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Homeostatic Feedback Modulates the Development of
Two-State Patterned Activity in a Model Serotonin Motor
Circuit in Caenorhabditis elegans

Bhavya Ravi,"2 Jessica Garcia,? and ““Kevin M. Collins'>
Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida 33136 and 2Department of Biology, University of Miami,
Coral Gables, Florida 33143

Neuron activity accompanies synapse formation and maintenance, but how early circuit activity contributes to behavior development is
not well understood. Here, we use the Caenorhabditis elegans egg-laying motor circuit as a model to understand how coordinated cell and
circuit activity develops and drives a robust two-state behavior in adults. Using calcium imaging in behaving animals, we find the
serotonergic hermaphrodite-specific neurons (HSNs) and vulval muscles show rhythmic calcium transients in L4 larvae before eggs are
produced. HSN activity in L4 is tonic and lacks the alternating burst-firing/quiescent pattern seen in egg-laying adults. Vulval muscle
activity in L4 is initially uncoordinated but becomes synchronous as the anterior and posterior muscle arms meet at HSN synaptic release
sites. However, coordinated muscle activity does not require presynaptic HSN input. Using reversible silencing experiments, we show
that neuronal and vulval muscle activity in L4 is not required for the onset of adult behavior. Instead, the accumulation of eggs in the adult
uterus renders the muscles sensitive to HSN input. Sterilization or acute electrical silencing of the vulval muscles inhibits presynaptic
HSN activity and reversal of muscle silencing triggers a homeostatic increase in HSN activity and egg release that maintains ~12-15 eggs
in the uterus. Feedback of egg accumulation depends upon the vulval muscle postsynaptic terminus, suggesting that a retrograde signal
sustains HSN synaptic activity and egg release. Our results show that egg-laying behavior in C. elegans is driven by a homeostat that scales
serotonin motor neuron activity in response to postsynaptic muscle feedback.
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The functional importance of early, spontaneous neuron activity in synapse and circuit development is not well understood. Here,
we show in the nematode Caenorhabditis elegans that the serotonergic hermaphrodite-specific neurons (HSNs) and postsynaptic
vulval muscles show activity during circuit development, well before the onset of adult behavior. Surprisingly, early activity is not
required for circuit development or the onset of adult behavior and the circuit remains unable to drive egg laying until fertilized
embryos are deposited into the uterus. Egg accumulation potentiates vulval muscle excitability, but ultimately acts to promote
burst firing in the presynaptic HSNs which results in egg laying. Our results suggest that mechanosensory feedback acts at three
distinct steps to initiate, sustain, and terminate C. elegans egg-laying circuit activity and behavior. j

ignificance Statement

(Wonget al., 1995; Garaschuk et al., 1998, 2000; Watt et al., 2009;
Warp et al,, 2012). In contrast, mature neural circuits show co-
ordinated patterns of activity required to drive efficient behav-
iors. Activity-dependent mechanisms have been shown to play
key roles during development in vertebrate neural circuits (Gu et

Introduction
Developing neural circuits in the cortex, hippocampus, cerebel-
lum, retina, and spinal cord show spontaneous neural activity
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al., 1994; Gu and Spitzer, 1995; Jarecki and Keshishian, 1995;
Borodinsky et al., 2004; Hanson et al., 2008), but the complexity
of such circuits poses limitations in terms of understanding how
developmental events, neurotransmitter specification, and sensory
signals act together to promote the transition from immature to
mature patterns of circuit activity. Genetically tractable inverte-
brate model organisms, such as the nematode Caenorhabditis
elegans, have simple neural circuits and are amenable to powerful
experimental approaches allowing us to investigate how activity
in neural circuits is shaped during development.

