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Summary
In a de novo genotyping-by-sequencing (GBS) analysis of short, 64-base tag-level haplotypes in

4657 accessions of cultivated oat, we discovered 164741 tag-level (TL) genetic variants

containing 241224 SNPs. From this, the marker density of an oat consensus map was increased

by the addition of more than 70000 loci. The mapped TL genotypes of a 635-line diversity panel

were used to infer chromosome-level (CL) haplotype maps. These maps revealed differences in

the number and size of haplotype blocks, as well as differences in haplotype diversity between

chromosomes and subsets of the diversity panel. We then explored potential benefits of SNP vs.

TL vs. CL GBS variants for mapping, high-resolution genome analysis and genomic selection in

oats. A combined genome-wide association study (GWAS) of heading date from multiple

locations using both TL haplotypes and individual SNP markers identified 184 significant

associations. A comparative GWAS using TL haplotypes, CL haplotype blocks and their

combinations demonstrated the superiority of using TL haplotype markers. Using a principal

component-based genome-wide scan, genomic regions containing signatures of selection were

identified. These regions may contain genes that are responsible for the local adaptation of oats

to Northern American conditions. Genomic selection for heading date using TL haplotypes or

SNP markers gave comparable and promising prediction accuracies of up to r = 0.74. Genomic

selection carried out in an independent calibration and test population for heading date gave

promising prediction accuracies that ranged between r = 0.42 and 0.67. In conclusion, TL

haplotype GBS-derived markers facilitate genome analysis and genomic selection in oat.

Introduction

Globally, cultivated oat (Avena sativa) is the sixth most important

cereal crop. It is grown in temperate regions for grain, and in

subtropical regions for forage. Both grain and forage are used for

feed, while the grain provides a nutritional human food with

documented health benefits (Katz, 2001). To meet new chal-

lenges in oat variety development, many breeders are investigat-

ing the use of tools for molecular breeding. However, the

necessary genomic tools have been difficult to develop in oat

because of its large (12.5 GB), repetitive allopolyploid genome

(Yan et al., 2016b), which has not yet been fully sequenced.

Technological advances in DNA sequencing are revolutionizing

biological sciences. Genotyping-by-sequencing (GBS) and similar

methods (Elshire et al., 2011; Truong et al., 2012) are applica-

tions of this technology. They provide economically, high-

throughput genotyping, which has been applied in crops such

as wheat, Miscanthus and oat without the need for a complete

reference genome (Huang et al., 2014; Lu et al., 2013; Poland

et al., 2012). Markers based on GBS have been used in genome-

wide association studies (GWAS) and in genomic selection (Morris

et al., 2013; Poland et al., 2012).

Genetic linkage mapping and diversity studies conducted using

array-based SNPs, and first-generation GBS markers have helped

us to gain insight into the complex oat genome (Chaffin et al.,

2016; Esvelt Klos et al., 2016; Huang et al., 2014). However, the

limited number of GBS markers and lack of a standardized

nomenclature encouraged us to develop improved methods for

GBS analysis, which resulted in the development of computer

software called ‘Haplotag’ (Tinker et al., 2016). This software

provides an efficient analysis tool for oat and other complex

genomes for which no reference sequence is available. Haplotag

employs population-level model filtering to identify sets of tag-

level (TL) haplotypes that show diploid segregation (Tinker et al.,

2016). What makes Haplotag unique is its output of a set of

genotype inferences for TL haplotypes, also referred to as

‘Haplotag Loci’. As these TL haplotypes may contain multiple

SNPs, Haplotag will also produce an alternate set of genotypes

based on the underlying SNP calls (GBS-SNPs). Furthermore,

Haplotag operates in either a production mode or a discovery

mode. The discovery mode involves de novo clustering and

genotype calling, whereas the production mode calls genotypes

from a predefined set of haplotypes (Tinker et al., 2016).

Haplotype-based genetic analyses have been used in human,

animal and plant genetics research. Such haplotypes are normally

inferred either from a genome sequence, or through linkage or

association analysis. Hereafter, we refer to these as chromosome-

level (CL) haplotypes, to differentiate them from the TL haplo-

types that are inferred directly from GBS tags by Haplotag. In

comparison with using individual SNPs, haplotype-based analysis

can reduce false discovery rates because it performs fewer

association tests (Hamblin and Jannink, 2011). Performing fewer

association tests requires less computational time, but more

importantly, using fewer tests that still cover the same
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independent variable space can provide increased statistical

power (Rafalski, 2002).

Simulation studies that compared genomic selection using CL

haplotypes vs. genomic selection using SNPs showed that

selection accuracies of CL haplotypes were lower than those

based on SNP markers (Jannink et al., 2010). However, recent

empirical comparisons using higher marker densities revealed that

CL haplotype-based genomic selection gave slightly higher

genomic prediction accuracy than did individual SNPs (Cuyabano

et al., 2014, 2015; Edriss et al., 2013). One of the problems

associated with CL haplotypes is the possibility that the predicted

haplotype data might be compromised by errors in map

construction. In contrast, the short TL haplotypes derived from

Haplotag analysis extend over distances of only 64 bp, and their

accuracy is not affected by map errors. We are not aware of any

work to date that has evaluated GWAS or genomic selection

based on TL haplotypes.

The primary goal of this study was to evaluate the suitability of

GBS-derived TL haplotype for breeding and genomics research

using empirical data from cultivated hexaploid oat. The model

phenotypic-trait heading date was used for analysis because of its

importance for local adaptation, and the availability of several

published genetic mapping studies to compare with. The

Haplotag GBS pipeline was applied to more than 4600 cultivated

oat lines, and the marker data were used in four studies: (i)

genetic linkage mapping (TL haplotype vs. GBS-SNPs), (ii) popu-

lation genomics and haplotype mapping of elite North American

lines, (iii) GWAS analysis of heading date (GBS-SNPs vs. TL

haplotype vs. CL haplotypes) and (iv) genomic selection using TL

haplotype vs. GBS-SNPs.

