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Abstract

Motivation: Gene co-expression network analysis from transcriptomic studies can elucidate gene–

gene interactions and regulatory mechanisms. Differential co-expression analysis helps further

detect alterations of regulatory activities in case/control comparison. Co-expression networks

estimated from single transcriptomic study is often unstable and not generalizable due to cohort

bias and limited sample size. With the rapid accumulation of publicly available transcriptomic stud-

ies, co-expression analysis combining multiple transcriptomic studies can provide more accurate

and robust results.

Results: In this paper, we propose a meta-analytic framework for detecting differentially co-

expressed networks (MetaDCN). Differentially co-expressed seed modules are first detected by

optimizing an energy function via simulated annealing. Basic modules sharing common pathways

are merged into pathway-centric supermodules and a Cytoscape plug-in (MetaDCNExplorer) is de-

veloped to visualize and explore the findings. We applied MetaDCN to two breast cancer applica-

tions: ERþ/ER- comparison using five training and three testing studies, and ILC/IDC comparison

with two training and two testing studies. We identified 20 and 4 supermodules for ERþ/ER- and

ILC/IDC comparisons, respectively. Ranking atop are ‘immune response pathway’ and ‘comple-

ment cascades pathway’ for ER comparison, and ‘extracellular matrix pathway’ for ILC/IDC com-

parison. Without the need for prior information, the results from MetaDCN confirm existing as well

as discover novel disease mechanisms in a systems manner.

Availability and Implementation: R package ‘MetaDCN’ and Cytoscape App ‘MetaDCNExplorer’

are available at http://tsenglab.biostat.pitt.edu/software.htm.

Contact: ctseng@pitt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Differential co-expression (DC) refers to the change in gene–gene

correlations between two conditions (e.g. cases and controls).

Changes in gene–gene correlation may occur in the absence of differ-

ential expression, meaning that a gene may undergo radical changes

in regulatory pattern that would be undetected by traditional differ-

ential expression (DE) analyses (see Fig. 1A). A specific phenotype

could be contributed by differential co-expression without altering

the expression levels of genes. This phenomenon has been found in

aging (Southworth et al., 2009) as well as other biological condi-

tions (Gaiteri et al., 2014). Disease-associated alterations in the

regulatory systems that create co-expression changes may be re-

vealed through comparing gene–gene correlations that are computed

separately from control and disease populations. Therefore, DC ana-

lysis can provide complementary information to standard differen-

tial expression (DE) analyses. Differential co-expression in two

conditions could shed light on novel biological mechanism. For ex-

ample, a group of genes may be regulated by a common transcrip-

tion factor or epigenetic modification, which is active in one

condition but disrupted in the other.

In the literature, Lai et al. (2004) has proposed an expected con-

ditional F-statistics to identify differential co-expressed gene pairs,

while Amar et al. (2013) and Bhattacharyya and Bandyopadhyay

(2013) developed methods for direct identification of DC gene mod-

ules. Choi and Kendziorski (2009) detected differential co-

expression using predefined gene sets such as Gene Ontology (GO)

categories. Although this approach incorporates prior biological in-

formation, it lacks the ability to detect novel DC modules. Another

class of methods detected differential modules with genes highly co-

expressed in one reference condition but with little or no correlation

in the other condition. These types of methods rely on applying clus-

tering methods to one reference condition, causing case-control

asymmetry in the analysis (Ihmels et al., 2005; Watson, 2006). To

circumvent this problem, Zhang and Horvath (2005) identified

co-expressed modules in the entire (cases and controls combined)

cohort through clustering and then evaluate their differential co-

expression across conditions. Similarly, Tesson et al. (2010) ex-

tended this framework to detect differential co-expression modules

by introducing the correlation changes between conditions into dis-

similarity matrix for clustering (DiffCoEx).

All methods described above for DC network detection focused

on single transcriptomic study analysis. The differential correlation

relationship could arise from meaningful biological sources as well

as uncorrected technical biases (see Figure 1 in Gaiteri et al., 2014).

Any mechanism that synchronously regulates transcription of mul-

tiple genes, unwanted batch effect, or mixture of tissues could poten-

tially contribute to co-expression relationships. Therefore, instead of

looking for DC networks between two conditions in a single study,

differential co-expression may be confirmed across multiple datasets

via meta-analyses to increase the detection power and stability. DC

networks that are significant in one dataset may become more con-

vincing if the DC patterns are preserved across multiple datasets.