The C. elegans egg-laying circuit is a well characterized neural
circuit that drives a two-state behavior in adult animals with ~20
min inactive periods punctuated by ~2 min active states during
which ~4—6 eggs are laid (Waggoner et al., 1998). The egg-laying
circuit comprises two serotonergic hermaphrodite-specific neu-
rons (HSNs) that promote the active state (Waggoner et al., 1998;
Emtage et al., 2012), three locomotion motor neurons (VA7,
VB6, and VD7), and six cholinergic ventral C neurons (VC1-6),
all of which synapse onto a set of vulval muscles whose rhythmic
activity drives either weak twitching or the release of eggs from
the uterus in phase with locomotion (White et al., 1986; Collins
and Koelle, 2013; Collins et al., 2016). Four uvl neuroendocrine
cells connect the vulval canal to the uterus, which holds embryos
until they are laid. HSN, VC, uvl, and vulval muscle development
occurs during the early to mid-L4 larval stages and requires in-
teractions with the developing vulval epithelium, but not the
other cells in the circuit (Newman et al., 1996; Burdine et al.,
1998; Colavita and Tessier-Lavigne, 2003; Shen et al., 2004).

During egg laying, serotonin released from the HSNs signals
through vulval muscle receptors (Carnell et al., 2005; Dempsey et
al., 2005; Hobson et al., 2006; Hapiak et al., 2009), likely increas-
ing the excitability of the muscles so that rhythmic input from
cholinergic motor neurons can drive vulval muscle contractions
(White et al., 1986; Collins and Koelle, 2013; Collins et al., 2016).
We have shown previously that HSN Ca>* transients occur more
frequently during the active state, but the factors that promote
this timely “feed-forward” increase in HSN activity remain
poorly understood. The cholinergic VCs show rhythmic Ca**
transients coincident with vulval muscle contractions during
the active state, although whether VC activity drives contrac-
tion itself or instead acts to modulate HSN signaling is still not
clear (Bany et al., 2003; Zhang et al., 2008; Zang et al., 2017).
The uvl cells, mechanically deformed by the passage of eggs
through the vulva, release tyramine and neuropeptides that
signal extrasynaptically to inhibit HSN activity (Collins et al.,
2016; Banerjee et al., 2017). Because each cell in the circuit
develops independently in juveniles, how this circuit goes on
to develop the robust pattern of coordinated activity seen in
adults remains unclear.

We show here that the presynaptic HSN motor neurons and
the postsynaptic vulval muscles are active during the late L4 larval
stage, well before egg production and the onset of adult egg-
laying behavior. We did not observe activity in the VC neurons or
uvl neuroendocrine cells until behavioral onset. The adult circuit
remains in a non-functional state until receiving feedback of eggs
in the uterus. This egg-laying homeostat requires the vim2 muscle
arms and muscle activity, which we show promotes HSN burst
firing that maintains the active state. Together, our data reveal
how cell activity patterns that emerge during circuit development
are modulated by sensory feedback that determines when and for
how long to drive behavior.
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Materials and Methods

Nematode culture and developmental staging

C. elegans hermaphrodites were maintained at 20°C on Nematode
Growth Medium (NGM) agar plates with E. coli OP50 as a source of food
as described previously (Brenner, 1974). Animals were staged and cate-
gorized based on the morphology of the vulva as described previously
(Mok et al.,, 2015). For assays involving young adults, animals were age
matched based on the timing of completion of the L4 larval molt. All
assays involving adult animals were performed using age-matched adult
hermaphrodites 20—40 h past the late L4 stage.

