married or living with their partner (84.0%) 

while 28.5% were employed during pregnancy. Approximately 20% of participants reported 

smoking before pregnancy while 29% reported alcohol consumption before index 

pregnancy. Only 1% reported smoking during index pregnancy while 4% reported alcohol 

consumption during pregnancy. Gestational diabetes (defined according to the international 

association for diabetes and pregnancy study group with fasting glucose ≥ 92 mg/dL) was 

present in 23% of study participants.

Out of the 306 metabolites that were detected, the relative abundance of 127 metabolites had 

a statistically significantly increase or decrease after OGTT (FDR-corrected P-value < 

0.001). Most metabolites decreased in response to OGTT (Table II-a and Supplemental 

Figure 1a; see supplementary materials associated with this article on line) while a few 

increased in response to OGTT (Table II-b and Supplemental Figure 1b; see supplementary 

materials associated with this article on line). The largest relative decrease after OGTT was 

seen in C8 carnitine which decreased by 20%, followed by C14:2 carnitine, C14:1 carnitine, 

C12 carnitine, and C4-OH carnitine which decreased by 13% each. The largest relative 

increases after OGTT were seen in adenosine and taurolithocholic acid, which increased by 

25% and 12% respectively. Figure 1 shows a heat map of partial Pearson correlation 

coefficients of metabolite concentrations between before and after responses to OGTT, 

adjusted for gestational age and grouped by pathways. We found that baseline 

concentrations of metabolites in common biological pathways were correlated after OGTT. 

Higher positive correlations were noted for carnitines while higher negative correlations 

were noted for triacylglycerols.

Figure 2 shows changes in metabolite levels in response to OGTT in groups of metabolic 

pathways. For example, major decreases in metabolite levels were noted in acylcarnitines, 

fatty acids and diacylglycerols pathways where more than 10% decrease in relative 

concentration was noted in the following metabolites: carnitines C12:2, C14:1, C12, C10:2 

and C8. A major increase in concentration was noted in metabolites of bile acid pathway 

where adenosines increased by more than 20% and taurolithocholic acid increased by more 

than 10%.

In analyses using linear regression procedures on each metabolite versus GDM status, we 

found that C58:10 triacylglycerol, C58:9 triacylglycerol, adenosine, and methionine 

sulfoxide were significantly associated with GDM status even after adjusting for age and 

BMI (Table III).
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Next, to identify a linear combination of metabolites that might be associated with of GDM, 

we calculated risk scores using two approaches. In the first approach, we performed a PCA 

on normalized data. The association between the first principal component (representing 

88% of variability) and GDM status was examined using a logistic regression model. The 

corresponding risk score computed by multiplying the first principal component by its effect 

size was found to be significantly associated with GDM risk (coefficient = -29.37, SE = 8.6, 

P < 0.001). The distribution of the scores by GDM status are shown in Supplemental Figures 

2a and 2b (see supplementary materials associated with this article on line). Overall, the 

median scores for GDM women were lower in amino acids and glycerophospholipids while 

they are relatively higher for Lysophosphatidylcholines, as compared with non-GDM 

women. In the second approach, each metabolite's relation with GDM status was analysed 

using univariate logistic regression models and scores were computed by multiplying the 

delta value of each metabolite concentrations at baseline and post-OGTT with its 

corresponding regression coefficient and taking the sum over all metabolites. This score is 

also found to be associated with GDM status (β coefficient = -0.113, SE = 0.046, P = 

0.0143).

Discussion

Using a targeted metabolomics approach, we found significant metabolic differences in 

various biological pathways in response to a glucose challenge during pregnancy. 

Specifically, we identified relative decreases in acylcarnitines, fatty acids, and 

diacylglycerols pathways while relative increases were noted in bile acids pathways. In 

addition, we found that C58:10 triacylglycerol, C58:9 triacylglycerol, adenosine, and 

methionine sulfoxide were significantly associated with GDM status even after adjusting for 

age and BMI.

Our findings showing decreases in acylcarnitines and diacylglycerols following glucose 

ingestion are not surprising [12]. Acylcarnitines, involved in β-oxidation of fatty acid or 

amino acid metabolism, are markers of mitochondrial dysfunction [28] and have been 

implicated in insulin resistance and energy homeostasis [29]. Moreover, acylcarnitines are 

synthesized by the enzyme carnitine palmitoyltransferase 1 (CPT 1) that is known to be 

responsible for the transport of long-chain fatty acids into the mitochondrial matrix [30]. 