DC between conditions can be assessed by different choices of meas-

ures; for example, differential modules with a predominant measure

such as density (Li et al., 2011) or other sophisticated network meas-

ures (Kugler et al., 2011; Langfelder et al., 2011).

So far, few studies attempted to detect DC networks across mul-

tiple studies. Mehan et al. (2009) proposed a simulated-annealing-

based method to detect DC modules of which the network density

changes were associated with phenotype. However, their method

embedded pathway enrichment in the optimization of objective

function; that is, the optimization phase heavily depended on the

prior knowledge and also the output module sizes from the method

were generally small. In this paper, we have developed a new meta-

analytic framework, namely MetaDCN, to search for initial DC

modules without prior information. Our method included add-

itional network properties in the energy function to detect biologic-

ally meaningful ‘basic DC modules’ and false discovery rate (FDR)

was controlled by permutation analysis. We then further combined

basic DC modules that share common pathway annotation into

more interpretable DC supermodules. We evaluated the method on

simulated data and breast cancer studies to search for DCN between

ERþ versus ER- and invasive lobular carcinoma (ILC) versus inva-

sive ductal carcinoma (IDC). The identified DCNs were further vali-

dated in independent breast cancer studies. The result identified

pathways such as ER-mediated immune functions and extracellular

matrix heterogeneity between ILC and IDC that help elucidate the

underlying disease mechanisms.

2 Methods

MetaDCN combines multiple case-control transcriptomic studies to

detect disease-associated modules such that genes in the modules are

highly correlated in control samples but the correlations are

A B

Fig. 1. (A) An example of differential co-expression between ERþ and ER- breast cancers. Each dot represents one sample. Strong co-expression between ABCA12

and ABHD11 can be observed in ER- tumors (right) but not in ERþ tumors (left). Samples are from GSE7390. (B) Diagram of procedures for basic module detection by

energy function optimization and supermodule assembly via pathway enrichment criterion (Color version of this figure is available at Bioinformatics online.)
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disrupted in cases or vice versa. An energy function is introduced to

detect modules of DC networks across studies. Since direct opti-

mization for large modules is computationally challenging and un-

stable, we will first aim for detecting a sequence of small ‘basic DC

modules’ of sizes between 3 and 30. Basic DC modules are then

combined into DC supermodules via a module assembly algorithm

based on pathway enrichment information (see Fig. 1B). Such

pathway-centric assembly improves functional annotation of de-

tected supermodules that can advance disease understanding and

guide further hypothesis generation.

2.1 Basic DC module detection
The algorithm to detect basic DC modules is outlined below. Details

of energy function, optimization procedure and false discovery rate

control are described.

2.1.1 Energy function

Consider N transcriptomic studies, each containing case and control

samples. Gene co-expression networks are first constructed among

cases and among controls for each of the N studies, thus generating

2N co-expression networks. In this paper, we demonstrate our

method based on unweighted networks but the method can be ex-

tended to weighted networks. To build unweighted networks and

normalize them across different studies, we first calculated pair-wise

gene–gene Spearman’s correlations for robust comparisons. In con-

trast to Pearson correlation, Spearman’s correlation can capture

both linear and non-linear association. Considering the large num-

ber of possible edges and computation complexity, we then select

the correlation cut-off for edge connections so that only the top

0.4% of possible connections in each network were kept (Lee et al.,

2003). This procedure provides robustness because different studies

usually have different sample sizes and are conducted using different

experimental platforms, which could result in distinct correlation

distributions. Our proposed algorithm is developed for the more

popular unweighted network but it can be modified for weighted

network if desired.

We propose to minimize the following energy function (target

function) for detection of gene modules with differential co-

expression:

Etot ¼ w1Ediff mean þw2Esize þw3Ediff var

The proposed target function comprises the following three compo-

nents: I) Ediff mean for mean network density difference between two

phenotypes across N studies, II) Esize for size of module and III)

Ediff var for the consistency of the density difference between the two

phenotypes across N studies. Gene modules minimizing Etot have

consistently large correlation difference between cases and controls

across multiple studies, as well as reasonable large size. The search

direction is bidirectional, meaning that we will identify modules

with significantly higher connections in case networks than in con-

trol networks and then repeat reversely.