Results

Oat tag-level haplotype markers

Using the de novo discovery mode of Haplotag, we called 164741

TL haplotype loci with 353130 TL alleles and 241224 GBS-SNP

markers from 4657 cultivated oat lines. These lines consisted of

mapping population lines, breeding lines and germplasm mate-

rial. To our knowledge, this is the largest number of cultivated oat

lines that have been addressed in a single analysis. The complete

data matrices and the supporting Haplotag input files can be

downloaded in a set of annotated text files, while the complete

set of genotype calls and map locations of the markers (see

below) have been fully integrated into the T3/oat platform (http://

triticeaetoolbox.org/oat/genotyping) (Saied et al., 2016). The

marker data were filtered from these matrices based on the

appropriate taxa set and population-level parameters for each

respective analysis.

Updated oat consensus map

The updated oat consensus map (Appendix S1) contains a

comprehensive set of 99878 mapped markers. This number

includes the 74461 new Haplotag-derived markers, and the

complete set of markers that were reported by Chaffin et al.

(2016). A total of 19074 legacy GBS loci can be recognized by

the ‘avgbs’ prefix followed by a number with no decimals.

The new Haplotag loci have either a single decimal (for TL

haplotype loci) or two decimals (for SNP loci, where the

second decimal identifies the SNP position). The positions of

corresponding Haplotag markers (TL vs. SNP) were identical or

within a few cM of each other. As illustrated in Figure S1,

there were up to 861 markers within each 1 cM bin of the

GBS-SNP map, and up to 666 markers within each bin of the

TL haplotype map. Overall, marker placement using the two

systems gave similar results, as revealed by the high correla-

tion (r = 0.99) between the two 1 cM bin maps. The average

number of markers per bin was 10.6 for the TL haplotype

map and 14.9 for the GBS-SNP map.

Because the Haplotag pipeline groups and names loci based on

clusters of similar tags, it was not possible to cross-reference all

Haplotag SNP and legacy GBS loci. However, we preserved the

legacy nomenclature of 6239 Haplotag SNPs belonging to tags

that clustered into a single pair of haplotypes containing only one

SNP. The positions of these cross-referenced loci are shown in the

second page of Appendix S1. Of these, 187 (2.9%) mapped to

different groups, and 290 (4.6%) mapped to positions separated

by more than 10 cM. As the algorithms used to place markers on

the framework were identical, these discrepancies are most likely

caused by the addition of three new mapping populations that

were not included by Chaffin et al. (2016). These populations

were included to expand the genotype diversity for Haplotag

allele discovery, and full reports of de novo map construction and

phenotypic analysis in these populations may be topics of future

work.

A haplotype map of oat

Mapped TL haplotype loci and GBS-SNPs were used to

investigate CL haplotype structure in the oat diversity panel

(n = 635). Across all lines, the linkage disequilibrium (LD)-based

haplotype detection method (Gabriel et al., 2002) identified

754 and 3495 CL haplotype blocks using TL loci or GBS-SNPs,

respectively. The reduced number of haplotypes based on TL

markers is due to the compression of data for each TL locus

into a pair of major and minor alleles. Within subpopulations,

1793 or 1319 CL haplotype blocks were identified based on

the TL loci found in the spring (n = 497) and southern

(n = 123) sets of germplasm, respectively. The CL haplotype

blocks in the full set covered 246 cM, while those in the

southern set covered 573.9 cM and those in the spring set

covered 521.2 cM. The genome-wide average haplotype block

sizes were 0.31, 0.29 and 0.43 cM (Table 2) for the full, spring

and southern subpopulations, respectively. The comparison

between subpopulations using GBS-SNP-derived haplotype

blocks showed similar trends.

In the analysis of the full germplasm set, linkage groups

Mrg02 and Mrg28 contained a large number of haplotype

blocks, as well as some of the longest haplotype blocks

(Table 2). The maximum number of TL haplotype markers per

block was 49 markers, covering 4.2 cM (32.6–36.8 cM) on

Mrg28. The second largest number of markers was also on

Mrg28, at position 43.8 cM. This haplotype block consisted of

19 markers with a 0 cM block size. The spring and southern

sets showed differences in frequency and size of chromosome-

level haplotypes (Table 2).

Haplotype diversity in the full set and the subpopulations

showed differences between subpopulations and genomic

regions (Figures S2 and S3). In the full set, the lowest mean

chromosome haplotype diversity was on Mrg13, followed by

Mrg28 (Figure S2). However, there were fewer haplotype blocks

detected on Mrg13 compared with Mrg28. The highest mean

chromosome haplotype diversity was on Mrg05, followed by

Mrg02. Mrg02 and Mrg28 contained the two largest numbers of

haplotype blocks per chromosome, but showed contrasting mean

haplotype diversity (Figure S3a).
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Genome-wide association using Haplotag-derived
markers and chromosome-level haplotypes

We conducted two sets of GWAS comparisons for heading date

using the CORE diversity panel (n = 635) heading data from 16

location-years. The first set compared two types of Haplotag-

derived markers (TL haplotype vs. GBS-SNP) and was performed

separately for each environment using the full diversity panel, as

well as the spring and southern subsets. The second set compared

Table 1 Summary of marker placement

Linkage

group

Number of

Haplotag-derived

markers

Tag-level haplotype markers GBS-SNP markers

Number of

markers

Minimum

position (cM)

Maximum

Position (cM) Size (cM)

Number

of markers

Minimum

position (cM)

Maximum

Position (cM) Size (cM)