Fatty acids can be metabolized via a mitochondrial FA oxidation (FAO) pathway which 

yields energy. The FAO competes with glucose oxidation in a process known as glucose-FA 

or Randle cycle [29]. Available evidence suggests that acylcarnitines play a significant role 

in energy metabolism and GDM pathogenesis [31]. Investigators have also postulated an 

alternative mechanism in which FAO rate outpaces the tricarboxylic acid cycle (TCA) 

thereby leading to the accumulation of intermediary metabolites such as acylcarnitines that 

may interfere with insulin sensitivity [29].

Lipotoxicity, excess lipid supply and accumulation, has been one of the theories proposed 

for the induction of insulin resistance in glucose and lipid metabolism [29, 32]. 

Diacylglycerols (DAG) are lipid intermediates that have been long implicated in insulin 

resistance and are signalling molecules and building blocks of cellular membranes, which 

harbour the insulin receptor. Animal studies have demonstrated that long-term ingestion of 
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DAG prevents high fat-induced body weight gain and fat accumulation [33, 34]. Our study 

results showing decreases in DAG following glucose ingestion confirm prior observation in 

animal [35] and human studies [36] suggesting a key role for lipid intermediates such as 

DAG in the development of metabolic disorders such as GDM.

Our findings showing post-glucose increases in conjugated bile acid pathways are consistent 

with prior studies [12]. It has long been known that bile acids are amphipathic molecules 

that function as powerful detergents to facilitate absorption of lipids and nutrients and 

excretion of cholesterol and toxic metabolites [37]. In response to glucose ingestion, 

cholecystokinin stimulates the gallbladder to contract and release bile into the enterohepatic 

circulation [38]. Several lines of evidence have demonstrated that bile acids play important 

roles in glucose regulation and energy homeostasis [39, 40]. For example, studies from 

animal models have shown that the primary bile acids such as cholic acid synthesized from 

hepatic cholesterol increases energy expenditure and prevents the development of high-fat-

induced obesity and insulin resistance [41]. These metabolic effects of bile acid are mediated 

by the G-protein-coupled receptor TGR5, leading to the induction of type 2 iodothyronine 

deiodinase. Recently, Vincent et al. have found that the postprandial bile acid response in 

obese patients with type 2 diabetes mellitus is greater than that in normo-glycaemic 

individuals [42]. In the past decade, there has been an increased recognition that bile acids 

are natural ligands for the farnesoid X receptor (FXR-α) and were found to activate specific 

nuclear receptors such as pregnane X receptor, vitamin D receptor, G protein-coupled 

receptors and cell signalling pathways [43]. A recent study by Fall et al found that increased 

concentrations of three 12α-hydroxylated bile acids (deoxycholic acid, glycocholic acid, and 

glycodeoxycholic acid) were associated with incident diabetes [44]. In addition, a genetic 

variant within the CYP7A1 locus, encoding the rate-limiting enzyme in bile acid synthesis, 

was found to be associated with lower type 2 diabetes risk [44]. Collectively these 

observations, coupled with our findings, provide additional insights into the key role bile 

acid pathways play in the pathogenesis of GDM and other metabolic disorders.

We found a sub-group of maternal metabolites (i.e., C58:10 triacylglycerol, C58:9 

triacylglycerol, adenosine, and methionine sulfoxide) to be statistically significantly 

associated with GDM. These findings indicate the roles endothelial dysfunction and 

oxidative stress pathways play in the pathophysiology of GDM [45]. For instance, adenosine 

acts as a vasodilator in several vascular beds and acts as a stimulator of endothelial cell 

proliferation [46]. Adenosine has been implicated in physiological responses of different 

tissues [47, 48]. It contributes to endothelial dysfunction in endothelial cells from the 

umbilical veins of patients with GDM [49]. Of note, the transport and metabolism of 

adenosine is markedly impaired in foetal endothelial cells isolated from pregnancies 

complicated by GDM [47, 48]. In addition, increased concentration of adenosine upregulate 

expression of endothelial nitric oxide synthase via A2A adenosine receptors, which leads to 

increased nitric oxide synthesis, a potential cause of vascular dysfunction in GDM [50].

