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Abstract

Motivation: Copy number variations (CNVs) are gains and losses of DNA segments and have been

associated with disease. Many large-scale genetic association studies are performing CNV analysis

using whole exome sequencing (WES) and whole genome sequencing (WGS). In many of these

studies, previous single-nucleotide polymorphism (SNP)-array data are available. An integrated

cross-platform analysis is expected to improve resolution and accuracy, yet there is no tool for ef-

fectively combining data from sequencing and array platforms. The detection of CNVs using

sequencing data alone can also be further improved by the utilization of allele-specific reads.

Results: We propose a statistical framework, integrated CNV (iCNV) detection algorithm, which can

be applied to multiple study designs: WES only, WGS only, SNP array only, or any combination of

SNP and sequencing data. iCNV applies platform-specific normalization, utilizes allele specific

reads from sequencing and integrates matched NGS and SNP-array data by a hidden Markov

model. We compare integrated two-platform CNV detection using iCNV to naı̈ve intersection or

union of platforms and show that iCNV increases sensitivity and robustness. We also assess the ac-

curacy of iCNV on WGS data only and show that the utilization of allele-specific reads improve

CNV detection accuracy compared to existing methods.

Availability and implementation: : https://github.com/zhouzilu/iCNV

Contact: nzh@wharton.upenn.edu or zhouzilu@pennmedicine.upenn.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Copy number variations (CNVs) are large chunks of DNA that have

been deleted or duplicated during evolution, leading to polymorph-

isms in their numbers of copies in the observed population. Studies

have shown that CNV is an important type of variation in the

human genome, some of which playing key roles in disease suscepti-

bility (Freeman et al., 2006; McCarroll and Altshuler, 2007; Redon

et al., 2006). Accurate identification and genotyping of CNV is im-

portant for population genetic and disease studies and can lead to

improved understanding of disease mechanisms and discovery of

drug targets (Diskin et al., 2009; Glessner et al., 2009; McCarroll

et al., 2008). To profile CNV, earlier studies relied on array-based

technologies such as array comparative genome hybridization or

single-nucleotide polymorphism (SNP) genotyping arrays, while in

recent years, next generation sequencing (NGS) technologies have

allowed for high resolution CNV profiling (Abyzov et al., 2011;

Carter, 2007; Chiang et al., 2009; Fromer et al., 2012; Jiang et al.,

2015; Pinkel et al., 1998; Wang et al., 2007; Zhao et al., 2013).

With the drop in sequencing cost, many large-scale genetic studies

have adopted whole exome sequencing (WES) and/or whole genome
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sequencing (WGS) to profile genetic variation in large cohorts.

Often, these cohorts were previously studied using array-based tech-

nologies. For example, Alzheimer’s Disease Sequencing Project

(ADSP) is an ongoing study that has 578 samples with both WGS

and SNP-array data and 10 913 individuals with both WES and

SNP-array data; Alzheimer’s Disease Genetics Consortium (ADGC)

is another ongoing study that has 3084 samples with both WES and

SNP-array data. It is yet uncertain in such studies how to combine

data from multiple platforms and unclear how such multi-platform

integration can improve accuracy.

There is also ample room for improvement in the detection of

CNV from NGS data alone. Sequencing data are subject to multiple

sources of experimental noise such as GC bias and batch effects

(Benjamini and Speed, 2012; Leek et al., 2010). Numerous CNV de-

tection tools have been developed for sequencing data, but they

often make contradicting detections on the same dataset (Fromer

et al., 2012; Klambauer et al., 2012; Krumm et al., 2012; Zhao

et al., 2013). On SNP-array platforms, utilization of B-allele fre-

quency improves CNV detection accuracy, but few of the CNV de-

tection tools currently available for sequencing data make use of

information from allele-specific reads.

Here, we propose integrated Copy Number Variation caller

(iCNV), a statistical framework for CNV detection that can be

applied to multiple study designs: WES only, WGS only, SNP array

only, or any combination of SNP and sequencing data. Compared to

existing approaches, iCNV improves copy number detection

accuracy in three ways: (i) utilization of B allele frequency (BAF) in-

formation from sequencing data, (ii) integration of sample matched

SNP-array data when available and (iii) integration of improved

platform-specific normalization for sequencing coverage. iCNV pro-

duces a cross-platform joint segmentation of each sample’s genome

into deleted, duplicated and normal regions and further infers inte-

ger copy numbers in deletion and duplication regions.