Plasmid and strain construction
Calcium reporter transgenes
Vulval muscle Ca>*. To visualize vulval muscle Ca** activity in adult
animals, we used LX1918 vsIs164 [unc-103e::GCaMP5::unc-54 3' UTR +
unc-103e::mCherry::unc-54 3'UTR + lin-15(+)] lite-1(ce314) lin-
15(n765ts) X strain as described previously (Collins et al., 2016). In this
strain, GCaMP5G (Akerboom et al., 2013) and mCherry are expressed
from the unc-103e promoter (Collins and Koelle, 2013). The unc-103e
promoter is only weakly expressed in vulval muscles during the L4 stages.
To visualize vulval muscle activity in L4 animals, we expressed
GCaMP5G and mCherry from the ceh-24 promoter (Harfe and Fire,
1998). An ~2.8 kB DNA fragment upstream of the ceh-24 start site was
amplified from genomic DNA by PCR using the following oligonucleo-
tides: 5'-GCG GCA TGC AAC GAG CCA TCC TAT ATC GGT GGT
CCT CCG-3'" and 5'-CAT CCC GGG TTC CAA GGC AGA GAG CTG
CTG-3'. This DNA fragment was ligated into pKMC257 (mCherry) and
pKMC274 (GCaMP5G) from which the unc-103e promoter sequences
were excised to generate pBR3 and pBR4, respectively. pBR3 (20 ng/ul)
and pBR4 (80 ng/ul) were injected into LX1832 lite-1(ce314) lin-
15(n765ts) X along with the pLISEK rescue plasmid (50 ng/ul) (Clark et
al., 1994). The extrachromosomal transgene produced was integrated by
irradiation with UV light after treatment with trimethylpsoralen (UV/
TMP), creating two independent transgenes, keyIs12 and keyIs13, which
were then backcrossed to the LX1832 parental line six times to generate
the strains MIA51 and MIA53. Strain MIA51 keyIs12 [ceh-24::GCaMP5::
unc-54 3'UTR + ceh-24::mCherry::unc-54 3'UTR + lin-15(+)] 1V; lite-
1(ce314) lin-15 (n765ts) X was subsequently used for Ca*" imaging. We
noted repulsion between keyls12 and wzls30 IV, a transgene that ex-
presses Channelrhodopsin-2:YFP in HSN from the egl-6 promoter
(Emtage et al., 2012), suggesting both were linked to chromosome IV. As
a result, we crossed MIAS53 keyIs13 [ceh-24::GCaMP5::unc-54 3' UTR +
ceh-24::mCherry::unc-543'UTR + lin-15(+)]; lite-1(ce314) lin-15(n765ts) X
with LX1836 wzIs30 IV; lite-1(ce314) lin-15(n765ts) X, generating MIA88
which was used to activate HSN neurons and record vulval muscle Ca**
in L4 animals. In the case of young adults (3.5 and 6.5 h after molt) and
24-h-old adults, strain LX1932 wzls30 1V; vsls164 lite-1(ce314) lin-
15(n765ts) X was used as described previously (Collins et al., 2016).
HSN Ca’*. To visualize HSN Ca*" activity in L4 and adult animals,
we used the LX2004 vsIs183 [nlp-3::GCaMP5:nlp-3 3'UTR + nlp-3:
mCherry:nlp-33'UTR + lin-15(+)] lite-1(ce314) lin-15(n765ts) X strain
expressing GCaMP5G and mCherry from the nlp-3 promoter as de-
scribed previously (Collins et al., 2016). To visualize HSN Ca** activity
in lin-12(wy750) mutant animals lacking postsynaptic vm2 vulval muscle
arms, we crossed MIA194 lin-12(wy750) III with LX2004 vsIs183 lite-
1(ce314) lin-15(n765ts) X to generate MIA196 lin-12(wy750) IIT; vsIs183
X lite-1(ce314) lin-15 (n765ts) X. To visualize HSN Ca>™ activity in glp-
I(or178ts) mutant animals, we crossed EU552 glp-1(or178ts) III with
LX2004 vsIs183 lite-1(ce314) lin-15(n765ts) X to generate MIA219 glp-
1(or178ts) III; vsIs183 lite-1(ce314) lin-15(n765ts) X.