Mrg01 4909 2077 �11.80 142.30 154.10 2832 �11.80 142.30 154.10

Mrg02 4122 1694 �1.90 118.50 120.40 2428 �1.90 118.50 120.40

Mrg03 4816 2040 �0.30 162.00 162.30 2776 �0.30 162.00 162.30

Mrg04 1859 777 �17.30 79.70 97.00 1082 �17.30 79.70 97.00

Mrg05 2986 1212 0.60 175.30 174.70 1774 �10.60 175.30 185.90

Mrg06 3265 1342 �1.90 149.20 151.10 1923 �1.90 149.20 151.10

Mrg08 3370 1383 0.00 203.70 203.70 1987 0.00 203.70 203.70

Mrg09 3716 1640 �8.60 140.40 149.00 2076 �8.60 140.40 149.00

Mrg11 3866 1663 �14.40 109.60 124.00 2203 �14.40 109.60 124.00

Mrg12 3880 1562 4.20 125.50 121.30 2318 4.20 125.50 121.30

Mrg13 2890 1266 1.20 127.30 126.10 1624 1.20 127.30 126.10

Mrg15 3710 1611 �7.10 93.10 100.20 2099 �7.10 93.10 100.20

Mrg17 4854 2075 2.40 115.60 113.20 2779 2.40 115.60 113.20

Mrg18 3194 1302 �1.90 120.60 122.50 1892 �1.90 120.60 122.50

Mrg19 2025 860 �17.20 93.20 110.40 1165 �17.20 92.20 109.40

Mrg20 4574 1754 15.80 261.00 245.20 2820 15.80 261.00 245.20

Mrg21 5024 2050 �4.10 215.80 219.90 2974 �4.10 216.00 220.10

Mrg23 2741 1113 8.10 124.90 116.80 1628 8.10 124.90 116.80

Mrg24 3244 1342 �0.50 95.30 95.80 1902 �0.50 95.30 95.80

Mrg28 3518 1485 �2.80 104.40 107.20 2033 �2.80 104.40 107.20

Mrg33 1898 747 �7.90 131.40 139.30 1151 �7.90 131.40 139.30

Table 2 Summary of haplotype blocks

Linkage

group

Full diversity panel haplotype blocks Spring set haplotype blocks Southern set haplotype blocks

Number

Minimum

size (cM)

Maximum

size (cM)

Mean

size (cM) Number

Minimum

size (cM)

Maximum

size (cM)

Mean

size (cM) Number

Minimum

size (cM)

Maximum

size (cM)

Mean

size (cM)

Mrg01 37 0 1.2 0.21 134 0 3.7 0.15 27 0 1.29 0.13

Mrg02 97 0 8.7 0.52 78 0 11.5 0.34 40 0 7.9 0.56

Mrg03 17 0 1.2 0.28 131 0 4.3 0.16 23 0 0.8 0.14

Mrg04 14 0 2.5 0.48 41 0 9.3 0.3 13 0 2.5 0.43

Mrg05 28 0 1.2 0.3 77 0 16.5 0.46 12 0 1.29 0.21

Mrg06 40 0 5.5 0.21 82 0 8.5 0.35 24 0 1.7 0.14

Mrg08 21 0 4.6 0.33 79 0 3.09 0.34 16 0 6.4 0.81

Mrg09 28 0 2.5 0.27 103 0 3.2 0.25 27 0 2 0.31

Mrg11 49 0 1.2 0.18 105 0 2.9 0.17 42 0 6.29 0.37

Mrg12 34 0 4.2 0.39 81 0 6.59 0.29 38 0 6.5 0.49

Mrg13 31 0 0.8 0.06 82 0 2.59 0.18 33 0 2.69 0.39

Mrg15 66 0 2 0.19 72 0 3.4 0.23 35 0 2.79 0.52

Mrg17 32 0 1.6 0.22 159 0 3.09 0.18 30 0 2 0.22

Mrg18 46 0 2.1 0.27 75 0 2.9 0.27 14 0 1.39 0.37

Mrg19 18 0 1.1 0.18 50 0 4.4 0.27 15 0 6.09 0.67

Mrg20 29 0 1.4 0.18 116 0 13 0.62 20 0 6.8 0.79

Mrg21 31 0 1.7 0.19 107 0 5.4 0.29 26 0 20.5 1.09

Mrg23 19 0 7.4 0.57 37 0 5.69 0.55 15 0 4.3 0.89

Mrg24 37 0 2 0.32 79 0 5.19 0.24 21 0 2.3 0.36

Mrg28 66 0 15.2 0.66 59 0 7.9 0.34 26 0 8.2 0.69

Mrg33 14 0 5.7 0.59 46 0 6 0.57 7 0 1.4 0.53
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Haplotag-derived markers vs. CL haplotypes using BLUP values

across environments using the full diversity panel (Table S1).

The first GWAS identified 184 significant associations across

the two marker systems after Bonferroni correction (Appendix

S3). These analyses were conducted using 12890 TL haplotype

(MAF ≥0.05) and 17694 GBS-SNP (MAF ≥0.05) markers. These

included 115 significant TL associations exceeding the 5%

Bonferroni threshold (�log10P ≥5.41) vs. only 69 GBS-SNP

associations (�log10P ≥5.55). GWAS conducted in the spring

and southern sets showed the same trend, although the

differences were smaller. The two chromosome representations

with the most significant associations were Mrg02 and Mrg12.

On Mrg02, there were 20 loci at position 34 cM associated with

heading dates from eight field trials. On Mrg12, there were 23 TL

haplotype markers at positions 40–42 cM associated with head-

ing dates from seven locations (Appendix S3).

We then compared GWAS scans based on Haplotag-derived

markers vs. those based on CL haplotypes. Parallel GWASs were

performed on the same BLUP-based phenotype data using the

two Haplotag-derived marker systems, CL haplotypes derived

independently from each of these two systems, and CL haplo-

types combined with markers that were not included in their

respective CL haplotypes. All systems except the GBS-SNP-derived

CL haplotypes detected significant associations after Bonferroni

threshold (P = 0.05) (Figure 1; noting that each marker system

has a different threshold, depending on the number of markers).