To test iCNV, we first compare CNV detection accuracy using

iCNV on two platforms versus simply performing intersection or

union of the two platforms. Results suggest that iCNV achieves

higher sensitivity and robustness. We further assess the impact of

adding array data to sequencing data in CNV detection by an in

silico spike-in study and find that sensitivity increases when adding

SNP array to WES, but there is negligible improvement when adding

SNP array to WGS. We also consider the case where WGS is the sole

platform used and compared iCNV to other commonly used CNV

calling methods on a WGS dataset with pedigree information, where

we find higher Mendelian concordance, indicative of higher accur-

acy, for iCNV detections.

2 Materials and methods

2.1 Overview of pipeline
Figure 1 shows an overview of iCNV analysis pipeline. Input data

depend on experiment design: When both SNP array and NGS data

are available, the input includes (i) SNP log R ratio (LRR) and (ii)

BAF, which quantify, respectively, relative probe intensity and allele

proportion, and (iii) sequencing mapped reads (BAM file) (Li et al.,

2009). This pipeline simplifies when data from only one platform is

available (Supplementary Fig. S1). For sequencing data, iCNV also

receives target positions (BED file) for read depth background nor-

malization. In WES, the targets are exons, while for WGS, iCNV

automatically bins the genome and treats each bin as a target (the

default bin size is 1 kb). iCNV first performs cross-sample bias cor-

rection for sequencing data using CODEX and computes a Poisson

log-likelihood ratio (PLR) for each target (Jiang et al., 2015).

Heterozygous SNPs are detected and BAFs are computed within tar-

get regions using SAMTOOLS (Li et al., 2009). Integrated CNV de-

tection is then conducted through a hidden Markov model (HMM)

that treats the array intensity, array BAF, sequencing PLR and

sequencing BAF as observed emissions from a hidden copy number

state. The HMM segments the genome of each sample into regions

of homogeneous copy number and outputs an integrated Z-score for

each position that summarizes the evidence for an abnormal copy

number at that position. Finally, integer-valued copy numbers are

estimated in regions of high absolute Z-score, utilizing information

from all platforms.

2.2 Platform-specific normalization
Due to the heterogeneity in noise across platforms, we perform

platform-specific normalization. For sequencing data, we apply

CODEX (Jiang et al., 2015) normalization that removes biases related

to target length, mappability, GC content and other latent systematic

factors such as capture efficiency and amplification bias (Aird et al.,

2011; Benjamini and Speed, 2012; Leek et al., 2010). These system-

atic factors are prevalent in all sequencing protocols and detrimental

to CNV detection. CODEX normalization results in a PLR for each

target. BAFs of heterozygous variants in targets are computed by

SAMTOOLs (Supplementary Method). As for array data, SNP LRR

and BAF are standard outputs measurements, giving, respectively, the

relative total probe intensity and allele proportion.

To bring SNP array intensity (xSNP;j) and sequencing coverage-

derived PLR (xWES;j and/or xWGS;j) to the same scale, we standardize

each to produce a normalized intensity score:

ypj ¼
xpj �

P
j
xpj

Kp

� �
rp

; r2
p ¼

X
j

xpj �
P

j
xpj

Kp

� �2

Kp
; (1)

where i represents sample, p represents platform and j 2 f1 . . . Kpg
represents number of targets in the platform.

Fig. 1. iCNV analysis pipeline including data normalization, CNV calling and

genotyping using NGS and array data. For NGS data, the first step is to normal-

ize coverage using CODEX and calculate a PLR, further converted to a normal-

ized LRR by a z-transformation. The heterozygous single nucleotide positions

are then found and BAF computed using SAMTools. For array data, we ob-

tained lRRs and BAF from raw SNP intensity data and then normalized the

LRRs. The integrated HMM takes these inputs and generates integrated CNV

calls with quality scores. Finally, genotypes are inferred for each CNV region
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2.3 HMM model
After normalization, the normalized intensity score and BAFs from

all platforms are analyzed by the integrated HMM, shown in

Figure 2, which integrates evidence from all platforms and produces

a joint segmentation. The HMM model has the following key fea-

tures: (i) Overlapping targets (e.g. exons, bins or SNPs) share the

same underlying copy number, even if their boundaries are not iden-

tical. (ii) Each sequencing derived target (e.g. exon or genome bin)

can have multiple BAFs, if multiple heterozygous SNP loci are de-

tected in the target. In such scenarios, the BAFs are assumed inde-

pendent. (iii) Exons/genome bins that don’t overlap with any

heterozygous SNPs are assigned BAF value 0. (iv) For a hidden state

cl, there are three possible values: diploid, deletion and duplication,

i.e. cl 2 fdel; dip;dupg. Specific integer copy numbers are inferred

post-segmentation (Section 2.5).