Investigators have reported that methionine sulfoxide can be considered a marker of 

oxidative stress and is associated with increased high sensitivity c-reactive protein [51, 52]. 

These findings, if replicated, should facilitate the identification of additional circulating 

biomarkers suitable for predicting the development or progression of GDM
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Some strengths and limitations should be considered in interpreting our study findings. 

Using samples before and after glucose ingestion allowed subjects to serve as their own 

biological controls. This eliminated confounding by subject characteristics. However, there 

are several caveats that merit consideration. First, the cross-sectional design of our study 

does not allow for determination of the temporal relationship between perturbations of 

metabolites and GDM risk although the changes in metabolites were in agreement with 

known physiological actions of glucose. Longitudinal studies are needed following women 

earlier in their pregnancies. Second, the changes observed in metabolites were in relative 

concentrations. We were not able to provide absolute concentrations of metabolites. 

Absolute quantification of metabolites is a future area of investigation. Lastly, our study had 

a limited sample size and was conducted in women attending prenatal clinics in Peru and 

hence may not be generalizable to other populations.

In summary, we identified changes in several metabolites representing distinct biological 

pathways during an OGTT offering novel perspectives on the GDM pathogenesis. We found 

relative decreases in acylcarnitines, fatty acids, and diacylglycerols pathways while relative 

increases were noted in bile acids pathways. In addition, we found that C58:10 

triacylglycerol, C58:9 triacylglycerol, adenosine, and methionine sulfoxide were 

significantly associated with GDM status even after adjusting for age and BMI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Heat-map of partial Pearson correlation coefficients adjusted for gestational age for the 
127 significantly changed metabolites ordered by pathway groups
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Figure 2. 
Changes in metabolite levels in response to two-hour post challenge are shown. Metabolites 

were ordered by pathway groups.
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Table I
Characteristics of Study Population (n=100)

Characteristics n

Gestational age (weeks)* 25.6 ± 1.2

Maternal age (years) 28.7 ± 6.6

 18-19

 20-29 54

 30-34 19

 ≥ 35 22

Marital status

 Married/living with partner 84

 Other 16

Employed during pregnancy 28

Smoked before pregnancy 20

Smoked during pregnancy 1

Alcohol consumption before pregnancy 29

Alcohol consumption during pregnancy 4

Nulliparous 34

Body mass index (kg/m2)* 28.2 ± 3.9

Body mass index (kg/m2)

 < 18.5 23

 18.5-24.9 48

 25.0-29.9 23

 ≥ 30.0 6

Diagnosed gestational diabetes** 23

*
Data in mean ± SD or number (%);

**
Gestational diabetes (GDM) defined according to the International Association for Diabetes and Pregnancy Study Group with fasting glucose ≥ 

92 mg/dl. [25]; BMI at the time of testing

Diabetes Metab. Author manuscript; available in PMC 2020 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gelaye et al. Page 16

Table II-a
Metabolites that decreased after glucose challenge (FDR adjusted paired t-test P-value < 
0.001)

