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Summary
Transcription factors (TFs) and chromatin-modifying factors (CMFs) access chromatin by

recognizing specific DNA motifs in their target genes. Chromatin immunoprecipitation followed

by next-generation sequencing (ChIP-seq) has been widely used to discover the potential DNA-

binding motifs for both TFs and CMFs. Yet, an in vivo method for verifying DNA motifs captured

by ChIP-seq is lacking in plants. Here, we describe the use of clustered regularly interspaced short

palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9) to verify DNA motifs in their native

genomic context in Arabidopsis. Using a single-guide RNA (sgRNA) targeting the DNA motif

bound by REF6, a DNA sequence-specific H3K27 demethylase in plants, we generated stable

transgenic plants where the motif was disrupted in a REF6 target gene. We also deleted a cluster

of multiple motifs from another REF6 target gene using a pair of sgRNAs, targeting upstream and

downstream regions of the cluster, respectively. We demonstrated that endogenous genes with

motifs disrupted and/or deleted become inaccessible to REF6. This strategy should be widely

applicable for in vivo verification of DNA motifs identified by ChIP-seq in plants.

Introduction

DNA motifs are short cis-regulatory elements that are recog-

nized by transcription factors (TFs) and chromatin-modifying

factors (CMFs) for temporal and tissue-specific gene expression.

The ChIP-seq has been a powerful method in de novo discovery

of potential DNA motifs bound by TFs and CMFs. However, it

often generates more potential DNA motifs with a high false-

positive rate. Current methods for verifying the binding motifs

identified by ChIP-seq typically include yeast one-hybrid (Y1H)

and electrophoresis mobility shift assay (EMSA). However,

both Y1H and EMSA are in vitro methods, and thus, results

from them may not reflect DNA–protein interactions in vivo.

Alternatively, a transgene that contains the DNA-binding motif

or variations of the motif can be transferred into the organism,

and the binding ability of the TFs and/or CMFs to the motif

can be evaluated by ChIP-qPCR. However, one concern is that

the transgene may not behave as endogenous target loci

because the chromatin context of the insertion site of the

transgene may differ from that of endogenous target loci.

Therefore, an in vivo method for verifying DNA motifs captured

by ChIP-seq in their native chromatin context is in demand in

plants.

The clustered regularly interspaced short palindromic repeat

(CRISPR)/CRISPR-associated 9 (Cas9) system has been successfully

applied to efficiently edit genomes in bacteria, animals and plants

(Doudna and Charpentier, 2014; Sander and Joung, 2014). The

CRISPR loci are variable short spacers separated by short repeats,

which are transcribed into synthetic single-guide RNA (sgRNA)

that forms a functional complex with the Cas9 nuclease (Mali

et al., 2013). The sgRNA guides the Cas9 to genomic loci

matching a 20-bp complementary DNA, making a DNA double-

strand break (DSB) immediately upstream of a required proto-

spacer adjacent motif (PAM) (Ma et al., 2016). The DSB can be

repaired by nonhomologous end-joining pathway (NHEJ), which is

error prone, creating insertions and/or deletions (Symington and

Gautier, 2011). Recent studies have successfully applied the

CRISPR/Cas9 system to verify DNA motifs in their native genomic

context in mouse and human (Kim and Kim, 2017; Tanimura

et al., 2016); however, such a strategy has yet to be tested in

plants.

In this study, we set out to use the CRISPR/Cas9 system to

verify DNA motif in plants. We and others previously reported

that the plant H3K27 demethylase RELATIVE OF EARLY FLOWER-

ING 6 (REF6), unlike most CMFs, has an intrinsic DNA-binding

ability (Cui et al., 2016; Li et al., 2016). Genomewide binding

analysis by ChIP-seq showed that the CTCTGYTY (Y represents C

or T) DNA motif, either single or multiple copies, is enriched at

REF6-binding sites supporting the notion that the CTCTGYTY

motif is crucial for recruiting REF6 to its target loci. As a proof of

principle, we used the CRISPR/Cas9 system to target the

CTCTGYTY DNA motif in Arabidopsis. We found that motif

deletions at two different REF6 target genes were accompanied

by the loss of bindings of REF6 in vivo, demonstrating that CRISPR

can be used for functional verification of DNA motifs identified by

ChIP-seq in plants.