Transition probabilities between hidden states rely on genomic

distance traversed. Both XHMM (Fromer et al., 2012) and

PennCNV (Wang et al., 2007) use a distance-dependent exponential

attenuation factor f ðdÞ ¼ e�d=D, which we also adopt in our model.

D is set to the mean distance between targets (default 100 kb).

Supplementary Figure S2a illustrates the relationship between dis-

tance and transition probability.

There are two types of emission distributions in the HMM, one

for normalized intensity score; the other for BAF. These emission

distributions are shown in Supplementary Figure S2. The emission

probability distribution of coverage- and LRR-derived normalized

intensity score is a mixture of three normal centered at�l1, 0,þl3

that share the same standard deviation r. Previously, XHMM

(Fromer et al., 2012) and PennCNV (Wang et al., 2007) used a sym-

metric Gaussian mixture centered at�l, 0, andþl with standard

deviation 1 representing deletion, diploid and duplication. We found

that, empirically, the normalized intensity score distribution is not

symmetric around zero and that the variance of each component

varies across individuals (Supplementary Fig. S2c). In particular, the

mean normalized intensity score for duplications is closer to 0 than

that for deletions. This motivates the separate deviations,�l1 (de-

fault value �3) for losses andþl3 (default value 2) for gains, with

shared standard deviation r that is estimated by Baum-Welch separ-

ately for each sample. The emission probabilities of array- and

sequencing-derived BAFs are more straightforward and is a mixture

of truncated normal distributions shown in Supplementary Figure

S2b.

2.4 Parameter estimation and quality metrics
HMM parameters are fit by the Baum–Welch (EM) algorithm,

which maximizes the likelihood of observed data. The Viterbi algo-

rithm is applied to infer the most likely path given the best-fit par-

ameters. Details are in Supplementary Method.

To quantify CNV confidence, i.e. quality score, we calculate an

integrated Z-score for each hidden state as follows:

Zl ¼ el

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�log p cl ¼ dipjyð Þð Þ

p
;

el ¼
�1; p cl ¼ deljyð Þ > p cl ¼ dupjyð Þ

þ1; p cl ¼ deljyð Þ � p cl ¼ dupjyð Þ
;

(
(2)

where dip, dup and del are short for diploid, duplication and dele-

tion, respectively. The score is positive if the hidden state has higher

conditional probability of being a duplication than a deletion, and

negative otherwise. This quality score integrates information from

intensity/coverage and BAFs across multiple platforms, allowing for

easy visualization and straightforward quality assessment.

2.5 Copy number inference
To infer the integer copy number, we use a maximum likelihood

procedure. For each CNV region, we infer deletion copy number

and duplication copy number separately. Deletion can only be 0 or 1

copy. For duplication, we only characterize two cases: three copies

or greater than three copies. We find it very difficult to separate

copy numbers 4 or greater because (i) such events are rare, thus

making it hard to infer the mean of their distributions; (ii) BAF dis-

tributions among four, five or more copies are too similar to be sep-

arated. The likelihood calculations are shown in the Supplementary

Method. We assign the maximum likelihood copy number to each

CNV region.

2.6 Design of spike-in
In silico spike-in is a useful way to assess sensitivity. Spike-in differs

from simulation in that signals are inserted into real data matrices,

which retain the true noise structure and probe distribution, thus

giving more realistic projections of detection power. In our spike-in

design, we start by removing CNV regions detected by our program

from original datasets, using a lenient threshold. We then add CNV

signals randomly to the presumed diploid region with lengths rang-

ing from 100 bp to 500 kb. Exons, bins or SNPs that overlap with

the added CNV regions have their intensities and BAFs changed ac-

cording to the simple and standard model described in the

Supplementary Method. As a result, not all of the spike-in CNVs are

detectable, especially when the data come from WES and SNP

arrays with low-resolution target set. iCNV is then applied to the

spike-in dataset, using the single-platform mode for each platform

as well as the integrated multi-platform mode combining the plat-

forms. Results are compared with the underlining truth for sensitiv-

ity and precision assessment.