In general, the patterns of association were similar using any of

the systems, but most of the marker systems detected additional

unique genomic regions. For example, the significant association

on Mrg09 at position 78 was only detected by three TL-based

methods. The significant hits on Mrg06 and Mrg08 were only

detected by the methods that included CL haplotypes based on TL

markers, and the effects on Mrg11 were only detected by the

individual TL and SNP marker systems. Overall, the TL analyses

(Figure 1a,c,e) detected the largest numbers of unique regions of

association. Despite the low proportion of CL haplotype markers

(10.9%) in the combined TL-CL haplotype analysis, most (10/17)

of the significant GWAS effects were based on the CL haplotypes

within this analysis. These hits were mapped across eight

chromosomes, with six significant associations being found on

Mrg02. Five of these associations were at the 34 cM position

(Appendix S3).

Genome scan for loci related to local adaptation in oats

We used TL haplotype markers from the CORE diversity panel

(n = 635) and applied a PCA-based outlier detection method

called ‘pcadapt’. The first step in this analysis identified the first

nine principal components. K = 9 was selected because it

appeared as the highest point before the beginning of a plateau

at approximately K = 10 (Figure S4). Regression of the markers

on the first nine principal components identified 1610 TL

haplotype markers at the false discovery rate (q-value) threshold

(∞ ≤ 0.05). These loci were distributed across thirteen chromo-

some representations (Figure 2), with 98% on six chromosome

representations (Mrg02, Mrg28, Mrg15, Mrg11, Mrg17 and

Mrg18) (Table S2). These significant markers were distributed in

97 1 cM-bins, representing 6.7% of the oat consensus map.

Haplotag-derived markers for genomic selection in oats

We applied genomic prediction with an RR-BLUP mixed model for

heading date using TL haplotype loci and GBS-SNPs. The two

marker systems were compared in a cross-validation analysis of

the diversity set (n = 635). The first cross-validation comparison

used random calibration sets comprising 40% to 80% of the

diversity panel, with the remaining unselected lines used to make

up the test sets. The mean cross-validation accuracies of the GBS-

SNP and TL haplotype markers showed no statistically significant

differences, and both reached a plateau at a calibration set size of

60% (Figure 3). Prediction accuracy declined at 80% calibration

set in all phenotypic values except the BLUP ones.

Marker imputation on data sets ranging from 5% to 50%

missing values increased the number of markers by more than

tenfold (Figure 4). However, this increase in marker number

resulted in a <2% increase in genomic selection accuracy.

Furthermore, the differences in mean accuracies using 20%,

30% or 40% missing markers were not statistically significant.

Figure 1 Manhattan plots for TL haplotype (left)- and GBS-SNP (right)-based genome-wide association scans. The 21 chromosome representations

from the oat consensus map are shown on the horizontal axis, and �log10(P) values of association tests at each marker are shown on the vertical axis. The

horizontal orange lines show the Bonferroni threshold (P = 0.05) for each respective marker system. The upper plots show the GWAS result using

each of the two marker systems alone (a, b), followed by GWAS using only the CL haplotypes (c, d), and the lower plots show GWAS results using the union

of CL haplotype and original markers (e, f), excluding the markers that are components of the respective CL haplotypes.
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An independent validation was performed using Home-test

2010 lines as test set and the diversity set of lines (n = 635) as

calibration set. Independent predictions were computed using

heading dates from 16 environments as calibration set pheno-

types. The prediction accuracies were calculated as the correlation

between the predicted heading date values with the observed

phenotype from Home-test 2010 at Prince Edward Island, Canada

(Figure S5), which ranged from 0.42 to 0.67. The calibration set

phenotype from Ithaca 2010 had the highest independent

validation accuracy (r = 0.67). The genomic selection model

using GBS-SNPs gave slightly higher accuracy than the model

using TL haplotype markers.

Discussion

Haplotag-enabled high-throughput genotyping and an
updated consensus map in oats

We used the Haplotag software to analyse GBS data from 4657

cultivated oat lines and generated more than 400000 TL

haplotype and GBS-SNP markers. This greatly increased the

number of markers available for genomics-assisted breeding and

population genomics studies in cultivated oat. Genomic tools in

the form of fixed arrays or common sets of GBS markers have

been deployed by many crop breeding communities, including

oat (Huang et al., 2014; Tinker et al., 2009, 2014), wheat (Jordan

et al., 2015; Wang et al., 2014), maize (Glaubitz et al., 2014)

and sorghum (Morris et al., 2013). These publicly available

genotype data have been used by research groups from around

the world (Boyles et al., 2016; Zhang et al., 2015). Oat

researchers wishing to build on our results using a common

marker set can use the publicly available Haplotag software in

production mode, together with the nomenclature files that we

have provided.

The updated consensus map and the accompanying diversity

data enabled us to conduct comparative GWAS and to infer the

first haplotype map of oat. This map was also used recently to

develop a chromosome-specific analysis of ancestral genome

contributions in wild and cultivated oat (Yan et al., 2016a).

Several Avena genome assembly projects, especially the sequenc-

ing of the cultivated hexaploid oat genome, will benefit from this

map, as was the case in the barley and rice map-based reference

genome assemblies (IBGSC, 2012; IRGS, 2005).

Certain genomic regions on Mrg28, Mrg02, Mrg12, Mrg15,

Mrg24, Mrg21 and Mrg11 contained more than 250 markers per

bin (Figure S1). Recombination rate is influenced by the chromo-

some position of a marker, centromeres, chromatin structure,

nucleotide content and any major structural rearrangements.