Each component in the target function is described by an expo-

nential decay function. The first component is defined as

Ediff mean ¼ exp �a1

PN

i¼1
ðdi;cases�di;controlsÞ

N

� �� �
, where di;cases and

di;controls are the densities of case network and control network re-

spectively in study i. The exponential decay function favors

larger mean density differences between cases and controls and is

the major target of our algorithm. The second component

Esize ¼ exp f�a2ðjxj=cÞg (where x denotes the genes in the module,

jxj is the module size) is related to the size of the modules which

favors larger modules and penalizes smaller modules. We restricted

the module size no larger than 30 due to large searching space. We

set c¼30 to rescale the ratio ranging from 0 to 1 to make the

three decay parameters (a1, a2 and a3) comparable in later

parameter selection. Without Esize, dimers or triplets with density 1

or 0 could easily dominate the output by random chance and in-

crease false positives. The third component Ediff var ¼

exp �a3 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i
ðdi;cases�di;controlsÞ2

N

q� �� �
quantifies the variance of the

paired difference of network densities between cases and controls

across studies to favor consistent differential co-expression among

studies. In all three components, the parameters (a1, a2 and a3) con-

trol the decay rate in the exponential function. In our implementa-

tion, we set a2 ¼ 10 for Esize and a1 ¼ a3 ¼ 5 for Ediff mean and

Ediff var. The higher a2 was used for Esize to avoid extremely small

modules as previously mentioned.

To tune the parameters w1, w2 and w3 in the target function, we

first constrain the sum of the three parameters to be 1000, i.e.

w1 þw2 þw3 ¼ 1000. We assigned equal importance to Ediff mean

and Ediff var by setting w1¼w3, and searched for optimal w2 from

100 to 700 with 100 increments that could output the largest num-

ber of basic DC modules under FDR 0.3 (see below for detection of

basic DC modules and FDR control).

2.1.2 Optimization by simulated annealing

Due to the non-convex nature of Etot, we applied simulated anneal-

ing, a stochastic algorithm for non-convex optimization

(Kirkpatrick et al., 1983). In each Monte Carlo (MC) step with

simulated annealing, a new state is proposed and denoted as Xnew,

which is either adding a node (gene) from trial set to selected set or

removing a node (gene) from selected set to trial set. At the begin-

ning, the trial set is determined as the set of genes that have at least

one edge connected to the seed module genes (initial selected set) in

any of the N case co-expression networks. If the resulting energy is

smaller, the state is accepted. If not, the state is accepted with an ac-

ceptance probability as Pacc ¼ min 1; pðxnewÞpðxnew!oldÞ
pðxoldÞpðxold!newÞ

� �
, where Pacc is

the acceptance probability and pðxold!newÞ is the transition probabil-

ity from old state to the new state. If a genes is added from trial

set to selected set, pðxold!newÞ=pðxnew!oldÞ ¼ jtrialsetj=jselectedsetj;
if a genes is removed from selected set to trial set,

pðxold!newÞ=pðxnew!oldÞ ¼ jselectedsetj=jtrialsetj, where jxj denotes

the size of set x. pðxnewÞ is the Boltzmann distribution of the energy

function to be minimized: pðxnewÞ ¼ exp f�EtotðxnewÞ=Tg, where T

is a temperature parameter. When temperature is high, new trial

moves will be accepted easily and thus more freely jump out of the

local minimum. When temperature gets lower, it tends to converge

to a local minimum. We apply the temperature schedule Tðkþ1Þ
¼ 0:95 � Tk and stop the annealing run if the acceptance ratio is

smaller than 2%, where the acceptance ratio is calculated as the

ratio of steps accepted in every 400 MC steps. Due to large search-

ing space, we bounded the module size between 3 and 30. If current

module size is 3, only addition of new node is allowed for a new

state while if module size is 30, only node removal is allowed.

Although simulated annealing helps improve local minimum

trapping, a good starting point, which is called seed module here, is

critical for optimization in high dimensional space. Instead of ran-

domly selecting a subset of genes from the genome to be the seed

modules, an edge-study matrix of Spearman correlations was con-

structed where rows represent all possible edges and columns repre-

sent all studies in two conditions of size 2N (Walley et al., 2012).

For each edge on the rows, a simple paired t-test is applied to the
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Spearman correlations to assess candidate differential co-expression

edges (require paired t-test P-value<0.1 and absolute mean differ-

ence of Spearman correlation>0.1). Based on these candidate dif-

ferential co-expression edges, an initial network is constructed and

multiple (denoted as K) connected graphs in the network are identi-

fied. If the size of a connected graph is larger than 30, we randomly

sample 10 genes from it as the initial seed module for optimization

starting points; if the size is smaller than 3, we discard it. Otherwise,

the optimization starts from the connected graphs as the seed mod-

ule directly. In our evaluation for simulations and application, such

an algorithm to generate seed modules has performed well. But it is

possible to apply other community detection algorithms for this pur-

pose (Fortunato, 2010).