2.7 Samples and datasets
To evaluate the accuracy of iCNV, and also to serve as illustration,

we analyze two sets of samples from the ADSP. For detailed data

processing procedure, see Supplementary Methods. The first set of

samples comprises of 38 unrelated individuals with SNP array and

WES data. The second set of samples comprises of 75 related

Fig. 2. An illustration of the integrated HMM with array and WES data. ci indi-

cates hidden states at position i; ySNP=WES;i indicates observation of normal-

ized intensity score at position i; bSNP=WES;i indicates observation of BAF at

position i . Specifically in hidden state c4, since there is no variants BAF from

WES, we assign 0
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individuals with SNP array and WGS data. The family structure in

the second dataset allows the assessment of detection accuracy by

Mendelian concordance and the benchmarking of detection

methods.

3 Results

3.1 Comparison between WES and array joint platform

calls versus single platform calls
We first applied iCNV with default parameters to 38 individuals

with both WES and SNP array data. We analyzed the data in three

ways: joint segmentation using both WES and array, segmentation

using WES alone and segmentation using array alone. To illustrate

the relationship between the integrated HMM Z-score and the raw

data input values, Figure 3 shows all of the input values along with

the HMM Z-score for chromosome 22 of one typical sample. The

heatmap shows detected CNV regions and integrated HMM

Z-scores for this specific individual. Regions of the genome with low

intensity/coverage and an enrichment of 0/1 BAFs have negative

Z-scores, indicating putative deletion events; regions with high in-

tensity/coverage and an enrichment of BAFs at duplication levels

(see Supplement Method) tend to have a positive Z-score, indicating

putative duplication.

Table 1 compares the integrated analysis with a simple intersec-

tion or union of results from a separate analysis of each individual

platform. Details of how the union and intersections are performed

are given in the Supplementary Method. In this dataset, we find that

an integrated analysis yields more deletion and duplications than ad

hoc union of individual results from the two platforms. Compared

to a simple intersection of calls from the two platforms, iCNV res-

cues signals that are modest in one platform while strong in another

platform; an example is given in Supplementary Figure S3a. Even

though a simple intersection gives the most stringent call set, 87%

of integrated iCNV calls have overlap with the intersection call set,

implying strong confidence of the iCNV result (Supplementary

Table S1). On the other hand, by conventional wisdom, it seems

that taking a simple union of single platform calls should increase

sensitivity but also increase false positive rate. However, in this case,

we detect more CNVs by integrated method than by simple union.

Of the integrated call set, 8.94% are not present in the simple union,

whereas of the union call set, 12.04% are not present in the inte-

grated results. A signal that is moderate in both platforms would be

present in the integrated call set but not in the union call set. A sig-

nal that is only present in one platform but absent in the other

would be present in the union call set but not detected during inte-

gration. Compared to taking a simple union, combining the two

platforms improves resolution, thus improving CNV detection

power, and integration by the HMM allows one platform to ‘check’

the calls of the other, thus improving robustness. CNVs detected by

integrated analysis through iCNV, but not by simple union, are

more likely to be shared across samples compared with CNVs de-

tected by union but not integrated analysis (Supplementary Fig.

S3b), suggesting that they are higher quality.

Fig. 3. Case illustration of relationship between score (green line, range from

�3, 3 and centered at 0, same as the middle panel), normalized intensity score

(grey dots, left scale) and BAF (black dots, right scale) in WES and SNP array.

Heat map in the middle indicates score and CNV calling (white dots: deletion;

black dots: duplication)

Table 1. Summary of called CNVa (WES, Array, 38 samples, chr22)

CNV type WESþArrayb WES Array WES \ SNP WES [ SNP

Deletion 1364 152 1134 1252 1278

Duplication 381 124 144 252 268

aThis table measures the number of hidden state, i.e. SNP or exon/bin.
bIntegrated CNV calling with data from both platforms.

Fig. 4. CNV score at each hidden state from 75 related individuals with SNP array and WGS data on chr22 CNV hot region (17 000–20 800 kb). Region (20 320–

20 720 kb) is enlarged for detailed visualization
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To assess the power improvement achieved by combining plat-

forms, we conducted an in silico spike-in study. We define a detec-

tion to be a true positive if there is overlap between the detected

region and a known spike-in CNV region. Power is defined as the

percentage of spiked-in CNVs that are detected. We also compared

detection specificity (using precision as a measure) between iCNV

joint analysis and intersection or union of single platform call set.

The result shows that combining SNP array with WES indeed in-

creases power for all but the largest CNVs (Fig. 5a); while not sacri-

ficing specificity (Supplementary Fig. S3c).