Recombination hot spots in maize are associated with reduced

genetic load (Rodgers-Melnick et al., 2015). Conversely, recom-

bination cold regions could be due to the clustering of adaptive

loci (Yeaman, 2013). Many of these recombination-suppressed

regions in oat may coincide with translocations, or they may

represent important QTL hot spots for adaptive traits.

The first oat haplotype map

Our report of the first oat CL haplotype map provides insight into

the haplotype structure of cultivated oat lines from North

America. We observed differences in the number and size of

haplotype blocks between spring and southern lines. As haplo-

type structure is related to LD, these differences are consistent

with differences in LD decay observed by Esvelt Klos et al. (2016)

and may indicate footprints of adaptive QTL. These differences

could have resulted from natural or artificial selection during

breeding for different agro-climatic conditions (e.g., northern vs.

southern or spring vs. winter production). Such conditions can

influence patterns of genetic variation in elite oat lines (Esvelt Klos

et al., 2016; Fu et al., 2003; Grau Nersting et al., 2006; Montilla-

Basc�on et al., 2013). For example, in the full set analysis, Mrg02

had the largest number of haplotype blocks, one of which is the

fourth-longest haplotype block (88.7–97.4 cM), which is close to

loci affecting heading date (De Koeyer et al., 2004; Locatelli

et al., 2006) and rust resistance (Esvelt Klos et al., 2017; Wight

et al., 2004). On the other hand, the spring set haplotype analysis

identified the third-longest haplotype block spanning 11.5 cM

(42–53.5 cM) on Mrg02. Esvelt Klos et al. (2016) reported that

Mrg02 showed a slower LD decay rate in the spring population

compared to the southern/winter set prior to correcting for

population structure and kinship. The second longest haplotype

block in the spring set analysis is on Mrg20, spanning 122.8–
135.8 cM, which is one of genomic regions associated with

crown rust resistance in oat (Esvelt Klos et al., 2017). In the

southern set, Mrg21 harbours the biggest haplotype block

(20.5 cM), and this is close to the oat vernalization locus Vrn2

(Nava et al., 2012). The regions homeologous to Vrn2 on Mrg20

Figure 2 PCA-based genome-wide scan for selection. The Manhattan plot shows �log10(P) on the vertical axis. Significant P-values below a threshold

false discovery rate of (∞ = 0.05) are indicated by stars.
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and Mrg12 (Nava et al., 2012) also contain several haplotype

blocks, including the third-longest block on Mrg12 (48.7–
51.7 cM). These genomic regions on Mrg20 and 21 were

detected by a recent GWAS that investigated frost tolerance in

European oat lines (Tumino et al., 2016).

Breeding or artificial selection can also change the frequency of

selected haplotypes (Yonemaru et al., 2012). Haplotype diversity

is the function of the number of alleles/haplotypes, and their

frequency in a population. Genome-wide CL haplotype diversity

analysis identified chromosomes that show differences between

the spring and southern sets (Figure S3). The southern set showed

higher mean CL haplotype diversity compared to the spring set,

except on Mrg04, 05, 08, 18, 23 and 24—regions that harbour

vernalization and heading date QTL (Holland et al., 2002; Tumino

et al., 2016). Our hypothesis is that these regions contain specific

daylength- and vernalization-related alleles that are highly

selected within the southern germplasm. There are other exam-

ples of breeding-induced reductions in haplotype diversity, such

as the low haplotype diversity surrounding the rice heading date

gene (Yonemaru et al., 2012). Similarly, selective sweeps and

differential selection in wheat and sorghum breeding pro-

grammes have resulted in regions of reduced haplotype diversity

associated with the adaptation of these crops to different growth

habits or temperate agro-climatic conditions (Cavanagh et al.,

2013; Mace et al., 2013; Morris et al., 2013; Thurber et al.,

2013).

Figure 3 Cross-validation accuracy of the CORE diversity panel (n = 635) using TL haplotype (a) and GBS-SNP markers (b). Heading date data from

16 location-by-year combinations and the line BLUP values are represented by different colours and line patterns. The x-axis shows the calibration

set sizes, and the y-axis represents mean correlations of predicted phenotypic values to observed heading date.
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Haplotype-based genome-wide association mapping

In principle, haplotype-based GWAS has higher statistical power

than SNP-based GWAS because of reduced dimensions or

multiple testing, but, in practice, other factors can affect this

result. We found that Haplotag-derived markers effectively

substituted for array-based markers in identifying the major

associations on Mrg02 and Mrg12, and that Haplotag-derived

markers identified a large number of additional associations, even

after a stringent Bonferroni correction. These included new

genomic regions such as that on Mrg09, which was detected only

using the three TL methods.

When we compared six different approaches to the analysis of

GBS data (GBS-SNPs, TL haplotype, CL haplotype and their

combinations), we found a high degree of similarity, with some

differences in the identified genomic regions (Figure 1). Surpris-

ingly, the method based only on SNP-derived CL haplotypes did

not detect any significant associations, while the TL-derived CL

haplotype analysis identified a majority of the common associa-

tions. This could be because the TL-derived CL haplotypes were

based on a compression of the TL allele states to a major and

minor allele, while the SNP-derived haplotypes were not. Thus,

the SNP-derived CL haplotypes were more numerous with a

greater number of minor alleles, and this may have affected the

threshold for error control without an accompanying increase in

explanatory power. Overall, TL haplotype-based analyses identi-

fied more significant associations than GBS-SNP-based methods.

Nevertheless, each system identified unique significant

associations. This might be because each QTL region has its

own recombination pattern and evolutionary history. Hence, the

testing of combinations of multiple marker systems is the most

pragmatic approach (Hamblin and Jannink, 2011). Similar empir-

ical GWAS comparisons between haplotype and SNP markers in

other crops and animal studies showed mixed results, but the

majority of studies reported that haplotype-based GWAS was

superior (Hamblin and Jannink, 2011; Lorenz et al., 2010; Visioni

et al., 2013).