Results and discussion

To remove the CTCTGYTY motif at its endogenous sites using

CRISPR/Cas9 for functional verification, we took two different

strategies, targeting single- and multiple-motif-containing loci,
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respectively. For REF6 target loci that contain a single CTCTGYTY

motif, we used sgRNAs that meet the following two additional

criteria to increase the success rate of disruption: (i) the

recognition site of the sgRNA covers the motif and (ii) the

predicted cutting site, which is between third and fourth

nucleotides upstream of the PAM sequence, is located in the

motif. We selected four single-motif-containing REF6 target

genes and designed a sgRNA for each of them (Figure S1 and

Table S1). The AGI numbers of the four REF6 target genes are

AT5G61250, AT4G16400, AT4G30620 and AT5G52170, and the

four gRNAs were named as G6, G1, G3 and G5, respectively. We

individually integrated the four sgRNAs (driven by the AtU6

promoter) into the pZG23C05 vector carrying Basta (driven by the

35S promoter) and Cas9 (driven by the Ubi promoter) expression

cassettes (Figure S2a). The four resulting vectors were individually

transformed into the pREF6::REF6-GFP ref6-1 transgenic Ara-

bidopsis plants that express GFP fused with REF6 under the

control of its native promoter (Li et al., 2016). To examine the

gene-editing efficacy of the four sgRNAs, sequences containing

the targeting sites of sgRNAs were amplified by PCR using

genomic DNA from the T1 plants. We sequenced PCR products

from 37, 57, 45 and 39 T1 plants transformed by G6, G1, G3 and

G5 sgRNAs, respectively. Gene-editing events were observed in

34 of 37 T1 plants transformed by G6 sgRNA, but not in those

transformed by the other three sgRNAs (Figure 1a and Table S1).

We then confirmed editing by PCR sequencing and T7EI exper-

iments in three selected G6-transformed plants (T1-2, T1-3 and

T1-4) (Figure 1).

To check whether the editing events in the G6 transgenic

plants disrupted the CTCTGYTY motif, we cloned and sequenced

the PCR fragments from three representative T1 transgenic plants

(T1-2, T1-3 and T1-4). Several different types of mutations were

detected in these three lines (Figure 2a). The mutations found in

lines T1-2 and T1-4 did not disrupt the CTCTGYTY motif

(Figure 2a). However, we found a clone from line T1-3 that

contained an 11 nucleotide deletions and an A to T substitution

(Figure 2a), causing the disruption of the CTCTGYTY motif

(CTCTGTTT to TC). We named this mutant allele as D11S1 (D

represents Deletion and S represents Substitution). The T1-3 plant

was selfed, and the T2 progenies were analysed by PCR

sequencing. Among the nineteen tested T2 plants, a homozygous

D11S1 mutant plant was found (Figure 2b). Together, our results

indicate that targeted disruption of a DNA motif can be achieved

by careful design of sgRNAs.

We then assessed the occupancy of REF6 at the D11S1 mutant

locus in the T3 generation. By ChIP-qPCR, we found that,

compared to the strong binding of REF6 around the CTCTGYTY

motif at the wild-type allele of AT5G61250, the binding of REF6

was completely diminished at the D11S1 mutant locus where the

CTCTGYTY motif in AT5G61250 was disrupted (Figure 2b),

demonstrating that the motif is necessary for the binding of

REF6. To investigate whether off-target mutations might have

happened in the D11S1 line, we examined the four predicted

most likely off-target sites. Off-target mutations were not

detected at any of the four sites (Table S2). Therefore, the G6

sgRNA used in this experiment is specific to the REF6 target gene

AT5G61250.