3.2 Comparison between WGS and array platform calls

versus individual platform calls
We next applied iCNV to 75 individuals with both WGS and array

data, performing a similar analysis as above. Figure 4 shows, for a

region of chromosome 22, a heatmap of the integrated HMM

Z-scores output by iCNV run on joint platform mode. Regions re-

ported by iCNV as deletions and duplications are also shown as

thick black or white lines on the heatmap. In this dataset, the joint

method detects more CNVs than a simple intersection of a separate

analysis of the two platforms and less than their simple union

(Table 2, Supplementary Fig. S4a). Compared to WGS, SNP array

has much lower resolution and thus detects significantly fewer

CNVs. More than 71% of the SNP calls and 96% of the WGS calls

overlap with iCNV joint platform calls (Supplementary Table S2).

On the other hand, around 92% of the joint platform calls overlap

with calls made on WGS alone. Since WGS already has very good

coverage across the genome, there seems to be, as expected, a much

smaller power gain achievable by adding SNP arrays to the joint

calling procedure.

We conduct another in silico spike-in study to study the power

gains from adding array data to WGS. The result shows that WGS

has comparable power to the integrated method, performing only

slightly worse (Fig. 5b). However, for the detection of small CNVs

in SNP-dense regions, SNP-array does add valuable information.

Precision, reflecting specificity, of joint detection is similar to the

intersection method, and sensitivity is similar to the union method

(Supplementary Fig. S4c). Thus, iCNV achieves the best of both

worlds: the high precision of a stringent intersection procedure and

the high sensitivity of a relaxed union procedure.

3.3 Improvement of CNV detection by WGS alone
We utilized pedigree data that are available for the 75 individuals

with WGS to assess the improvement of iCNV over existing meth-

ods for CNV detection on WGS alone. True germline CNVs are

more likely to be shared between related individuals than between

unrelated individuals, whereas false positives are not expected to

have enriched sharing between related. Based on this fact, we can

compute the CNV sharing frequency f at each position l between

related individuals, defined as

fl ¼
P

m2S jci2m;l ¼ ci0 2m;l 6¼ diploidj
# of individuals

; (3)

where S represents the set of families, against the cohort call fre-

quency, defined simply as the fraction of individuals where this CNV

is detected among the 75 individuals analyzed. As a baseline for com-

parison, we compute the expected sharing frequency under random

permutation of family labels, which represents the null scenario of a

random detection. Enrichment of detections above the permutation-

derived mean is evidence for enrichment of true positives.

Since these samples also have array data, a comparison of calls

made by integrating WGS and SNP array versus calls made by a sep-

arate analysis of each platform alone is shown in the Supplementary

Method. Based on this metric, there is no detectable gain of adding

Fig. 5. Relationship between power (or sensitivity) and size of CNV using

spike-in in (a) WES and SNP array scheme and (b) WGS and SNP array

scheme. Joint means integrated analysis using iCNV with both WES and SNP

array data

Table 2. Summary of called CNVa (WGS, Array, 75 samples, chr22)

CNV type WGSþArrayb WGS Array WGS \ SNP WGS [ SNP

Deletion 9572 9840 825 9235 10 368

Duplication 5902 6069 48 5490 6090

aThis table measures the number of hidden state, i.e. SNP or exon/bin.
bIntegrated CNV calling with data from both platforms.

Table 3. Total length of CNV (WGS, 75 samples, chr22)

CNV type iCNV Cn.MOPS CNVnator

Deletiona 842 707 935

Duplicationa 213 1485 1686

aSize showed in kilobase.

Fig. 6. (a) CNV detection assessment of iCNV, cn.MOPS, CNVnator by real

dataset with pedigree information in WGS only scheme. Plot shows the en-

richment of CNVs (deletion or duplication) with in a pedigree. The solid line

and the dashed lines are the null distribution mean and 95% confidence inter-

val, respectively, calculated by permutation. Size of the dots shows number

of CNV events counts. (b) Enrichment score distribution plot between iCNV,

cn.MOPS and CNVnator. Larger number indicates higher enrichment. Vertical

lines are the distribution means for each method
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SNP array to WGS, which is expected given our analysis in Section

3.2 showing very little power gain from adding SNP array to WGS.

In addition, CNVs detected by integrated analysis but not union are

slightly more likely to share within family compared with CNVs de-

tected by union but not integrated analysis (Supplementary Fig.

S4b), indicating the iCNV calls are more accurate than a simple

union.

