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Use of the concordance index for
predictors of censored survival data

Adam R Brentnall and Jack Cuzick

Abstract

The concordance index is often used to measure how well a biomarker predicts the time to an event. Estimators of

the concordance index for predictors of right-censored data are reviewed, including those based on censored pairs,

inverse probability weighting and a proportional-hazards model. Predictive and prognostic biomarkers often lose

strength with time, and in this case the aforementioned statistics depend on the length of follow up. A semi-

parametric estimator of the concordance index is developed that accommodates converging hazards through a

single parameter in a Pareto model. Concordance index estimators are assessed through simulations, which

demonstrate substantial bias of classical censored-pairs and proportional-hazards model estimators. Prognostic

biomarkers in a cohort of women diagnosed with breast cancer are evaluated using new and classical estimators

of the concordance index.
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1 Introduction

After determining if predictors of censored survival data are significant, a common objective is to measure their
predictive strength on a scale that is not sample dependent. A plethora of statistics have been suggested. Some have
attempted to transfer the concept of R2 from linear regression to censored data.1,2 In this article we consider use of
the concordance index for censored data.

The first part of the paper reviews the concordance index for predictors of censored survival data. The second
part develops concordance index estimators that are valid when the strength of the predictor becomes diminished
with follow up. Our proposals are compared with classical methods using computer simulations and a breast
cancer prognostic biomarker example.

2 Concordance index

The concordance index was initially developed to estimate the degree to which a randomly chosen observation
from one distribution was larger than one chosen independently from another distribution.3 When T1 and T2

are continuous independent random variables with cumulative distribution functions F1 and F2 the concordance
index is

C ¼ PðT1 4T2Þ

¼

Z
f1� F1ðuÞgdF2ðuÞ
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If T1 and T2 place positive mass at the same point then we count half for ties and define C as
P(T1>T2)þP(T1¼T2)/2 so that

C ¼

Z
f1� F1ðuÞ þ

1

2
PðT1 ¼ uÞgdF2ðuÞ ð1Þ

and C¼ 0.5 when the two distributions are the same, even with ties. The concordance index can be estimated from
the normalized Wilcoxon ranksum (Mann–Whitney) statistic, by

Ĉ ¼ ðnmÞ�1
Xn
i¼1

Xm
j¼1

IðT1i 4T2jÞ þ
1

2
IðT1i ¼ T2jÞ

where T1i (i¼ 1, . . ., n) and T2j (j¼ 1, . . ., m) are independent samples from F1 and F2 respectively, and I(.) denotes
the indicator function. If Ri denotes the rank of the T1i (i¼ 1, . . ., n) in the combined sample (T11, . . ., T1n, T21, . . .,
T2m) with the ranks of tied observations averaged, then the Wilcoxon ranksum test statistic is given by
W ¼

Pn
i¼1 Ri, which can be related to Ĉ through W ¼ nmĈþ nðnþ 1Þ=2. When the samples (T1 and T2) come

from cases and controls respectively, the concordance index is the area under the receiver operating characteristic
curve for (F1, F2).

4 When the samples are from two arms of a randomised control trial, C is a measure of the
treatment effect. Some variations of C have also been studied. These include the odds of concordance
C(1�C)�1,5–7 and a modification to account for matched case-control designs,8 but they are not considered
further in this article.

For a one-parameter family {TZ} of random variables indexed by real number Z from distribution {FZ}, a
concordance index that quantifies the degree of association between TZ and Z is defined as

CZ ¼ 2

Z
z14z2

Z n
PðTz1 4Tz2 Þ þ

1

2
PðTz1 ¼ Tz2 Þ

o
dFZðz1ÞdFZðz2Þ þ

1

2
PðZ1 ¼ Z2Þ ð2Þ

where the last term essentially derives from allowing ties in Z to be broken at random.9 The definition has the
advantage of being continuous in the distribution of FZ and is equivalent to Kendall’s � rank correlation coefficient
because CZ ¼ 0:5þ �=2.

CZ and C are not the same when Z is a two-point distribution, but they are linearly related. Consider where
Z¼ 1, 2 (e.g. respectively cases and controls, or treated and untreated) and P(Z¼ 1)¼P(Z¼ 2)¼ 0.5. Then
CZ ¼ 2� PðT2 4T1Þ � 0:5� 0:5þ 1=2� 0:5 ¼ C=2þ 1=4. Thus for the balanced two-sample situation the
range of CZ is only (1/4, 3/4) and not (0, 1) as for C. This important aspect is due to ties in Z, and
interpretation of CZ is affected whenever ties in Z are possible. For example, the upper bound of CZ may
decrease if a continuous Z is rounded. Although obvious from (2), this might seem surprising because in
practice it is often implicitly assumed that the range of the concordance index CZ is always (0, 1). Some
bounds on the range of CZ are as follows. Suppose there are n discrete values of Z. Then the smallest possible
P(Z1¼Z2) occurs when they are distributed uniformly so that PðZ1 ¼ Z2Þ ¼ 1=n; the smallest minimum value of
CZ with n points is (2n)�1 and the maximum is 1� ð2nÞ�1. Therefore, with discrete data one might normalize CZ so
that it can theoretically attain 0 and 1 via fCZ � ð2nÞ

�1
gð1� 1=nÞ�1. For large n the range of CZ is less of an issue,

and for continuous distributions of Z the range of CZ is (0, 1), as can be seen by letting TZ¼ {�Z} and TZ¼ {Z}
respectively be a set of degenerate one-point distributions for continuous Z.

In the rest of the paper we focus on estimators of C and CZ for right-censored data.