Yet, many REF6-binding sites contain multiple CTCTGYTY

motifs that form a cluster (Cui et al., 2016; Li et al., 2016). To

demonstrate that CRISPR/Cas9 is robust for DNA motif verifica-

tion, we decided to delete the whole cluster of the CTCTGYTY

motifs from YUC3, an REF6 target locus that has four repeats of

the motif (Li et al., 2016). We designed two sgRNAs that target

the sequences upstream and downstream of the cluster, respec-

tively (Figure 3a). Deleting large genomic DNA fragments by two

sgRNAs requires that the two cutting reactions occur simultane-

ously in the same cell. Previous studies have suggested that

expressing Cas9 in meristems and embryonic cells at high levels is

key to achieving high efficiency in gene editing in Arabidopsis

(Hyun et al., 2015; Wang et al., 2015; Yan et al., 2015, 2016).

To increase the efficiency of the deletion mediated by two

sgRNAs, we used the YAO promoter-based CRISPR/Cas9 system,

which was reported to have much higher efficiency on generating

heritable mutations (Yan et al., 2015). The YAO gene promoter is

highly expressed in the embryo sac, embryo, endosperm and

pollen (Li et al., 2010). The two sgRNAs were cloned into the

pYAO: hSpCas9 vector (Figure S2b), and the construct was then

introduced into wild-type (WT) plants. The T1 transgenic lines

were analysed by PCR using a pair of primers that amplifies the

genomic DNA spanning the targeted motif cluster. From 20 T1

transgenic plants, we identified two plants (T1-17 and T1-20) that

Figure 1 Targeted editing of the CTCTGYTY motif from an endogenous

REF6 target gene by CRISPR/Cas9 system. (a) DNA sequencing peaks

showing the successful gene editing in the target region of AT5G61250 in

three representative T1 lines. The sequencing result from WT is served as

the negative control. Red triangles point to the putative cutting sites by

Cas9. (b) T7EI assay showing the successful gene editing in the target

region of AT5G61250. Red triangles point to the two bands at expected

size after T7EI digestion.
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showed only the expected smaller PCR band (Figure 3b).

Sequencing of the PCR products revealed that there was a

deletion of 169-bp DNA encompassing the whole cluster of four

CTCTGYTY motifs (Figure 3a). This YUC3 mutant allele was

named as YUC3-D169.

To assess the effect of the deletion of the cluster on the

binding of REF6 at YUC3, the YUC3-D169 mutant allele was

introduced into the pREF6::REF6-GFP ref6-1 plants by genetic

crossing (Figure 4a). Examination of the most likely predicted off-

target sites of each of the sgRNAs by PCR sequencing did not

detect off-target mutations, suggesting that both sgRNAs are

specific to the YUC3 locus only (Table S2). By ChIP-qPCR, we

found that REF6 was unable to bind to YUC3-D169, while it was

strongly enriched at the cluster of motifs in wild-type YUC3

(Figure 4b). Furthermore, we wondered whether the H3K27

demethylase activity of REF6 at its target genes requires the

CTCTGYTY motif. As shown in Figure 4c, loss of REF6 led to the

ectopic accumulation of H3K27me3 at YUC3, which was

eliminated upon the introduction of the pREF6::REF6-GFP trans-

gene. However, the elimination of H3K27me3 by pREF6::REF6-

GFP was not found at YUC3-D169, suggesting that deletion of

the CTCTGYTY motifs prevents the recruitment of REF6 and

consequently its H3K27me3 demethylation activity at this target

locus (Figure 4c). Taken together, our CRISRP/Cas9-mediated

disruption (for AT5G61250) as well as deletion (for YUC3) of the

motifs followed by ChIP-qPCR analysis validated the CTCTGYTY

sequence as the binding motif of REF6. Consistently, REF6-

mediated H3K27me3 demethylation at REF6 target genes is

dependent on the CTCTGYTY motif.