Using this pedigree-based quality metric, we compared iCNV,

run on WGS-only mode, to the WGS-based CNV detection methods

CNVnator (Abyzov et al., 2011) and cn.MOPS (Klambauer et al.,

2012). CNVnator and cn.MOPS were run with default parameters

and the same bin size (1 kb) as iCNV. Results are shown in Figure 6

and Table 3. To quantify the enrichment of familial sharing, we

computed a sharing enrichment score by subtracting from the

observed familial sharing frequency its permutation mean and then

dividing the difference by its permutation standard deviation; see

Supplementary Method for details. Larger sharing enrichment score

indicates stronger within family enrichment, while zero indicates no

enrichment. As shown in Figure 6, cn.MOPS and iCNV show sig-

nificant enrichment of familial sharing as compared to CNVnator.

The enrichment scores of the iCNV call set are significantly higher

than CNVnator (one-side t.test, P-value¼1:28� 10�7) and

cn.MOPS (one-side t.test, P-value¼1:54� 10�2).

3.4 CNV genotype inference
An integer copy number is assigned to each CNV region after the de-

tection step. The assignment is based on maximizing a likelihood

function that quantifies the probability of the observed normalized

intensities and BAFs for each copy number state. The data input

(normalized intensities and BAFs from all platforms) are shown in

Figure 7, along with their copy number assignments shown as con-

tours. The marginal densities of the normalized intensity values for

each platform seem to be well modeled by a mixture of normals

with platform-specific mean and variance. The BAF is much noisier

and do not show any platform specific trend. Thus, the likelihood

model we use is based on a mixture of normal for the normalized

intensities, with platform and copy number specific means deter-

mined by an initial K-means clustering step, and a mixture of trun-

cated normal for the BAF with pre-fixed means and standard

deviations. The maximum likelihood copy number state is assigned

to each segment.

4 Discussion

We have proposed a method, iCNV, to improve CNV detection and

genotyping accuracy using high throughput sequencing data, allow-

ing for integration of SNP-array data. The distinguishing features of

iCNV compared with existing methods are as follows: (i) iCNV

adopts CODEX to improve the normalization of sequencing data,

removing biases due to target length, mappability, GC content and

other latent systematic factors; (ii) iCNV utilizes BAF information

from sequencing data, which is valuable for CNV detection and

exact copy number inference; (iii) array data, if available, are com-

bined with sequencing data to allow more sensitive and robust CNV

detection than either platform alone; (v) iCNV outputs a Z-score

from an integrated HMM that summarizes evidence across multiple

Fig. 7. Raw intensity score and BAFs distribution of CNV genotype inference. Contour plot shows distribution density. Each margin, respectively, shows density

distribution of intensity score and BAF in each CNV genotype category
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platforms, allowing for easy visualization and quality assessment;

and (vi) even though we combine cross-platform data for CNV de-

tection, we use platform-specific parameters for exact copy number

estimation and thus minimize noise effect due to platform specific

latent variables.

How much does SNP-array data add to NGS data for CNV de-

tection? Our results, based on spike-ins and pedigree-based quality

evaluations, show that SNP-arrays give a significant boost in accur-

acy to WES but relatively little gains for WGS. For SNP-array data,

although we applied Illumina platform as example, we could incorp-

orate any data as long as both LRR and BAF are available. For CNV

detection and genotyping using WGS alone, we compared iCNV

against other read depth-based CNV detection methods including

cn.MOPS (Klambauer et al., 2012) and CNVnator (Abyzov et al.,

2011). Germline CNVs detected by iCNV have higher within-family

sharing than the other methods being compared, suggesting a higher

accuracy.

For WGS data, bin length affects analysis results. In the trade-

off between sensitivity and specificity, larger bin size increases spe-

cificity while decreasing sensitivity. We have found 1 kb to be a

good default value. Users can customize longer or shorter bins de-

pend on analysis goal and sequencing coverage. iCNV is imple-

mented in R and is available on Bioconductor (under revision) and

Github (https://github.com/zhouzilu/iCNV). For chromosome 22

on 75 samples, the run time for joint detection (WGS and SNP-

array) is less than 5 min on a 16GB-RAM laptop. Runtime scales

linearly with number of samples and genome size. iCNV allows

parallelization across samples once the CODEX normalization step

is finished, and the entire procedure can be parallelized across

chromosomes. Collectively, iCNV provides a systematic framework

and an efficient, scalable toolset for single and cross platform CNV

detection.
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