3 Estimator review

3.1 Censored-pairs estimators

The concordance indices (1) and (2) have been extended to censored data by ignoring pairs when the smaller
survival time is censored and using a normalising constant to account for these uninformative pairs.10,11 While
such statistics can be useful for comparing different models on the same data set, Efron12 noted that Gehan’s
approach10 was dependent on the censoring distribution, and so was not not a universal measure of P(T1>T2).
Others have noted that Harrell’s approach11 likewise depends on the censoring distribution.13 If the censoring
random variable HZ is conditionally independent of TZ given Z, so that the observed survival function is
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(1�FTZ
)(1�FHZ

), then from equation (2), the censored-pairs concordance index is given by

CZH ¼ 2

Z
z14z2

Z
PðTz1 4Tz2Þ þ

1

2
PðTz1 ¼ Tz2Þ

� ��
� PðHz1 4Tz2ÞPðHz2 4Tz2ÞdFZðz1ÞdFZðz2Þ þ

1

2
PðZ1 ¼ Z2Þ

�
� 2

Z
z14z2

Z
PðHz1 4Tz2 ÞPðHz2 4Tz2 ÞdFZðz1ÞdFZðz2Þ þ

1

2
PðZ1 ¼ Z2Þ

� ��1 ð3Þ

The PðHz1 4Tz2ÞPðHz2 4Tz2Þ terms in the numerator and denominator arise because contributions to the statistic
only occur for pairs of observations when the smaller survival time is not censored. The following methods were
developed to be independent of the censoring distribution.

3.2 Efron’s estimator of C

For the two-sample situation, Efron12 suggested a solution using the Kaplan–Meier estimates for the survival
distribution given by S1(t)¼ 1�F1(t) and S2(t)¼ 1�F2(t), and computing P(T1>T2) based on these estimates
through

ĈE ¼ �

Z
Ŝ1ðuÞdŜ2ðuÞ

where Ŝ1(u) and Ŝ2(u) are the Kaplan–Meier estimates of the survival functions S1 and S2 respectively.
14 That is

ĈE ¼ ðnmÞ
�1
Xn
i¼1

Xm
j¼1

Q̂ðt1i, t2j, y1i, y2jÞ ð4Þ

where the observed data are in pairs of event times and indicators (t1i, y1i) in group 1 and (t2j, y2j) in group 2, where
y1i¼ 0 if t1i is censored, one otherwise, and similarly for y2j, and Qðt1i, t2j, y1i, y2jÞ ¼ PðT1 4T2 j t1i, t2j, y1i, y2jÞ is
estimated by substituting Kaplan–Meier estimates of survival functions into the relevant terms in Table 1.
Examples to show the difference between EðĈEÞ and the censored-pairs approach have been reported.15

ĈE overcomes limitations of the censored-pairs approach for the two-group problem but requires that the
estimated survival functions decrease to zero, so that one treats the last event time in each group as not
censored in the Kaplan–Meier estimator. When there is censoring due to incomplete follow up, with everyone
censored by tmax and where S1(tmax)> 0 and S2(tmax)> 0, then Efron’s estimator may be very unstable. An
important example of this situation is when individuals are enrolled sequentially in a clinical trial and events
are recorded until (say) 10-years after the first entry (tmax¼ 10). In such situations taking the last time in each
group to be an event will substantially bias the concordance index in the direction of the group with the longest
surviving member beyond that time. For example, if 90% are at risk in both groups after the last event has

Table 1. Values of Efron’s Q(ti, tj, yi, yj) for the concordance statistic. Note that for the two-sample

estimator of C the 1 and 2 subscripts have been dropped, so that for example ti represents t1i and tj is

t2j, similarly Si is S1 etc. This notation is used so that the table generalises to estimators of CZ.

(yi, yj) ti� tj ti< tj

(1, 1) 1 0

(0, 1) 1
Siðtj Þ

SiðtiÞ

(1, 0) 1�
Sj ðtiÞ

Sj ðtj Þ
0

(0, 0) 1�
Sj ðtiÞ

Sj ðtj Þ
þ

R1
ti

SiðuÞdFj ðuÞ

SiðtiÞSj ðtiÞ

R1
tj

SiðuÞdFj ðuÞ

SiðtiÞSj ðtj Þ
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occurred, then 81% of the terms in the double summation (4) will favour the group with the longest surviving
(censored) member, and ĈE is guaranteed to be greater than 0.81�0.19¼ 0.62.

3.3 Uno’s estimator of CZ

Uno and colleagues13 developed a censored-pairs estimator of the concordance index (2) based on inverse
probability weighting. Their solution uses a Kaplan–Meier estimate of the censoring distribution SH, treating it
as independent of Z and TZ, and re-weights the censored-pairs contribution when ti> tj to be ŜHðtj Þ

�2, rather than
one. The approach is justified by inspection of (3); the weighting cancels out the PðHz1 4Tz2 ÞPðHz2 4Tz2 Þ terms,
so that it is (asymptotically) independent of the censoring distribution and converges to CZ.