2+

Histamine-gated chloride channel (HisCl)-expressing transgenes

Vulval muscle HisCl. To produce a vulval-muscle-specific HisCl trans-
gene, coding sequences for mCherry in pBR3 were replaced with that for
HisCl. First, an Eagl restriction site (3’ of the mCherry encoding se-
quence) was changed to a NotI site using QuikChange site-directed mu-
tagenesis to generate pBR5. The ~1.2 kB DNA fragment encoding the
HisCl channel was amplified from pNP403 (Pokala et al., 2014) using the
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following oligonucleotides: 5'-GCG GCT AGC GTA GAA AAA ATG
CAAAGC CCAACTAGCAAATTG G-3"and 5'-GTG GCG GCC GCT
TAT CAT AGG AAC GTT GTC-3’, cut with Nhel/Notl, and ligated into
PBR5 to generate pBR7. pBR7 (80 ng/ul) was injected into LX1832 along
with pLISEK (50 ng/ul). One line bearing an extrachromosomal trans-
gene was integrated with UV/TMP and six independent integrants
(keyIs14 to keyIs19) were recovered. Four of these were then backcrossed
to the LX1832 parental line six times to generate strains MIA68, MIA69,
MIA70, and MIA71. All four strains were used for behavioral assays in
adult animals to test the effect of vulval muscle silencing on egg laying
(see Fig. 4B). MIA71 keyIs19 [ceh-24::HisCl::unc-54 3' UTR + lin-15(+)];
lite-1(ce314) lin-15(n765ts) X strain was used to study the effect of acute
silencing of early activity on egg-laying behavior (see Fig. 4C). To visual-
ize HSN Ca?™" activity after vulval muscle silencing, we crossed MIA71
with LX2004 to generate strain MIA8O keyIs19; vsIs183 lite-1(ce314) lin-
15(n765ts) X.

HSN HisCl. The ~1.2 kB DNA fragment encoding the HisCl channel
was amplified from pNP403 using the following oligonucleotides: 5'-
GCG GCT AGC GTA GAA AAA ATG CAA AGC CCA ACT AGC AAA
TTG G-3" and 5'-GCG GAG CTC TTA TCA TAG GAA CGT TGT CCA
ATA GAC AAT A-3'. The amplicon was digested with Nhel/SacI and
ligated into similarly cut pSF169 ( pegl-6::mCre; Flavell et al., 2013) to
generate pBR10. To follow expression in HSN, mCherry was amplified
using the following oligonucleotides: 5'-GCG GCT AGC GTA GAA AAA
ATG GTC TCA AAG GGT-3' and 5'-GCG GAG CTC TCA GAT TTA
CTT ATA CAA TTC ATC CAT G-3'. This amplicon was digested with
Nhel/Sacl and ligated into pSF169 to generate pBR12. pBR10 (HisCl; 5
ng/ul) and pBR12 (mCherry; 10 ng/ul) were injected into LX1832 Iite-
1(ce314) lin-15(n765ts) along with pLISEK (50 ng/ul). The extrachromo-
somal transgene produced was integrated with UV/TMP, creating three
independent integrants (keyIs20, keyIs21, and keyIs22). The resulting an-
imals were backcrossed to the LX1832 parental line six times to generate
strains MIA115, MIA116, and MIA117. The MIA116 strain had a low
incidence of HSN developmental defects and was used subsequently for
behavioral assays.

All neuron HisCIL. pNP403 was injected into LX1832 lite-1(ce314) lin-
15(n765ts) animals at 50 ng/ul along with pLISEK (50 ng/ul) to produce
strain MIA60 carrying extrachromosomal transgene keyEx16 [tag-168::
HisCl::SL2::GFP + lin15(+)]. NonMuv, lin-15(+) animals with strong
GFP expression in the HSNs and other neurons were selected before
behavioral silencing assays. All animals showed histamine-dependent
paralysis that recovered after washout.

Transgenic reporters of circuit development and morphology
Vulval muscle morphology. To visualize vulval muscle development at the
L4 stages, we injected pBR3 [pceh-24::mCherry] (80 ng/ul) along with a
coinjection marker pCFJ90 (10 ng/ul) into TV201 wyls22 [punc-86:
GFP::RAB-3 + podr-2::dsRed] (Patel et al., 2006) to generate an extra-
chromosomal transgene, keyEx42. To visualize adult vulval muscle
morphology, we used the LX1918 vsIs164 [unc-103e:GCaMP5::unc-54
3'UTR + unc-103e::mCherry::unc-54 3'UTR + lin-15(+)] lite-1(ce314)
lin-15(n765ts) X strain (Collins et al., 2016). To visualize the expression
of the ser-4 gene, we used the strain AQ570 [ijIs570] (Tsalik and Hobert,
2003; Giirel et al., 2012).

HSN morphology. We used the LX2004 strain expressing mCherry
from the nlp-3 promoter to visualize HSN morphology at L4 stages as
well as in adults. To visualize GFP::RAB-3 synaptic localization in HSN's
during development, the wylIs22 transgene was used (Patel et al., 2006).