Conclusions

In this work, we have demonstrated that CRISPR/Cas9-mediated

strategies can be employed to functionally verify the DNA motifs

captured by ChIP-seq in its native genomic context in plants. As a

proof-of-principle, we have successfully used such strategies to

disrupt or delete the CTCTGYTY motifs from REF6 target genes

found by ChIP-seq and observed the loss of occupancy of REF6

in vivo. Although we only tested the REF6-binding motif, other cis

DNA motifs recognized by TF and/or CMFs should also be able to

be verified using this approach. During the course of preparing

this article, a report demonstrated the use of CRISPR/Cas9 system

to modify promoters of target genes in tomato to produce

numerous consecutive variations for enhancing breeding (Rodri-

guez-Leal et al., 2017). Among the five tested REF6 target genes,

two of them were successfully edited by CRISPR/Cas9 and the

binding by REF6 was verified, suggesting the overall efficiency of

the editing mediated by sgRNAs is relatively high. However, a

quick testing of the efficiency of candidate sgRNAs can be

performed in protoplast before generating stable transgenic

plants. As ChIP-seq experiments typically discover thousands of

target loci, it should not be difficult to find suitable sgRNAs (i.e.

PAM sequence requirement) for targeting the motifs for disrup-

tion/deletion. In conclusion, we expect that CRISPR should be

Figure 2 CRISPR/Cas9-mediated disruption of the CTCTGYTY motif for functionally verifying the DNA-binding motif in vivo. (a) Sequencing results of

alleles of AT5G61250 from three representative T1 transgenic plants (T1-2, T1-3 and T1-4). On the top, ChIP-seq genome-browser view of REF6 binding at

AT5G61250 locus. Schematic representation of AT5G61250 genomic locus is shown underneath. Black and grey boxes represent exons and UTRs,

respectively. The red vertical line indicates the position of the CTCTGYTY motif in AT5G61250 locus. The CTCTGYTY motif is shown in red font. On the

right, plus (+) signs, letter D and letter S indicate the number of nucleotides inserted, deleted and replaced, respectively. The asterisks indicate the numbers

of independent clones sequenced. (b) ChIP-qPCR results showing the binding of REF6 at WT and D11S1 alleles of AT5G61250 locus. ChIP signals are shown

as percentage of input. Error bars indicate standard deviations among three biological replicates. Schematic representation of part of the AT5G61250

genomic locus is shown underneath. Black and grey boxes represent exons and UTRs, respectively. The red vertical line labelled the position of the

CTCTGYTY motif. On the top, sequencing results for WT and D11S1 alleles.
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widely applicable for in vivo verification of the potential DNA

motifs discovered by ChIP-seq in plants.

Materials and methods

Plant materials and growth conditions

Arabidopsis seeds were stratified for 4 days at 4 °C in darkness.

Then, the seeds were sown on soil or on agar plates containing

4.3 g/L Murashige and Skoog nutrient mix (Sigma-Aldrich), 1.5%

sucrose (pH 5.8) and 0.8% agar. Plants were grown in growth

rooms with 16-h light/8-h dark cycles at 22 °C. The ref6-1

(SALK_001018) mutants and the ProREF6:REF6-GFP ref6-1 trans-

genic plants have been described previously (Li et al., 2016).

Construction of Cas9 and sgRNA expression vectors

For the four single-motif-containing REF6 target genes, pairs of

oligonucleotides (Table S3) including the targeting sequences

were synthesized as primers, annealed and cloned into

pZG23C05 vector according to the manufacturer’s protocol

(ZGene Biotech Inc.).

For deleting the CTCTGYTY cluster in YUC3, the Yao

promoter-based CRISPR/Cas9 system (Yan et al., 2015) was

used. In brief, a pair of sgRNAs (Table S3) targeting sequence

upstream and downstream of the CTCTGYTY cluster in YUC3

was designed. The first sgRNA was cloned into BsaI-digested

AtU6-26-sgRNA-SK vector. The resulting vector was then

double-digested with SpeI and NheI, separated on agarose

gel, and the lower DNA fragment was purified. The second

sgRNA (Table S3) was also cloned into the AtU6-26-sgRNA-SK

vector and then linearized by SpeI. The purified lower DNA

fragment containing the first sgRNA was cloned into the

linearized vector so that the two sgRNAs were cloned into one

vector. Then, this vector was double-digested again by SpeI and

NheI. The smaller DNA fragment containing the two sgRNAs

was purified and cloned into SpeI-digested pCAMBIA1300-

pYAO: Cas9 to generate the final transgene construct for

Arabidopsis transformation.