Although simulated annealing helps improve local optimum

problem, optimization instability still exists. We will repeat the opti-

mization by starting from K initial seed modules and repeat R times

of simulated annealing repeats. For two repeats with Jaccard index

greater than 0.8, we will select the one with smaller Etot. This will

generate
PK

k¼1 Rk basic differential co-expression (DC) modules for

supermodule assembly, where Rk is the number of basic modules

from the kth seed modules with pairwise jaccard index smaller than

0.8.

2.1.3 Control of false discovery rate

To avoid detection of spurious modules by chance, false discovery rate

is assessed for detected
PK

k¼1 Rk basic DC modules as described below.

Denote by Ekj the optimized energy value for detected basic DC mod-

ule ukj from the k-th seed module and j-th simulated annealing repeat,

where 1 � k � K and 1 � j � Rk. We first permute the

case-control class labels for samples in each study and then reconstruct

the case and control co-expression network as described

previously. Simulated annealing optimization is similarly applied to

detect
PK

k¼1 R0k ‘null’ basic DC modules, where R0k is the number of

basic modules dected from permuted network with pairwise Jaccard

index smaller than 0.8. Suppose the permutation is repeated for

B times and the resulting energy values are denoted as E
ðbÞ
k;j where

1 � b � B; 1 � k � KðbÞ; 1 � j � R
0ðbÞ
k . Under null hypothesis,

the resulting case and control co-expression networks from permuta-

tion have no difference and E
ðbÞ
k;j will form a null distribution to assess

P-values of Ekj. The P-values of basic DC modules ukj are estimated as

pðukjÞ ¼
PB

b¼1

PKðbÞ

k¼1

PR
0ðbÞ
k

j¼1
IfEðbÞ

kj
�Ekjgþ1PB

b¼1

PKðbÞ

k¼1
R
0ðbÞ
k
þ1

. Pseudo count 1 is added to both

the denominator and the numerator to avoid zero P-values

(Phipson and Smyth, 2010). FDR is controlled by Benjamini-Hochberg

correction to account for multiple comparisons.

2.2 Supermodule assembly, summarization and

visualization
2.2.1 DC supermodule assembly

Since the current approach limits the size of the basic DC modules

between 3 and 30, small modules often do not yield significant path-

way enrichment annotation to inspire further hypothesis generation.

Therefore, in order to obtain larger DC modules, we proposed to

use statistical significance of pathway enrichment to guide module

assembly. Firstly, we applied pathway enrichment analysis using

Fisher’s exact test on detected basic DC modules (here we choose

FDR � 0.3) against 2,379 pathways downloaded from MSigDB

(http://www.broadinstitute.org/gsea/msigdb/), which contained

Biocarta, KEGG, Reactome and Gene Ontology databases (exclud-

ing large pathways with more than 250 genes). For each given

pathway, we applied Fisher’s meta-analysis method to combine P-

values across basic DC modules and selected the top 150 pathways

with the most significant meta-analyzed P-values. The restriction is

not necessary, but will reduce the computation cost, without chang-

ing the results much. For each of the 150 candidate pathways, we

searched among combinations of up to three basic DC modules

(including both over-connected and under-connected DC modules

of case-control comparison) and identify the assembled supermodule

such that its pathway enrichment P-value is minimized. Take the im-

mune response pathway in Figure 2C as an example, the pathway

enrichment P-values for modules H9, L1 and L2 (H stands for mod-

ules with higher density in ERþpatients; L stands for modules with

lower density in ERþpatients) are 0.018, 7� 10�4 and 0.02 with

module sizes 10, 10 and 11, respectively. The supermodule combin-

ing these three basic DC modules contains 28 genes with Fisher’s

exact test P-value¼ 1:33� 10�6. Assembly of multiple basic DC

modules can yield larger supermodules with more genes involved in

a specific pathway, which provides better biological interpretation

and hypothesis generation. Additionally, if the assembled supermod-

ule contains both over-connected and under-connected basic DC

modules (see red and green edges in Fig. 2C), it may suggest an inter-

esting alternative activation mechanism in the pathway related to

disease development.