Adaptation genomics in oats

We identified 1610 markers that are correlated with population

structure using a PCA-based genome-wide scan (pcadapt). Unlike

FST-based methods, pcadapt does not require the prior grouping

of individuals into subgroups (Duforet-Frebourg et al., 2016). This

makes it suitable for oat, which has a weak population structure,

attributed to an intensive germplasm exchange amongst breed-

ing programmes (Esvelt Klos et al., 2016). The two highest–log(P)
values (Figure 2) were on Mrg18 and Mrg28. FST-based analysis

by Esvelt Klos et al. (2016) failed to identify these major

translocation regions, and this may further demonstrate the

improved sensitivity of the pcadapt method. These two chromo-

some representations were assigned by Oliver et al. (2013) to

physical chromosomes suspected to harbour a major reciprocal

translocation (7c-17A). The suspected intergenomic translocation

region on Mrg28 (7c-17A) is associated with winter survival

(Wooten et al., 2007) and spring growth habit (Jellen and Beard,

2000). The same region has also been associated with traits such

Figure 4 Prediction accuracy of the heading date BLUP using six levels of maximum percentage missing values (PMV) before imputation. Predictions

using TL haplotype markers are shown on the left (a, c), while predictions with SNP markers are shown on the right (b, d). The bar graphs at the

bottom (c, d) show the total number of markers used for the genomic selection model. The top boxplots (a, b) show the results of 500 iteration

cross-validation accuracies. The values on top of the median line show mean cross-validation accuracies.
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as stem rust resistance, plant height and seed oil and beta-glucan

contents (Kianian et al., 2000; O’Donoughue et al., 1996;

Siripoonwiwat et al., 1996). The largest number of significant

outlier markers was on Mrg02, spanning a region from 27 to

108 cM (Figure 2). This genomic region harbours the two major

HD1 homologous regions, heading date GWAS hits (Esvelt Klos

et al., 2016) and a cluster of rust resistance genes (Wight et al.,

2004).

The two major adaptation-related genomic regions on Mrg02

and Mrg28 could be important signatures of breeding history

(Table 3). The co-occurrence of adaptive QTL, reduced recombi-

nation regions, many haplotype blocks and lower haplotype

diversity suggests that Mrg28 has been influenced by a selective

sweep (Messer and Neher, 2012). Similar results were found in

other cereals such as rice and sorghum, where breeding and

selection resulted in decreased haplotype or nucleotide diversity

around major flowering time-/maturity-related genes (Mace

et al., 2013; Yonemaru et al., 2012). The wheat haplotype map

(Jordan et al., 2015) revealed that wheat breeding favoured

adaptive loci and resulted in a selective sweep. The two most

structurally rearranged wheat chromosomes (4A and 7B) har-

boured a large number of loci with extreme FST values. These

findings are also in agreement with the role of genomic

rearrangements in maintaining clusters of local adaptation-

related loci (Yeaman, 2013). In contrast, the region on Mrg02,

which also contains adaptation-related QTL, has a large number

of haplotypes in the spring germplasm, with haplotype diversity

that is equal to or above the genome-wide average (Table 3). This

could be explained by the large number of spring lines, and by the

creation of new haplotype combinations as a result of breeding

for adaptation, but it suggests the absence of a selective sweep.

Genome-wide changes in haplotype diversity during modern rice

breeding in Japan include the creation of new haplotypes and

increased haplotype diversity (Yonemaru et al., 2012). The

diversity on Mrg02 in oat could have been driven by the

introgression of alleles at a cluster of loci affecting crown rust

resistance that was introgressed from Avena sterilis (Wight et al.,

2004). Introgressions from wild relatives might have formed local

islands that show high diversity and low recombination. Several

A. sativa 9 A. sterilis hybrids show meiotic irregularities, distorted

segregations and clustering of markers at the same genetic

position (McMullen et al., 1982; Wight et al., 2004). Moreover,

the multiple introgressions of genes conferring resistance to

different rust races might have increased haplotype diversity. In

wheat, the introgression of resistance genes from wild relatives

such as Aegilops tauschii into the D genome resulted in a large

number of outlier loci, haplotypes and high diversity (Jordan

et al., 2015).

Haplotag-derived markers for genomic selection

The previous lack of a high-density marker system limited the

application of genomic selection in oat. This was evident from the

work of Asoro et al. (2011), where the accuracy of genomic

selection increased continually up to the limit imposed by the

number of available DArT markers. In contrast, cross-validation

using Haplotag-derived markers reached a plateau of accuracy

(Figures 3 and 4), likely because of them having both a higher

density and a more even distribution. Similar advantages were

reported in wheat (Poland et al., 2012).

The maximum mean cross-validation accuracy obtained was

0.74, using either SNP or TL marker systems. This accuracy is

similar to values measured for prediction of heading date in

wheat and rice (Isidro et al., 2015; Poland et al., 2012). Cross-

validation with calibration set to test set proportions of 40% to

60% using the diversity panel (n = 635) gave comparable cross-

validation accuracies. Similar results were obtained in maize cross-

validation, especially in traits with high genetic variance (Zhao

et al., 2012).

Using imputation, we increased the total number of markers

from 4423 to 67284. However, this large increase in marker

number did not significantly improve the mean cross-validation

accuracy (Figure 4). Similar results were obtained in wheat and

other crops using GBS markers (Poland et al., 2012). However,

future research needs to compare different imputation methods,

including map-based imputation (Rutkoski et al., 2013).