However, the resulting estimator is only completely independent of the censoring distribution if, as above for
the Efron estimator, the maximal follow up for all patients is to a time � such that the marginal survival
distribution S(�)¼P(T>�)¼ 0. If not, then the censored-pairs approach will converge to a quantity greater
than CZ. Informally, this is because the individuals with high Z have the event first whether or not hazards
also converge with time. More formally, this may be seen by re-expressing CZ as

CZ ¼

Z 1
0

Ct
SðtÞR1

0 SðuÞdu
dt ð5Þ

where SðtÞ ¼
R
PðT4 t j zÞdFZðzÞ and

Ct ¼

Z Z n
Pðz4 z�Þ þ

1

2
Pðz ¼ z�Þ

o
dFZðz j T4 tÞdFZðz

� j T ¼ tÞ ð6Þ

where dFZðz
� j T ¼ tÞ ¼ �ðt j z�Þ=

R
�ðt j uÞdFZðu j T ¼ tÞ and dFZðz j T4 tÞ ¼ PðT4 t j zÞdFZðzÞ=SðtÞ from Bayes’

rule. As t increases, the distribution of Z in those still at risk becomes weighted towards those with longer survival,
and Ct decreases. When follow up is until t¼ �, the censored-pairs concordance index converges toZ �

0

Ct
SðtÞR �

0 SðuÞdu
dt

and because Ct is decreasing this limit is greater than CZ (anti-conservatively biased) unless S(�)¼ 0. One can also
see that the limit of Uno’s concordance index for � close to the longest follow up will be less than Harrell’s version,
since it gives relatively more weight to those Ct that are closer to t¼ �.

3.4 Proportional-hazards model

A common approach is to estimate linear predictors of outcomes with censored event times using a proportional-
hazards model. Here an estimator of the concordance index that does not depend on the censoring distribution or
follow up was achieved by Gönen and Heller.16 If TZ has hazard of form �ðT j ZÞ ¼ �0ðTÞ gðZÞ, then, because

PðTZ1
4TZ2

Þ ¼
gðZ2Þ

gðZ1Þ þ gðZ2Þ
ð7Þ

we have from (2) that

CZ ¼ 2

Z
z14z2

Z
gðz2Þ

gðz1Þ þ gðz2Þ
dFZðz1ÞdFZðz2Þ þ

1

2
PðZ1 ¼ Z2Þ ð8Þ

where Z1 and Z2 are independent samples from distribution function FZ. When z ¼ �1x1 þ � � � þ �kxk for some
linear combination of covariates x¼ (x1, . . ., xk) and coefficients b ¼ ð�1, . . . ,�kÞ, gð:Þ ¼ expð:Þ and both TZ and Z
are continuous, the concordance index depends on the distribution of z and equals

CZ ¼ 2

Z
z14z2

Z
1

1þ expðz1 � z2Þ
dFZðz1ÞdFZðz2Þ
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¼ 2E
�
IðZ1 4Z2Þ

�
1þ expðZ1 � Z2Þ

��1	
ð9Þ

which is linked to TZ only through the distribution of the coefficients b and covariates x. Equation (9) may be
estimated by replacing FZ with its empirical distribution so that

ĈZ ¼ 2
�
NðN� 1Þ

��1XN�1
i¼1

XN
j¼i

Iðẑi 4 ẑj Þ

1þ expðẑi � ẑj Þ
ð10Þ

where ẑi uses the proportional-hazards estimates �̂1, . . . , �̂k, and similarly for the more general (8). Its variance
is estimable from re-sampling methods or from asymptotic formulae16 which depend on the covariance matrix of
b that is routinely available from the partial-likelihood methods of the proportional-hazards model.

4 New estimators

4.1 Motivation

The methods reviewed above are not universal when the predictor loses strength with time, and may depend on the
length of follow up. In particular, formulas (8) and (9) depend implicitly on the validity of the proportional-hazard
assumption. Further developments would be useful because hazards are often observed to converge, so that the
effect of a predictive factor diminishes as follow-up time increases. This issue is pervasive in applications5. For
example, in breast cancer epidemiology, many prognostic factors are based on characteristics of the tumour that
lose relevance once an individual has survived a period of time17. We next propose modifications to the Efron and
the proportional-hazard estimators, before introducing a more parsimonious approach.

4.2 Modified two-sample estimator

Recall that when there is censoring due to incomplete follow up, Efron’s estimator may be very unstable. The
following modification of Table 1 solves this problem by accounting for when the last time in each group is
censored.

Denote Ai ¼ ðt1i 5T1 � tmaxÞ, Bj ¼ ðt2j 5T2 � tmaxÞ, a ¼ ðT1 4 tmaxÞ and b ¼ ðT2 4 tmaxÞ. Let
w1i ¼ Pða j T1 4 t1iÞ ¼ S1ðtmaxÞ=S1ðt1iÞ and w2j ¼ S2ðtmaxÞ=S2ðt2jÞ, being respectively defined to be zero when
S1ðtmaxÞ ¼ 0 or S2ðtmaxÞ ¼ 0. Now when y1i ¼ y2j ¼ 0, P(T1>T2) may be partitioned as

PðT1 4T2 j Ai,Bj ÞPðAi,Bj Þ þ PðT1 4T2 j a,Bj ÞPða,Bj Þ þ PðT1 4T2 j a, bÞPða, bÞ

since PðT1 4T2 j Ai, bÞ ¼ 0. Then Qðt1i, t2j, y1i ¼ 0, y2j ¼ 0Þ from Table 1 is redefined to be t1i� t2j

1�
S2ðt1iÞ

S2ðt2jÞ
þ

R tmax

t1i
S1ðuÞdF2ðuÞ

S1ðt1iÞS2ðt2jÞ

( )
ð1� w1iÞð1� w2jÞ þ w1ið1� w2jÞ þ

w1iw2j

2

t1i< t2j R tmax

t2j
S1ðuÞdF2ðuÞ

S1ðt1iÞS1ðt2jÞ

( )
ð1� w1iÞð1� w2jÞ þ w1ið1� w2jÞ þ

w1iw2j

2

The terms are estimated by using Kaplan–Meier estimates of S2(t) for w2j; for example S1(tmax) is the Kaplan–
Meier estimate at the last non-censored time in the first group.