2.2.2 Summarization and visualization of DC supermodules

Visualization of basic DC modules across N studies can be easily

done by displaying the 2N co-expression networks as shown in

Figure 2(A, B). For DC supermodules, however, smarter design of

visualization is needed. Figure 2(C, D) shows our proposed visual-

ization display for DC supermodules. On the left plot, three basic

DC modules (gene nodes displayed by red, blue and yellow) are

combined to form the DC supermodule. The edge widths between

any pair of gene nodes i and j are controlled proportionally by a

standardized score Zij to represent the degree of differential co-

expression. Denote by u
ðsÞ
ij and v

ðsÞ
ij the Spearman correlation be-

tween gene i and j in study s in case and control samples, respect-

ively. Let ds
ij ¼ u

ðsÞ
ij � v

ðsÞ
ij and let �dij be the mean of paired

correlation differences of all studies, rij be the standard deviation of

paired correlation differences and r0 be the fudge parameter esti-

mated by the median of all standard deviations rij’s. The the edge

widths are proportionally to the standardized score Zij ¼
�dij

ðrijþr0Þ.

The fudge parameter r0 is to avoid accidentally large Zij due to small

rij (Tusher et al., 2001). As a result, the DC supermodule can be rep-

resented as a weighted undirectional network. P-values of the Z

scores were calculated by permuting case and control subjects in

each study and randomly subsample the same number of genes to

calculate the null permutated Z scores and comparing with them.

Only edges with significant P-values passing certain P-value thresh-

old are displayed in the network plot.

We further developed a Cytoscape plug-in application, called

‘MetaDCNExplorer’, which utilizes the power of Cytoscape Java

API in visualizing complex networks and integrating topology with

attributes. The interface allows users to load the input supermodule

attributes and generate interactive network visualization with add-

itional context annotations. First, the user selects a DC supermodule

of interest to visualize from the list of biological pathways ranked

by the significance of enrichment. The attributes of that supermod-

ule will be loaded. The absolute values of the standardized Z scores

for each gene pairs will be interpreted as edge widths, and the initial

network view will be generated using edge-weighted force directed

layout algorithm provided from prefuse toolkit (see supplement
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material for more details). In the network view, the edge width rep-

resents the edge weight. Nodes with their neighbors connected by

high-weight edges will be automatically clustered together, so that

the modular organization will be revealed. The edge color represents

the direction of differential co-expression interpreted from edge Z

scores, in which positive values (red color) indicate over-connected

edges and negative values represent under-connected edges in case-

control comparison. Node color represents the original basic DC

modules where the gene belongs, and the genes annotated under the

selected biological pathway are highlighted with outer black circles.

To account for the fact that different diseases might have different

range of differential co-expression signals, we thus introduced add-

itional factors that control the repelling and attracting force between

and within the modules. These factors, together with the edge

P-value cut-off threshold, are made adjustable in a control panel so

that users can update the network view in real time. In summary,

this application is designed to reveal the modular organization

of DC supermodules and to suggest alternatively activated

sub-pathways that allow biologists to further explore and generate

biological hypotheses on potential disease mechanisms.

2.3 Datasets
In this paper, we applied MetaDCN to two breast cancer applica-

tions. In the first application, DC supermodules are detected for

ERþ versus ER- comparison in five training studies and validated in

three independent testing studies. The second application examines

invasive lobular carcinoma (ILC) and invasive ductal carcinoma

(IDC) comparison in two training studies (with both ILC and IDC

samples) and partially validate in two testing studies, where only

ILC subjects are available. Details of data description and data pre-

processing are available in Supplement Material.

3 Results

3.1 Simulation
We first applied MetaDCN to a simulated dataset including 5 stud-

ies. Each study contained case and control groups, with number of

subjects in each group drawn from Poisson(50). We generated 1000

artificial genes named 1 to 1000 and a subset of them belonged to 5

gene modules (non-overlapping), each of which containing the

number of genes gm � Poissonð20Þ (1 � m � 5). Let x
ðsÞðmÞ
c denote

the vector of expression intensities of the gm genes in the m-th

module in group c in study s. We generated x
ðsÞðmÞ
c � Nð0;RðsÞðmÞc Þ,

where RðsÞðmÞc � Inverse�Wishartð60; ð1� qm
c ÞI þ qm

c JÞ; Igm�gm
is

the identity matrix, Jgm�gm
is a matrix with all entries as 1, c¼1 for

controls, c¼2 for cases, s¼1, 2, . . ., 5, and m¼1, 2, . . ., 5. We set

different ðqm
c¼1; qm

c¼2Þ pairs for five modules to include both strong

and weak signals. They were set to be (0.3, 0.1), (0.1, 0.3), (0.5,

0.1), (0.1, 0.5) and (0.7, 0.1) for 5 modules respectively. Therefore,

the first and second modules have smaller signals, while the fifth

module has the strongest signal. For genes outside the module, the

expressions were i.i.d. drawn from N(0, 1).