The phenotype and genotype data of the CORE diversity set are

publically available to the oat breeding community, and breeders

can use this resource to predict the performance of lines from

their breeding programmes. Figure S5 shows an example of the

predictive accuracy of CORE heading date data in the 2010

Ottawa home-test population. The accuracies obtained for these

independent validations were lower than cross-validation accu-

racies, which are in agreement with previous independent

validation comparisons (Asoro et al., 2011; Battenfield et al.,

2016) and reflect additional variance in environment and/or

genotype-by-environment interaction between years, as well as

potential differences in population parameters. Differential

response to environment is a confounding factor in all types of

selection; thus, this reduced accuracy of genomic prediction

probably reflects a more realistic metric for the selection of stable

and predictable performance in practical breeding schemes. The

Haplotag build reported here is currently being used for produc-

tion mode genotype calls of our local breeding germplasm to

perform genomic selection. Breeding or research programmes

interested in applying a similar approach can download the

necessary data from T3/oat.

Table 3 Summary of two adaptation-related genomic regions

Mrg02 Mrg28 Genome-wide average

Genetic positions of the significant adaptation-related loci (cM) 27–108 18–44 NA

Significant adaptation-related loci per 1 cM bin 4.4 13.8 0.4

Consensus map marker density per 1 cM bin (TL haplotype/SNP) 18/25 43/55 11/15

Number of haplotype blocks per 1 cM bin (TL haplotype) 0.97 1.92 0.26

Mean haplotype block size (cM) (all/spring/southern) 0.52/0.36/0.56 0.17/0.29/0.23 0.32/0.25/0.43

Mean haplotype diversity (all/spring/southern) 0.54/0.50/0.58 0.34/0.38/0.45 0.54/0.46/0.51

Significant TL haplotype-based heading date GWAS hits 23 16 132
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Conclusion

The availability of Haplotag-derived markers in thousands of

cultivated oat lines opens the way for genetic analysis, genomic

selection, whole-genome sequencing and other applications of

genomics tools in oat. The new set of haplotype loci and alleles

can be considered as a high density and highly informative

genotyping platform for cultivated oat. We have applied

Haplotag-derived SNP and TL markers in previously studied

populations, and validated the superiority of these marker

systems. These high-density markers have enriched the consensus

map and improved GWAS. In addition, our comparative study

showed that Haplotag-derived markers can effectively substitute

for currently available array-based SNPs in oat. This high-density

marker system was used to construct the first oat haplotype map

and to identify genomic regions that are important for local

adaptation. This marker system will be a key tool for the design

and implementation of genomics-based breeding in oats: by

generating information about the genetic architecture of traits

and/or as a cost-effective genome-wide marker for genomic

selection.

Experimental procedures

Genetic material and phenotype data

A total of 4657 cultivated oat lines from predominantly North

American breeding materials were selected for GBS analysis

(Appendix S1). Three major sources within this material included

the following: (i) ten biparental RIL populations (n = 950), of

which seven were used in previous consensus map construction

(Chaffin et al., 2016), (ii) the 635-line CORE diversity panel

consisting of 497 spring and 123 southern lines, (iii) breeding lines

from the Ottawa Research and Development Centre (ORDC) and

collaborating groups (n = 1510). A set of 197 ‘home-test’ lines

from the 2010 Ottawa oat breeding programme were also

included to validate prediction accuracy of genomic selection. An

additional set of 1248 lines from a public oat genotyping initiative

(POGI) were included; however, data from these lines did not

contribute to the reported genetic analyses. The POGI lines were

included to expand the sampling of TL haplotypes, such that the

current map and marker nomenclature would be directly appli-

cable to future studies using this material.

DNA extraction and library preparation for the double digest

(PstI-MspI) GBS system were described in previous work (Huang

et al., 2014) with minor differences in DNA isolation among the

POGI lines.

We used heading date as a model trait for analysis because of

its importance in local adaptation and our ability to compare

results to those published by Esvelt Klos et al. (2016). Heading

data from the CORE diversity set from 16 location and year

combinations were downloaded from the T3/Oat website (Saied

et al., 2016). Data from each location and the line best linear

unbiased predictor (BLUP) for heading date were used for GWAS

and genomic selection comparisons. BLUP was calculated using

the package lme4 implemented in R (Team R.C., 2015).

Tag-level haplotype and SNP analysis

The first two steps of the UNEAK pipeline were used to

deconvolute and process raw reads and to produce tag-count

and merged tag-count files (Lu et al., 2013). These files were then

used by the Haplotag pipeline (Tinker et al., 2016) to call

genotypes on 4657 cultivated oat lines. The following changes

were made to default Haplotag parameters to accommodate the

large number of taxa and/or increase stringency: as shown in the

Haplotag input file (Appendix S4), the maximum number of tags

in a cluster (MaxTagsToTest) was increased from the default nine

to twelve. The minimum tag count (read from the merged tag-

count file) was set to 50 rather than the default value of ten. The

minimum number of taxa present when selecting a model

(ThreshGeno) was reduced to 0.2 from the default 0.4. The

threshold for maximum heterozygote frequency (ThreshHet) was

reduced to 0.08 from the default 0.1. The members of clusters

with a minimum 1%minor allele frequency (MAF) were subjected

to diploid segregation tests across the population. The above

thresholds were used to filter a large primary data matrix, while

other, more stringent thresholds were used to filter subsets of

these data for further analysis, as described below.

Marker placement on oat consensus map

Segregating Haplotag-derived markers from ten populations (950

individuals) were used for marker placement (Appendix S2). TL

haplotype and GBS-SNP markers with a maximum of 50%

missing values, >15% MAF and <10% heterozygosity were

selected from the full data matrix. The genetic positions and the

genotypes of the markers used for the oat consensus mapping

(Chaffin et al., 2016) were concatenated with the new Haplotag-

derived data. The placement of new markers relative to the

framework markers on the fixed consensus map was performed

as described by Chaffin et al. (2016) and Huang et al. (2014).

Briefly, this involved calculating the pairwise recombination rate

of all the markers, placing the Haplotag-derived markers between

the two lowest recombining framework markers and interpolat-

ing the distances on the consensus map such that the original

framework positions were preserved.