As the original Efron estimator, the modified estimator is not a universal measure when censoring is due to
incomplete follow up because it depends on tmax, but it is more stable than the Efron estimator because it does not
depend on which group has the longest surviving censored member. It is not consistent for the concordance index
if S1ðtmaxÞ4 0 and S2ðtmaxÞ4 0 but, in this case, clearly it is not possible to obtain a consistent estimator of the
concordance index with making assumptions. However, one may obtain an estimate of the concordance index for
different follow-up periods by varying tmax, where the modified estimator consistently estimates

CEðtmaxÞ ¼ �

Z tmax

0

S1ðuÞdS2ðuÞ

Brentnall and Cuzick 2363



Thus, one approach to facilitate comparisons between studies is to present the estimate of this for different values
of tmax. This idea has been used in a similar context elsewhere,6,13 and is considered further in later simulations
(Figure 2) and an example (Figure 5).

4.3 Modified proportional-hazards model estimator

A problem with the estimator of Gönen and Heller16 is that if there is no censoring but proportional hazards do
not hold, then the estimator will not agree with the classical approach. A partial solution to this is to modify the
approach of Efron and write

CEZ ¼ 2fNðN� 1Þg�1
XN�1
i¼1

XN
j¼i

Qðti, tj, yi, yj, zi, zj Þ ð11Þ

where Qðti, tj, yi, yj, zi, zj Þ ¼ PfTi 4Tj j ðti, yiÞ, ðtj, yj Þ, zi, zjg. Under a proportional-hazards model, CEZ may
be estimated via the terms in Table 1, but the proportional-hazard assumption is only needed to calculate
the non-trivial terms and so the estimator agrees with the classical formula when there is no censoring. A further
difference to the above is that it requires an estimate of the baseline survivor function S0(t). This approach
will be anti-conservatively biased when the data are censored and proportional hazards hold. It is intended
for use when censoring is light and one would like robustness against large departures from proportional
hazards.

One might consider allowing �ðT j ZÞ ¼ �0ðTÞ gTðZÞ for time-varying hazards gT. In this case

PðTz1 4Tz2Þ ¼

Z 1
0

�0ðtÞ gtðz2Þexp �

Z t

0

�0ðsÞfgtðz1Þ þ gtðz2Þgds

� �
dt ð12Þ

A concordance index based on this involves O(N2) evaluations of this double integral, which would need to be
evaluated numerically. One also cannot use the model beyond the maximal follow-up time.

4.4 Pareto model

A parsimonious approach is to use a simple one-parameter model to account for varying degrees of convergence
by introducing an unobserved additive covariate (frailty) to the proportional-hazards model, independent from
other covariates, with a log-gamma distribution with mean one and variance �.18 This leads to a transformation
model based on the Pareto distribution, so that if the baseline hazard and cumulative hazard are given by �0(t) and
�0(t) respectively, then an individual with covariate z ¼ expðbx0Þ has survival function

Sðt j z; �Þ ¼ 1� Fz,�ðtÞ

¼ f1þ �z �0ðtÞg
�1=�

ð13Þ

and hazard function

�ðt j z; �Þ ¼ z�0ðtÞf1þ �z�0ðtÞg
�1 ð14Þ

This very flexible model has some attractive features. The hazard ratio is given by

�ðt j z1; �Þ

�ðt j z2; �Þ
¼

1þ ��0ðtÞ

z2=z1 þ ��0ðtÞ

so that a consequence of the frailty (� > 0) is that the hazard ratio approaches one as t gets large. When � ¼ 0 there
is no frailty and it becomes the proportional-hazards model; when �¼ 1 it becomes the proportional-odds model.

Technical aspects of estimation and inference are considered in the appendix.
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4.4.1 Concordance index

Computation of the Pareto concordance index involves a formula with �, the {Z} and the baseline cumulative
hazard function �0ðtÞ

PðTz1 4Tz2 j Tz1 ,Tz2 4 sÞ ¼

Z 1
s

n
1þ �z1 �0ðtÞ

o�1=�
z2�0ðtÞ

n
1þ �z2 �0ðtÞ

o�ð1þ1=�Þ
dt

¼ ��1
Z 1
v

n
1þ ðz1=z2Þu

o�1=�
ð1þ uÞ�ð1þ1=�Þdu

ð15Þ

where v ¼ �z2�0ðsÞ, and analysis of concordance index (2) can proceed as the two previous approaches for
proportional hazards. That is, the Pareto model can be used with f1þ expðZ1 � Z2Þg

�1 in (9) replaced by (15)
with s¼ 0 or via the hybrid approach replacing the non-trivial terms in Table 1 with the Pareto terms. The integral
in (15) is needed for both approaches. Although it does not appear to be analytically tractable it may be estimated
numerically, and it requires much less computation than (12).