A B

C D

Fig. 2. (A) Example module (L1) more densely connected in ER- group with red nodes indicate genes belonging to the immune response pathway. (B) Example

module (H7) more densely connected in ERþgroup with red nodes indicate genes belonging to the complement cascade pathway. Nodes represent genes and

links between them represents co-expression relationship. Each column corresponds to one independent study. (C) Visualization of immune response pathway

supermodule. (D) Visualization of complement cascades pathway supermodules. The edge color represents the direction of differential gene co-expression, in

which positive values (red color) represent ER-positive-favored co-expression and negative values (green color) show ER-negative-favored co-expression. Node

color represents its origin of sub-modules, and the genes annotated in the immune response pathway are highlighted with dark circles. Edge width represents

edge weight (Z score of differential co-expression) (Color version of this figure is available at Bioinformatics online.)
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With this simulated dataset, we constructed the edge-study ma-

trix based on Spearman correlation. The module search was per-

formed using simulated annealing algorithm with maximum

iterations as 500. R¼3 trials with different initial seed modules

were repeated, and P-value was calculated using B¼10 permuta-

tions. In the end, the best module among 3 repeats was selected

based on optimal P-value and energy. For simplicity, here we only

evaluate performance of basic DC modules without module assem-

bly. If the Jaccard index (ratio of the intersection set divided by the

union set) of the identified basic DC module to the underlying truth

is greater than 0.5, we denote this searching as a successful hit.

We generated 50 datasets and compared the performance of

MetaDCN with an existing method DiffCoEx (Tesson et al., 2010).

The implementation of DiffCoEx used the R code directly from the

original paper with the default setting. The soft threshold, as the

most sensitive tuning parameter, was chosen based on scale free top-

ology fit (Zhang and Horvath, 2005). The hierarchical tree was cut

using dynamicTreeCut R package (Langfelder et al., 2008).

Table 1 shows the lower and upper quartile of number of de-

tected modules and the percentage of successful hit for each of the

five modules under different FDR cut-offs for permutation test in

the 50 repeated simulations. The result shows that DiffCoEx tends

to detect many false positives while still miss the underlying true DC

netowkrs.

3.2 Breast cancer studies (ER1 versus ER-)
We next applied our method to identify differentially co-expressed

modules between networks from ERþpatients and networks from

ER- patients. Estrogen receptor, indicating the cancer cell response

to hormone estrogen, is an important marker in breast cancer cases

for treatment selection. Detecting differential co-expression network

between ERþ and ER- patients can help us better understand the dif-

ference of disease mechanism, thus designing specific therapies for

ERþ/ER- patients. In the analysis of training data, five pairs of gene

co-expression networks were constructed for ERþpatients and ER-

patients across the five studies. Edge-study matrices were calculated

and connected components were obtained as initial seed modules for

simulated annealing algorithm. FDR was calculated for each of the

modules with B¼10 permutations. The best weights were selected

based on the results from first 3 repeats with different initial mod-

ules. With the optimal weights and R¼10 repeats, at FDR � 0.3,

12 basic DC modules were detected as over-connected in

ERþnetworks while another 12 basic DC modules were detected as

over-connected in ER- networks. Two example modules, one

densely connected in ERþnetworks and one densely connected in

ER- networks, are illustrated in Figure 2(A, B). Both modules

achieved FDR 0.02.

We tested varying number of repeats (R) in each seed module

and the results of pathway-centric assembly are quite consistent. We

identified 20 supermodules engaged in 40 pathways, sharing at least

3 overlapping genes with the enriched pathway. The top pathways

associated with the assembled modules were listed in Table 2(A) (see

full list in Supplementary Table S4). Among the list of summarized

DC supermodules, ‘complement cascade pathway’ was with highest

significance followed by ‘immune response pathway’. Figure 2(C, D)

showed the network view for these two DC supermodules.