Chromosome-level haplotype analysis

CL haplotype blocks were identified in each of the full set of

CORE lines (n = 635), the spring lines (n = 497) and the southern

set (n = 123) using the method described by Gabriel et al. (2002)

implemented in the software ‘Haploview’ (Barrett et al., 2005).

This is an LD-based method that computes the 95% confidence

interval of pairwise marker |D’|. Marker pairs with upper bounds

over 0.98 and lower bounds over 0.7 are in strong LD. However,

pairs are termed ‘strong evidence for historical recombination’, if

the |D’| upper bound is below 0.9. Marker pairs that do not meet

either criteria are noninformative. A haplotype block is identified

if 95% of the markers within a region are in strong LD. In order to

meet the requirement of the software, TL haplotype markers

were converted to their bi-allelic format, which converts all minor

alleles to a single alternate allele to the major allele. Block sizes in

genetic distances (cM) were calculated using the genetic positions

of the component markers of the haplotype blocks.

Haplotype diversity was calculated based on haplotype fre-

quencies, Ĥ ¼ n
n�1ð Þ

� �
1� Pk

i¼1

p2i

� �
where Ĥ = haplotype diversity,

n = sample size, k = number of haplotypes in the haplotype

block and pi= frequency of haplotypes with frequency ≥0.02 (Nei,

1987).

Genome-wide association mapping

Genome-wide genotype–phenotype associations were identified

using two marker systems (SNP and TL haplotype) on the same

set of CORE diversity lines (n = 635) reported by Esvelt Klos et al.
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(2016). The TL haplotype data were converted to HapMap

format using the four nucleotides plus the presence/absence

codes (+/�) to recode the first six haplotypes per locus. In rare

cases, where there were more than six TL haplotype at one locus,

the rarest haplotypes were combined into a sixth allele code. For

both TL haplotype and GBS-SNP markers, the confounding

effects of kinship (K) and population structure (PCA) were

accounted for in the mixed linear model (MLM) implemented in

TASSEL version 5 (Endelman and Jannink, 2012). Markers with

MAF≥0.2 were used to calculate the centred identity by state

(IBS) kinship matrix, while markers with >5% MAF and <20%
missing markers were used for principal component analysis

(PCA). The Bonferroni threshold with the desired ∞ = 0.05 was

calculated for each marker system using the formula –log10P
Bonferroni threshold = �log10 (0.05/n), where n = the number

of loci. Significant GWAS hits with deflated P values resulting

from rare (frequency<1%) haplotypes, or heterozygotes were

discarded.

The CL haplotype blocks were converted to marker scores that

represented the probability of the minor haplotype and imported

into TASSEL. The CL haplotype blocks of the full set and their

respective individual markers (TL haplotype and GBS-SNP) were

used to populate a CL haplotype incidence matrix with the

dimension i 9 ((b 9 k)�m), where i is number of individuals, b is

number of haplotype blocks, k is the number of alleles and m is

the number of major alleles (Lorenz et al., 2010). Each haplotype

block has (k�1) columns, and the haplotype incidence shows the

probability that individual i carries a haplotype k(0,1). Individuals

carrying the major haplotype 1 have 0 values in all the rows of

that specific haplotype block. The R package ‘impute’ was used to

impute the missing values of the incidence matrix. The incidence

matrix was imported into TASSEL as a numeric marker. PCA and

kinship matrix data generated using the respective TL haplotypes

and GBS-SNP markers were used for the parallel GWAS compar-

ison of the TL haplotypes, GBS-SNPs, CL haplotypes and a

combined data set. The combined data set excluded markers that

were components of the CL haplotype blocks.

Genome-wide scan for loci related to local adaptation

A PCA-based genome scan for selection that is implemented in

the R package pcadapt was used to identify TL haplotype markers

that are correlated with population structure. TL haplotype states

from the CORE diversity set (n = 635) with ≥5% MAF and ≤20%
missing genotypes were imputed using the linkage disequilib-

rium-based k-nearest neighbour genotype imputation method,

LD KNNi (Money et al., 2015), implemented in TASSEL. Imputed

marker data were then converted to the appropriate input format

for pcadapt. The first nine principal components of the CORE

diversity panel were selected based on the pcadapt run with 20

principal components. Multiple regression of each marker for the

selected PCA components produced the vector of z-scores. The

z-scores were then used to calculate the Mahalanobis distance

test statistic and generate P-values (Duforet-Frebourg and Slatkin,

2016; Luu et al., 2016a,b).The significant (1 � 0.05) outlier loci

were identified after the P-values were adjusted for false

discovery rate or transformed to q-values using the R package

(q-value) (Dabney et al., 2010).

Genomic selection

The ridge regression best linear unbiased prediction (RR-BLUP)

algorithm implemented in the R package (rrBLUP) was used for

genomic prediction (Endelman, 2011). Cross-validation of the

CORE diversity panel (n = 635) was conducted by taking random

samples of the population as a calibration set with the remainder

used as a test set. The cross-validation to determine the optimum

calibration size was performed using 13947 TL haplotype or

20373 GBS-SNP markers with 20% maximum missing markers.

The missing marker scores were imputed by the EM algorithm

implemented in rrBLUP, which is the recommended method for

GBS markers (Endelman, 2011; Poland et al., 2012). Prediction

accuracy was calculated as the correlation between predicted and

observed heading date values or BLUPs. As an indirect evaluation

of the effect of marker density on prediction accuracy, five levels

of missing values (5% to 50%) of the diversity panel were

imputed, and the resulting markers were used for cross-validation

(80% calibration set and 20% test set) tests. Independent

populations were subjected to genomic selection using the CORE

diversity set (n = 635) as a calibration set and the 2010 home-test

(n = 197) as the test set based on 13954 TL haplotype and 20380

GBS-SNP markers.
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