Metabolite Pathway group Mean change SD Fold Change

C8 carnitine Acylcarnitines -1.45 0.95 1.20

C14:2 carnitine Acylcarnitines -1.15 0.53 1.13

C12 carnitine Acylcarnitines -1.07 0.56 1.13

C4-OH carnitine Acylcarnitines -0.95 0.64 1.13

C14:1 carnitine Acylcarnitines -1.09 0.53 1.13

C10 carnitine Acylcarnitines -1.04 0.57 1.11

5-HETE Fatty acid -1.00 0.96 1.10

C6 carnitine Acylcarnitines -0.76 0.40 1.09

C12:1 carnitine Acylcarnitines -1.07 0.55 1.08

C10:2 carnitine Acylcarnitines -0.60 0.38 1.08

C14 carnitine Acylcarnitines -0.57 0.47 1.07

C30:0 DAG Diacylglycerols -0.61 0.59 1.07

Palmitoleic acid Fatty acid -1.26 0.43 1.07

Gamma-Linolenic acid Fatty acid -1.18 0.47 1.06

C32:2 DAG Diacylglycerols -0.56 0.69 1.06

Aspartate Amino acid -0.54 0.40 1.06

Methinonine sulfoxide Amino acid -0.44 0.56 1.06

Glycine Amino acid -0.34 0.34 1.06

Alpha-glycerophosphocholine Glycerophospholipids -0.70 0.35 1.06

Allantoin Purine -0.43 0.61 1.05

Docosapentaenoic acid Fatty acid -0.84 0.38 1.05

C18:2 carnitine Acylcarnitines -0.46 0.38 1.05

Adrenic acid Fatty acid -0.79 0.34 1.05

C9 carnitine Acylcarnitines -0.60 0.54 1.05

Eicosapentaenoic acid Fatty acid -0.77 0.36 1.05

C18:1 carnitine Acylcarnitines -0.47 0.34 1.05

Glutamate Amino acid -0.48 0.32 1.05

Leucine Amino acid -0.56 0.26 1.04

Isoleucine Amino acid -0.52 0.22 1.04

8.11.14-Eicosatrienoic acid Fatty acid -0.67 0.30 1.04

Methionine Amino acids -0.42 0.23 1.04

Citrulline Amino acid -0.38 0.20 1.04

Serine Amino acid -0.37 0.22 1.04

Linoleic acid Amino acid -0.70 0.28 1.04

Phenylalanine Amino acid -0 47 0 27 1 04

Oleic acid Fatty acid -0.67 0.26 1.03
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Metabolite Pathway group Mean change SD Fold Change

Thiamine Amino acids -0.46 0.37 1.03

C18:0 LPE Lysophosphatidyletha -0.33 0.33 1.03

Tyrosine Amino acid -0.39 0.23 1.03

Docosahexaenoic acid Fatty acid -0.58 0.30 1.03

C2 carnitine Acyclarnitines -0.43 0.30 1.03

Asparagine Amino acid -0.29 0.19 1.03

Niacinamide Amino acid -0.28 0.42 1.03

Homocysteine Amino acid -0.29 0.64 1.03

C16 carnitine Acyclarnitines -0.26 0.21 1.03

Palmitic acid Fatty acid -0.51 0.18 1.03

Taurine Biogenic amines -0.33 0.43 1.03

Valine Amino acids -0.30 0.17 1.03

Arachidonic acid Fatty acid -0.45 0.36 1.02

C32:1 DAG Diacylglycerols -0.29 0.21 1.02

Hydroxyproline Amino Acid -0.25 0.18 1.02

C16:0 LPE Lysophosphatidyletha -0.24 0.33 1.02

C42:0 TAG Triacylglycerol -0.25 0.33 1.02

Ornithine Biogenic amines -0.23 0.25 1.02

C18:1 LPE Lysophosphatidyletha -0.20 0.41 1.02

Kynurenic acid Amino Acid -0.19 0.35 1.02

Arginine Amino acid -0.31 0.20 1.02

C32:0 DAG Diacylglycerols -0.25 0.19 1.02

C34:0 DAG Diacylglycerols -0.23 0.17 1.02

Myristic acid Fatty acid -0.38 0.16 1.02

Stearic acid Fatty acid -0.37 0.18 1.02

C18:0 LPC Lysophosphatidylcholi -0.28 0.24 1.02

Threonine Amino acids -0.19 0.15 1.02

C34:3 DAG Diacylglycerols -0.18 0.20 1.02

Choline Amino Acid -0.22 0.24 1.02

*
Fold change represents mean of log-pre-OGTT/log- post-OGTT value.
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Table II-b
Metabolites that increased after glucose challenge (FDR adjusted paired t-test P-value < 
0.001)

Metabolite Pathway group Mean change SD Fold Change*

Adenosine Purine 1.64 1.32 1.25

Taurolithocholic acid Bile acid 1.28 1.14 1.12

Glycoli thocholic acid Bile acid 0.69 0.88 1.06

Glycochenodeoxycholic acid Bile acid 0.87 0.85 1.06

Taurochenodeoxycholic acid Bile acid 0.73 0.93 1.05

Taurodeoxycholic acid Bile acid 0.68 0.89 1.05

Glycoursodeoxycholic acid Bile Acid 0.56 0.96 1.05

Glycodeoxycholic acid Bile acid 0.69 0.75 1.05

Taurocholic acid Bile acid 0.53 0.95 1.04

Glycocholic acid Bile Acid 0.50 0.97 1.04

Phosphocholine Organonitrogen 0.42 0.70 1.03

*
Fold change represents mean of log-post-OGTT/log- pre-OGTT value.
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