In the literature, studies have shown that estrogen receptors can

regulate innate immune cells (Kovats, 2015). Cunningham and

Gilkeson (2011) found ERs have prominent effects on immune func-

tion in both the innate and adaptive immune responses. ERa expres-

sion is associated with outcome in patients with autoimmune diseases

such as lupus. Possible alternative activations of immune and comple-

ment pathway between ERþ and ER- breast cancer patients have also

been revealed in several research studies. Teschendorff et al. (2007)

found that the heterogeneity in clinical outcome of ER- breast cancer

patients are related with complement and immune pathway, while

this association is not observed in ERþpatients.

We next validated those two supermodules in leave-one-out

cross-validation (LOOCV). Each time, we left one study out as

Table 1. Percentage of successful hit (Jaccard index>0.5) in simulation study (50 repeats)

Method FDR Upper and lower

quartile

M1 (%) M2 (%) M3 (%) M4 (%) M5 (%)

MetaDCN 0.1 (3, 5) 56 58 96 96 100

0.2 (4, 5) 72 74 100 100 100

0.3 (5, 5) 78 82 100 100 100

DiffCoEx – (3, 39) 8 8 30 26 37

Table 2. Top pathway-centric supermodules with at least 3 pathway overlapping genes (with 10 repeats with different initial modules)

(A) Pathway name (ERþ versus ER-) Pathway size Module size # pathway genes q-value P-value Module

REACTOME_COMPLEMENT_CASCADE 32 25 4 2.14E-05 1.93E-07 H7,H8

GO_IMMUNE_RESPONSE 235 28 7 5.63E-05 1.33E-06 H9,L1,L2

REACTOME_REGULATION_OF_COMPLEMENT_CASCADE 14 25 3 5.63E-05 2.47E-06 H7,H8

GO_ORGAN_MORPHOGENESIS 144 35 6 5.63E-05 2.80E-06 H3,H5,L9

BIOCARTA_TCYTOTOXIC_PATHWAY 14 23 3 5.63E-05 2.85E-06 H3,L5

(B) Pathway name (ILC versus IDC) Pathway size Module size # pathway genes q-value P-value Module

GO_PROTEASE_INHIBITOR_ACTIVITY 41 27 3 0.003 6.13E-05 L2,L4,L8

GO_PROTEINACEOUS_EXTRACELLULAR_MATRIX 98 15 3 0.003 0.00085 L5,L7

GO_EXTRACELLULAR_MATRIX 100 15 3 0.003 0.00085 L5,L7

Module starts with H indicates it is more densely connected in ERþ or ILC network, while module starts with L indicates it is more densely connected in ER-

or IDC network.

1126 L.Zhu et al.

Deleted Text: <italic>p</italic>
Deleted Text: <italic>p</italic>
Deleted Text: .
Deleted Text: -)
Deleted Text: - 
Deleted Text: ER-
Deleted Text: ER-
Deleted Text: ER-
Deleted Text: ER-
Deleted Text: ER-
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw788/-/DC1
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D;. 
Deleted Text: ER-
Deleted Text: ER-


testing set and used the remaining four studies as training set to per-

form module searching and module ensemble. In each LOOCV, 2 or

3 basic DC modules were merged into a DC supermodule in each

pathway. We calculated network averaged densities in each basic

DC module in the four training studies (on the left of dashed line) as

well as the testing study (on the right of dashed line) in Figure 3(A)

and Supplementary Figure S1(A). Similarly, box-plots of Spearman

correlation distributions are plotted in Figure 3(B) and

Supplementary Figure S1(B). The result consistently shows good val-

idation of the finding.

Finally, we used the top two pathways and the DC supermodules

obtained from five training studies and tested in the three independ-

ent validation studies. Same set of genes was used for constructing

co-expression network. If genes were not available in a study with

different platform, the overlapped gene set was used. Following

Figure 3 (A, B) and Supplementary Figure S1(A, B) for LOOCV, we

plotted the average network densities and box-plots of Spearman

correlation distribution in Figure 3(C, D) and Supplementary Figure

S1(C, D) for the basic DC modules of the supermodules enriched in

those two pathways. The result provides consistent validation of the

differential co-expression pattern of gene modules enriched in these

pathways.