4.4.2 Goodness-of-fit

We lastly consider model goodness-of-fit, partly because the Pareto concordance index is not needed when a
proportional-hazards assumption is appropriate. One method is an asymptotic score test for when a Pareto model
is taken as the alternative hypothesis to proportional hazards.19 Another approach in this line is to apply a
likelihood-ratio test for �¼ 0,20 with adjustment for model-boundary testing.21 Schoenfeld residuals22 are
sometimes used, and in the general setting are defined for all i ¼ 1, . . . ,N when a non-censored event occurred
(yi¼ 1) to be

ŝi ¼ xi �bEðx j t � tiÞ

where

bEðx j t � tiÞ ¼

PN
j¼1 Iðtj � tiÞ�̂ðti j xj ÞxjPN
j¼1 Iðtj � tiÞ�̂ðti j xj Þ

and �̂ðti j xj Þ are model estimates. These residuals show the difference between the observed and expected covariate
at each event time, and have expectation zero if the model is correct. Plots of ŝi against ti and fitted trends may help
to identify departures from the model, and a chi-squared test based on scaled residuals is commonly used to test a
proportional-hazards assumption,23 without taking a Pareto model as the alternative. Because Schoenfeld
residuals were designed to check the proportional-hazard assumption, a direct comparison with the Pareto
model will help assess whether it satisfactorily addressed lack of fit. A related goodness-of-fit test is to use
partial residuals P̂ðx � xiÞ defined as22

r̂i ¼

PN
j¼1 Iðtj � tiÞ�̂ðtijxj ÞIðxj 4 xiÞPN

j¼1 Iðtj � tiÞ�̂ðtijxj Þ
ð16Þ

Under the model these should be distributed uniformly between zero and one, independently of ti. Empirical
distribution function goodness-of-fit tests24 could be used to assess the distribution of ri in early and late periods.

5 Simulations

5.1 Bias

A simulation was used to demonstrate issues with existing methodology when there are converging hazards.
Twenty-thousand individuals were simulated with survival times from a Pareto distribution; the rate for an
individual was the exponent of a random normal covariate with unit mean and variance multiplied by a frailty
sampled from a gamma distribution with mean one and variance �. Type I censoring was considered, so that
events occurred before a maximal follow-up time based on the expected proportion censored. For exposition we
show 90%, 50% and 20% censoring. For �10-year follow up, heavy censoring might correspond to survival such
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as for distant recurrence in women diagnosed with estrogen-receptor positive breast cancer;25 mid-range censoring
(�50%) might be seen for survival following disease such as an acute myocardial infarction event;7 light censoring
occurs when survival rates are low, for example, for survival following complete resection of non-small-cell lung
cancer.5 In all simulation scenarios there is no difference between the censored-pairs estimators of Harrell or Uno
because everyone is censored at the same time. Concordance indices using a proportional-hazards model and the
censored-pairs statistic were calculated and compared with the true index, obtained using a simulation without
censoring.

The results in Figure 1 show that for this model the proportional-hazard estimate was conservative when there
was no censoring, but had positive bias when censoring was more than about 50%. The classical estimator
substantially overestimated the concordance index when censoring was 50% or more; this bias was more
pronounced for heavy censoring as the frailty variance � increased.

A second simulation was used to demonstrate the dependence of the two-sample estimator on follow up. Ten-
thousand individuals were simulated in two groups, with survival time from an exponential distribution with rate
one or two, compounded with a gamma frailty with variance �, which was chosen to show the effect of a change
from constant hazards (�¼ 0) to when they converge very quickly (� ¼ 20). Censoring was generated by allowing
individuals to be enrolled into a study at different times according to a uniform distribution between [0.00, 0.05],
and then they were censored at a maximum follow-up time. The results in Figure 2 show that the two-sample
statistic was conservatively biased when there was heavy censoring. Considering the chart from right (heavy
censoring due to censoring) to left (no censoring), one can see that the concordance index estimate increased
with more follow up (later censoring) until the covariate had ceased to influence survival due to converging
hazards. The plot shows that the statistic is actually better when there are converging hazards, since it will
converge to the true value with less follow up.

5.2 Comparison of estimators

A final simulation was used to compare estimators of CZ. Survival times were from a Pareto distribution that was
the exponent of a standard random normal covariate (x) multiplied by 0.7 (i.e. z¼ exp(�x) with �¼ 0.7) and
compounded by a frailty sampled from a gamma distribution with mean one and variance �. Two choices of �
were considered (1.0 and 6.6) and three levels of censoring (follow up to time with expected censoring percentage
87%, 50% and 20%). The sample size was 1125 and 500 replications were used. The Pareto model was fitted by
maximizing the profile likelihood (see Appendix).
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The reason for choosing �¼ 0.7, �¼ 6.6, 87% censoring and n¼ 1125 is that these correspond to an example in
the next section (Table 3(b), Ki67). We also considered �¼ 1 in order to assess a scenario where the proportional-
hazards assumption is violated more slowly, and partly for theoretical interest because it corresponds to a
proportional-odds model. The censoring levels were varied to help assess the estimators as more follow up is
accrued.

The distribution of estimated concordance indices is shown in Figure 3. The concordance-index estimates from
a Pareto model were substantially less biased than the other methods with heavy censoring (Table 2). The Pareto
estimator was biased for heavy censoring at this sample size because it fits a proportional-hazards model where
there is insufficient power to detect non-proportional hazards. Harrell’s statistic and the modified proportional-
hazards statistic became less biased as the level of censoring decreased. The Pareto estimator had a lower mean
squared error than the other estimators (Table 2).

Some differences were seen between a proportional-hazards concordance index based solely on model fit
and the hybrid approach using Table 1. As expected the hybrid approach worked best for light censoring.
It was worse under 50% censoring for the proportional-hazards model because it shifted the estimate towards
the Harrell estimate, and the censored-pairs estimators are expected to be anti-conservative unless follow up is to
a point where survival is zero (c.f. Figure 1). Thus, we do not recommend the hybrid approach unless censoring
is light.