Generation of transgenic plants

The constructs were introduced into Agrobacterium tumefaciens

GV3101, which was then used to transform ref6-1 ProREF6:REF6-

GFP or WT plants using the floral dip method (Clough and Bent,

1998). The transgenic seeds from the T1 generation were screened

on MS plates with 50 lg/L of glufosinate or 25 lg/L hygromycin.
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Figure 3 Targeted deletion of the cluster of the four CTCTGYTY motifs at YUC3 by the YAO promoter-based CRISPR/Cas9 system. (a) Sequencing results

showing the deletion mutant alleles of YUC3 from two T1 transgenic plants (T1-17 and T1-20). On the top, ChIP-seq genome-browser view of REF6 binding

at YUC3 locus. Schematic representation of YUC3 genomic locus is shown underneath. Black and grey boxes represent exons and UTRs, respectively. The

four red vertical lines indicate the position of the cluster of the CTCTGYTY motifs in YUC3 locus. The four CTCTGYTY motifs are shown in red font. (b) PCR

amplification results showing deletion of the 169-bp DNA from YUC3 in two of the twenty T1 lines. Schematic representations of the WT and D169 alleles

of YUC3 are shown on the top. Black and grey boxes represent exons and UTRs, respectively. The four red vertical lines mark the position of the CTCTGYTY

motifs in YUC3 locus. The green and blue triangles indicate the putative cutting sites of the two sgRNAs. The black triangles indicate the positions of PCR

primers. WT is served as the negative control. Red boxes mark the two lines with genomic fragment deleted. M, DNA size marker ladder.

ª 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 16, 1446–1451

CRISPR verification of DNA motifs in plants 1449



Genotyping

Genomic DNA was extracted from leaves of the transgenic plants

and used for PCR to amplify the genomic fragments containing

the sgRNA targeting sites. The PCR products were either directly

sequenced or cloned into pGEM�-T Easy vector (Promega).

Bacterial colony PCR was conducted, and positive clones were

picked for sequencing. Primer sequences used are listed in

Table S3.

For the T7EI assay, 8 lL of PCR products was mixed with 2 lL
of 10 9 NEB buffer 2 and annealed using the following condi-

tion: 95 °C for 5 min, ramp down to 85 °C at �2 °C/s, ramp

down to 20 °C at �0.2 °C/s and 4 °C for 5 min. Then, 0.5 lL of

T7EI (NEB) was added and incubated at 37 °C for 30 min. The

reactions were loaded on 2% agarose gel.

ChIP assay

ChIP was carried out as described (Gendrel et al., 2005; Li et al.,

2015) with minor modifications. Briefly, two grams of 14-day-old

seedlings grown on MS agar was harvested and cross-linked with

1% formaldehyde for 20 min under vacuum and then ground

into fine powder in liquid nitrogen. Chromatin was isolated and

sheared into 200- to 800-bp fragments by sonication. The

sonicated chromatin was incubated with 5 lL of anti-GFP

(Abcam, ab290) or anti-H3K27me3 (Millipore, 07-449) antibodies

overnight at 4 °C. The precipitated DNA was then recovered with

the MinElute PCR Purification Kit (Qiagen) according to the

manufacturer’s instructions. ChIP-qPCR was performed with

three technical replicates, and results were calculated as percent-

age of input DNA according to the Champion ChIP-qPCR user

manual (SABioscience). ChIP experiments were performed at least

three times. Primer sequences used for ChIP-qPCR are listed in

Table S3.

ChIP-seq data analyses

The ChIP-seq data for genomewide binding of REF6 were

previously described (Li et al., 2016) and have been deposited

in Gene Expression Omnibus (GEO) under the accession code

GSE72736. The binding peaks of REF6 were first converted to

Wiggle (WIG) files using MACS (Zhang et al., 2008), which were

imported to Integrated Genome Browser (IGB) (Nicol et al., 2009)

for visualization.
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