As a comparison, we also applied DiffCoEx (Tesson et al., 2010)

to our datasets. Since DiffCoEx is only applicable to a single study,

we applied it to the largest study METABRIC using the same pro-

cedure as described in the simulation section and evaluated the val-

idation in other studies. By selecting soft threshold based on free

topology fit (Zhang and Horvath, 2005) and cutting hierarchical

tree using dynamicTreeCut R package (Langfelder et al., 2008), 12

modules were detected in METABRIC by DiffCoEx. The gene–gene

pairwise correlation distributions were calculated for METABRIC

as well as the other four studies and the boxplots are shown in

Figure 4. Most detected modules only showed moderate degree of

validation.

3.3 Breast cancer studies (ILC versus IDC)
We finally applied our method to search for DCN between two

breast cancer histological subtypes: ILC (invasive lobular carcin-

oma) and IDC (invasive ductal carcinoma). IDC and ILC are the

two most common subtypes of breast cancers, representing 60-75%

and 5-15% of all breast cancer cases, respectively (Guiu et al.,

2014). Several studies have shown that they are two biological dis-

tinct diseases by comparing their genomic profiles, but the biological

process driving for different subtypes are still largely unknown

(Michaut et al., 2016). Identifying differential co-expression net-

work between ILC and IDC can potentially unveil different biolo-

gical mechanism and provide targets for precise treatment for ILC.

Using similar parameter settings, with the optimal weights and

R¼10 repeats, at FDR � 0.3, 11 basic DC modules were detected

as over-connected in IDC, and no modules were detected as over-

connected in ILC. Pathway-enrichment-guided module assembly

was performed for varying number of repeats with different initial

seed modules. The results were quite consistent. We identified 4

supermodules engaged in 5 pathways, sharing at least 3 overlapping

genes with enriched pathway. The top pathways associated with the

assembled modules from 10 repeats were listed in Table 2(B) (see

full list in Supplementary Table S3). Supplementary Figure S2 (A, B)

A

B

C D

Fig. 3. (A) Densities and (B) correlations of the basic modules assembled into immune response pathway supermodules in leave-one-out cross-validation. Solid lines sep-

arate modules, and dashed lines separate training set and testing set. (C) Module density and (D) correlations of genes in the basic modules enriched in immune response

supermodule in independent validation studies. Solid lines separate training sets and testing sets (Color version of this figure is available at Bioinformatics online.)
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shows the visualizations of two supermodules enriched in protease

inhibitor activity and proteinaceous extracellular matrix pathways.

We also validated the densities and correlations of the basic modules

ensembled in those two pathways in the validation sets (see

Supplementary Fig. S2).

In the literature, alteration of extracellular matrix in tumor

stroma has been shown relevant to metastatic potential (Oskarsson,

2013). Previous imaging analysis has further demonstrated different

evolution of fibrillary collagen changes in ILC versus IDC through-

out tumor progression (Burke et al., 2013).

4 Conclusion

In this study, we proposed a method, MetaDCN, to detect consensus

differential co-expression (DC) networks across multiple studies

with respect to certain phenotype of interest (e.g. case versus control

or ERþ versus ER-). The method optimizes a target function to de-

tect biologically meaningful DC modules. Since global optimization

is computationally infeasible and unstable, we developed a

simulated annealing algorithm to detect small (size 3–30) basic DC

modules and assessed their false discovery rate. Through a pathway-

guided module assembly algorithm, basic DC modules passing FDR

threshold were merged into DC supermodules that were enriched in

certain pathways to allow biological interpretation and hypothesis

generation. The module assembly approach also allowed over- and

under-connected basic DC modules to be simultaneously merged in

a DC supermodule, representing possible alternative sub-pathway

activation under different phenotypic conditions. Simulations and

two real applications in breast cancer studies (ERþ versus ER- and

ILC versus IDC) demonstrated superior performance of MetaDCN

to elucidate novel disease-related differential co-expression mechan-

isms. DC supermodules identified by training breast cancer studies

were further validated in independent studies. A Cytoscape plug-in

software, MetaDCNExplorer, was developed to visualize and inter-

actively explore the identified DC networks.

Given limited sample size and potentially biased patient cohort

or experimental platform in a single transcriptomic study, detection

of DC modules from one study is deemed unstable and often diffi-

cult to validate. With the rapid accumulation of transcriptomic stud-

ies in the public domain, a meta-analytic approach to combine

multiple transcriptomic studies is promising to identify biological

meaningful and verifiable DC modules. MetaDCN meets the urgent

need for this purpose and is expected to elucidate novel mechanisms

in many disease investigations.
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