6 Example

The example uses a sample of 1125 women with oestrogen-receptor positive breast cancer, of whom 145 had a
distant recurrence after a median 8.5-years follow up in a clinical trial (ATAC trial, ISRCTN registration numer
ISRCTN18233230). This sample from the transATAC study (approved by the South-East London Research
Ethics Committee (REC ref no. 971037)) were previously used to show that some immunohistochemical (IHC)
biomarkers added useful information to classical clinical prognostic factors.25 For demonstration and insight we
focus next on some of the individual biomarkers used in the IHC risk score. We do not present results from the
hybrid estimators because censoring is heavy, but there was little difference because model assumptions dominate
the calculations (87% of women were censored).

Table 3 shows some univariate concordance index estimates. The following points are of note. First, the two-
sample estimates were different than the other form of concordance index. Second, Harrell’s and Uno’s statistics
were closer to each other than the proportional-hazards and Pareto model statistics. This is likely due to the
bias from follow up, as discussed earlier. Third, Pareto estimates were substantially lower than the
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proportional-hazards model when �̂ 6¼ 0, reflecting an assumption of converging hazards. Finally, the concordance
indices of binarised predictors were less than continuous counterparts due to the information loss from
dichotomising.

To explore further we focus on Ki67, whose Pareto concordance index estimate was 0.552 (SE (standard error)
0.0156) compared with 0.631 (SE 0.0210) under a proportional-hazards assumption, 0.644 (SE 0.0220) for Harrell’s
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Figure 3. Concordance index estimates from simulations and true value (– – –). H: censored-pairs estimator; Ga: proportional-

hazards estimator (10); Gb: hybrid proportional-hazards estimator based on (11); Pa: Pareto estimator using model fit; Pb: hybrid

Pareto estimator using Table 1.

Table 2. Simulation estimation results for two scenarios of �.

Mean bias (�100) MSE (�100)

Censoring: 87% 50% 20% 87% 50% 20%

�¼ 1 (proportional odds)

Censored pairs 4.8 2.1 0.5 28.4 5.7 1.2

PH-fit 3.2 0.4 �1.6 13.7 1.4 3.3

PH-hybrid 3.3 1.1 0.1 14.1 2.4 0.9

Pareto-fit 0.6 0.0 �0.1 10.5 1.3 0.8

Pareto-hybrid 0.6 0.0 �0.1 10.7 1.4 0.9

�¼ 6.6

Censored pairs 8.3 1.8 0.2 75.5 4.8 1.0

PH-fit 6.8 0.5 �1.3 50.3 1.7 2.6

PH-hybrid 6.9 1.2 0.1 51.8 3.0 1.0

Pareto-fit 1.7 0.4 0.5 9.4 0.9 0.9

Pareto-hybrid 1.6 0.1 0.0 9.2 0.9 0.9

MSE: mean squared error; PH-fit: proportional-hazards estimator (10); PH-hybrid: proportional-hazards estimator based on (11);

Pareto-fit: estimate using model fit only; Pareto-hybrid: Pareto model estimator using Table 1.
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estimator and 0.624 (SE 0.0213) for Uno’s adjusted version. Ki67 showed evidence of a departure from proportional
hazards, seen informally by inspection of Table 4. More formally, a likelihood-ratio test (Table 3) that �¼ 0 had
P¼ 0.03 (after correction for model-boundary testing21); a different test for non-proportionality23 yielded
�1

2
¼ 4.16, P¼ 0.04. Schoenfeld partial residuals in Figure 4(a) show that allowing for converging hazards via a

Pareto model improved the residuals at the start and end. Figure 4(b) helps to show why; the expected value of Ki67
for events decreased more rapidly than a proportional-hazards assumption. Figure 4(c) shows the fitted hazard ratio
from the Pareto model, which approximately halved over the period. Figure 4(d) demonstrates that a Pareto model
for a binary Ki67 predictor better matched the Kaplan–Meier estimates than a proportional-hazards model.

A goodness-of-fit test of the Pareto model is suggested by Figure 4(a), where most of the change in partial
residuals between the proportional-hazards and Pareto model were in the first and last three years. Applying a
two-sample Kolmogorov–Smirnov test of equality in distribution between the residuals in years� 3 vs> 6 for the
proportional-hazards model was rejected (D¼ 0.28, two-sided P¼ 0.03). The trend line shows that the Pareto model
fitted somewhat better, and the same test did not reject a fit of the Pareto model (D¼ 0.22, P¼ 0.17). Thus the data
showed some evidence to support the Paretomodel fit, which was certainly better than proportional hazards, and the
lower concordance index estimate than from a proportional-hazards model or the other approaches.

Table 3. Estimated univariate concordance indices and model coefficients from example.

Grade HER2 Nodes Ki67 ER

(a) Binary predictor

2-sample 0.57 0.61 0.59 0.55 0.53

Harrell 0.59 0.57 0.63 0.61 0.56

Uno 0.58 0.57 0.63 0.58 0.56

PH 0.57 0.54 0.60 0.59 0.56

Pareto 0.53 * * 0.53*

PH �̂(LR-�2) 0.9 (24.9) 1.1 (23.1) 1.2 (47.5) 0.8 (21.6) �0.5 (7.8)

Pareto �̂(LR-�2) 1.3 (27.0) * * 1.4 (25.2)*

�̂(LR-�2) 4.0 (2.1) 0.0 (0.0) 0.0 (0.0) 8.7 (3.6) 0.0 (0.0)

(b) Continuous predictor

Harrell 0.65 0.64 0.57

Uno 0.64 0.62 0.58

PH 0.61 0.63 0.57

Pareto * 0.55 0.54

PH �̂(LR-�2) 1.0 (72.7) 0.4 (31.8) �0.2 (11.5)

Pareto �̂(LR-�2) * 0.7 (35.2) �0.2 (12.0)

�̂(LR-�2) 0.0 (0.0) 6.6 (3.5) 2.8 (0.4)

PH: using proportional-hazards assumption and (10); Grade: moderate or worse; HER2: positive; Nodes: lymph node positive or number of nodes

(ordinal: 0, 1–3,> 4); Ki67: above median or continuous marker; ER: oestrogen-receptor score above median or continuous; LR-�2: likelihood-ratio

statistic; �̂: estimated regression coefficient for predictor; * indicates when Pareto model fit was proportional hazards.

Table 4. Number of events in each year, split by Ki67 median (low/high).

Year Low Ki67 High Ki67 Ratio

1 4 8 2.0

2 3 14 4.7

3 3 16 5.3

4 5 10 2.0

5 4 13 3.2

6 4 12 3.0

7 9 9 1.0

8 8 10 1.2

9 6 5 0.8

10 2 0 0.0
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Figure 5 plots the two-sample concordance index for binarised Ki67 by censoring time. The concordance index
increased, and then appeared to plateau after six years. Thus one might surmise that the two-sample estimate from
10-year follow up is unlikely to increase for this variable with further follow up due to converging hazards (c.f.
Figure 2). HER2 positivity is included for comparison, where the estimated concordance index increased with
follow up, in better agreement with a proportional-hazards assumption.

7 Conclusion

The concordance index is routinely used to measure how well a variable predicts the time to a censored event.
However, current estimators depend on the extent of follow up and many predictors using survival data lose their
discriminatory power with follow up time. To account for this phenomenon we developed a concordance index
based on a Pareto model. This semi-parametric model accounts for converging hazards, but leaves a baseline
hazard function unspecified. In simulations under the model it was substantially less biased than other estimators.
In a breast-cancer application the ordering of prognostic biomarker concordance index estimates changed when
converging hazards were modelled, reflecting that some predictors are more useful for longer-term predictions
than others. Our semi-parametric concordance index estimator is recommended for predictors of censored survival
data when there is evidence of converging hazards.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article:

This work was funded by Cancer Research UK (grant number C569/A16891).

References

1. Choodari-Oskooei B, Royston P and Parmar MK. A simulation study of predictive ability measures in a survival model I:

Explained variation measures. Stat Med 2012; 31(23): 2627–2643.

2. Choodari-Oskooei B, Royston P and Parmar MKB. A simulation study of predictive ability measures in a survival model

II: Explained randomness and predictive accuracy. Stat Med 2012; 31(23): 2644–2659.

3. Mann HB and Whitney DR. On a test of whether one of two random variables is stochastically larger than the other. Ann

Math Stat 1947; 18(1): 50–60.
4. Hanley JA and McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve.

Radiology 1982; 143(1): 29–36.
5. Schemper M, Wakounig S and Heinze G. The estimation of average hazard ratios by weighted cox regression. Stat Med

2009; 28(19): 2473–2489.
6. Martinussen T and Pipper C. Estimation of odds of concordance based on the aalen additive model. Lifetime Data Anal

2013; 19(1): 100–116.
7. Martinussen T and Pipper CB. Estimation of causal odds of concordance using the aalen additive model. Scand J Statist

2014; 41(1): 141–151.

8. Brentnall AR, Cuzick J, Field J, et al. A concordance index for matched case-control studies with applications in cancer

risk. Stat Med 2015; 34(3): 396–405.
9. Harrell FE, Lee KL and Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions

and adequacy, and measuring and reducing errors. Stat Med 1996; 15(4): 361–387.
10. Gehan EA. A generalized Wilcoxon test for comparing arbitrarily singly-censored samples. Biometrika 1965; 52: 203–223.

11. Harrell FE, Califf RM, Pryor DB, et al. Evaluating the yield of medical tests. JAMA - J Am Med Assoc 1982; 247(18):

2543–2546.
12. Efron B. The two sample problem with censored data. In: M. Lucien, Le Cam and Jerzy N (eds) Fifth Berkeley Symposium

on Mathematical Statistics and Probability, Statistical Laboratory of the University of California, Berkeley, June 21–18

July 1965 and 27 December 1965–7 January 1966, p.666. Berkeley, Calif: University of California Press 1967, ISSN: 0097-

0433, http://projecteuclid.org/euclid.bsmsp/1200512974
13. Uno H, Cai T, Pencina MJ, et al. On the c-statistics for evaluating overall adequacy of risk prediction procedures with

censored survival data. Stat Med 2011; 30(10): 1105–1117.

Brentnall and Cuzick 2371

http://projecteuclid.org/euclid.bsmsp/1200512974


14. Kaplan EL and Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958; 53(282):
457–481.

15. Koziol JA and Jia Z. The concordance index c and the Mann–Whitney parameter Pr(X>Y) with randomly censored data.

Biometrical J 2009; 51(3): 467–474.
16. Gönen M and Heller G. Concordance probability and discriminatory power in proportional hazards regression.

Biometrika 2005; 92(4): 965–970.
17. Sestak I and Cuzick J. Markers for the identification of late breast cancer recurrence. Breast Cancer Res 2015; 17(1): 10þ.

18. Clayton D and Cuzick J. The semi-parametric pareto model for regression analysis of survival times. In: Collected papers
on semiparametric models at the centenary session of the international statistical institute, pp.19–30. Amsterdam: Centrum
voor Wiskunde en Informatica.

19. Clayton D and Cuzick J. Multivariate generalizations of the proportional hazards model. J Roy Stat Soc A 1985; 148(2):
82–117.

20. Murphy SA and van der Vaart AW. On profile likelihood. J Am Stat Assoc 2000; 95(450): 449–465.

21. Self SG and Liang KY. Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under
nonstandard conditions. J Am Stat Assoc 1987; 82(398): 605–610.

22. Schoenfeld D. Partial residuals for the proportional hazards regression model. Biometrika 1982; 69(1): 239–241.

23. Grambsch PM and Therneau TM. Proportional hazards tests and diagnostics based on weighted residuals. Biometrika
1994; 81(3): 515–526.

24. Stephens MA. EDF statistics for goodness of fit and some comparisons. J Am Stat Assoc 1974; 69(347): 730–737.
25. Cuzick J, Dowsett M, Pineda S, et al. Prognostic value of a combined estrogen receptor, progesterone receptor, ki-67, and

human epidermal growth factor receptor 2 immunohistochemical score and comparison with the genomic health
recurrence score in early breast cancer. J Clin Oncol 2011; 29(32): 4273–4278.

26. Therneau TM, Grambsch PM and Pankratz VS. Penalized survival models and frailty. J Comput Graph Stat 2003; 12(1):

156–175.
27. Therneau TM. A package for survival analysis in S. R package version 2.37-7, 2014.
28. Zeng D and Lin DY. Maximum likelihood estimation in semiparametric regression models with censored data. J Roy Stat

Soc B 2007; 69(4): 507–564.
29. Kosorok MR, Lee BL and Fine JP. Robust inference for univariate proportional hazards frailty regression models.

Ann Stat 2004; 32(4): 1448–1491.
30. Cheng G and Huang JZ. Bootstrap consistency for general semiparametric m-estimation. Ann Stat 2010; 38(5): 2884–2915.

31. Murphy SA and Van Der Vaart AW. Observed information in Semi-Parametric models. Bernoulli 1999; 5(3): 381–412.
32. Dixon JR, Kosorok MR and Lee BL. Functional inference in semiparametric models using the piggyback bootstrap.

Ann Inst Statist Math 2005; 57(2): 255–277.

33. Lee BL, Kosorok MR and Fine JP. The profile sampler. J Am Stat Assoc 2005; 100(471): 960–969.

Appendix

A1.1 Pareto model estimation

The Pareto model can be fitted using a semi-parametric profile-likelihood algorithm. The likelihood for an
individual i¼ 1, . . ., N is

Liðh,�0 j xiÞ ¼ �ðti j xi; hÞyiSðt j xi; hÞ

where unknown parameters are h¼ (�, �) with � the Pareto parameter and z¼ �x, and the unknown baseline
hazard function is �0. The survivor and hazard functions are given in the main paper. Then the overall log-
likelihood

l ðh,�0 j XNÞ ¼
Xn
i¼1

liðh,�0 j xiÞ

where XN¼ (x1, . . ., xN). In this semi-parametric model the baseline hazard function �i for i¼ 1, . . ., N is zero
when the individual i is non-negative when non-censored (yi¼ 1) and zero elsewhere. Denote the
k ¼ 1, . . . ,

PN
i¼1 yi time points at which an event occurred by sk. Then differentiating the log-likelihood with

respect to the unknown parameters �k (yk¼ 1) leads to a forward recursive relationship

��1kþ1 ¼ ��1k þ
XN
i¼1

Iðsk � ti 5 skþ1Þzið1þ �yiÞð1þ �zi�iþÞ
�1
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where �iþ ¼
Pi

j¼1 �j ¼ �̂0ðtiÞ is the estimated cumulative baseline hazard. Thus the entire baseline hazard
function may be obtained based on the first point �1. The baseline hazard function may be estimated given h

by setting

dl

d�1
¼ ��11 �

XN
i¼1

zið1þ �yiÞð1þ �zi�iþÞ
�1

to zero via a root-finding algorithm. The overall profile-likelihood algorithm is to fit �0 conditional on h, and then
vice versa. This method may be adjusted to account for ties; an alternative crude but effective numerical strategy is
to break ties randomly.

Another approach is to use a penalised likelihood, shown to converge to the same estimate as an expectation-
maximisation (EM) algorithm.26 It is implemented in the survival package for the statistical software R.27 The
same approach as above may then be used to estimate the baseline hazard function.

A1.2 Inference

Profile likelihood20 has been justified for inference on � and �;28 the validity of a weighted bootstrap29 and other
bootstrap weighting schemes30 has also been established. Bootstrap confidence intervals might also be used for the
concordance index from the Pareto model. However, they will be computationally intensive because they would
involve refitting the model at each resample. A less intensive approach is to obtain a valid random sample given
estimation uncertainty in the parametric components h� ¼ flogð�Þ,�g and to compute the estimate of CZ using the
random draws. Asymptotically the curvature of the profile likelihood near h* is equal to the efficient Fisher
information matrix, and so one might use numerical differentiation and inversion of the profile-likelihood
Hessian to obtain estimates of the covariance matrix.20,31 The approach is most valid when � is not close to
zero, and was used for the SEs given in the example. For the hybrid approach one also needs to sample from the
baseline hazard function. A possible approach here is to use a piggyback bootstrap, which also samples from the
parametric component, and then uses a weighted bootstrap to estimate the baseline hazard function.32 Alternative
methods for sampling the parametric component include profile sampling using Monte-Carlo Markov-Chain
simulation.33
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