Whole circuit morphology (HSN, VC, and uvl cells). A ~3.2 kB DNA
fragment upstream of the ida-1 start site (Cai et al., 2004) was cloned
using the following oligonucleotides: 5'-GCG GCA TGC CCT GCCTGT
GCC AAC TTA CCT-3' and 5'-CAT CCC GGG GCG GAT GAC ACA
GAG ATG CGG-3'. The DNA fragment was digested with Sphl/Xmal
and ligated into pKMC257 and pKMC274 to generate plasmids pBR1
and pBR2. pBR1 (20 ng/ul) and pBR2 (80 ng/ul) were coinjected into
LX1832 along with pLISEK (50 ng/ul). The extrachromosomal transgene
produced was integrated with UV/TMP, creating four independent inte-
grants keyls8 to keylsll, which were then backcrossed to the LX1832
parental line six times. MIA49 keyIs11 [ida-1::GCaMP5::unc-54 3' UTR +
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ida-1:mCherry::unc-54 3'UTR + lin-15(+)]; lite-1(ce314) lin-15
(n765ts) X was used subsequently to visualize whole-circuit morphology.

Fluorescence imaging

3D confocal microscopy. To visualize the morphological development of
the egg-laying system, L4s and age-matched adults were immobilized
using 10 mm muscimol on 4% agarose pads and covered with #1 cover-
slips. Two-channel confocal Z-stacks (along with a bright-field channel)
using a pinhole opening of 1 Airy unit (0.921-um-thick optical sections,
16-bit images) were obtained with an inverted Leica TCS SP5 confocal
microscope with a 63X Water Apochromat objective [1.2 numerical
aperture (NA)]. GFP and mCherry fluorescence were excited using the
488 and 561 nm laser lines, respectively. Images were analyzed in Voloc-
ity 6.3.1 (PerkinElmer) and FIJI (Schindelin et al., 2012).

Ratiometric Ca’* imaging. Ratiometric Ca®" recordings were per-
formed on freely behaving animals mounted between a glass coverslip
and chunk of NGM agar as described previously (Collins and Koelle,
2013; Li et al., 2013; Collins et al., 2016; Ravi et al., 2018). Recordings
were collected on an inverted Leica TCS SP5 confocal microscope using
the 8 kHz resonant scanner at ~20 fps at 256 X 256 pixel resolution,
12-bit depth, and =2 X digital zoom using a 20 X Apochromat objective
(0.7 NA) with the pinhole opened to ~20 um. GCaMP5G and mCherry
fluorescence was excited using the 488 and 561 nm laser lines, respec-
tively. L4 animals at the relevant stages of vulval development were iden-
tified based on vulval morphology (Mok et al., 2015). Adult recordings
were performed 24 h after the late L4 stage. Young adults (3.5-6.5 h)
were staged after cuticle shedding at the L4 to adult molt. After staging,
animals were allowed to adapt for ~30 min before imaging. During
imaging, the stage and focus were adjusted manually to keep the relevant
cell/presynapse in view and in focus.

Ratiometric analysis (GCaMP5:mCherry) for all Ca** recordings was
performed after background subtraction using Volocity 6.3.1 as de-
scribed previously (Collins et al., 2016; Ravi et al., 2018). The egg-laying
active state was operationally defined as the period 1 min before the first
egg-laying event and ending 1 min after the last (in the case of a typical
active phase in which 3—4 eggs are laid in quick succession). However, for
cases in which two egg-laying events were apart by >60 s, peaks were
considered to be in separate active phases and transients between these
were considered to be from the inactive state.

Ratiometric Ca®* comparisons with different reporters and developmen-
tal stages. To facilitate comparisons of AR/R between different reporters
at different developmental stages, particularly during periods of elevated
Ca?* activity, HSN recordings in which baseline GCaMP5/mCherry flu-
orescence ratio values were between 0.2 and 0.3 were selected for the
analysis, whereas vulval muscle recordings with GCaMP5/mCherry ratio
values between 0.1 and 0.2 were chosen (=80% of recordings). Because
HSN Ca?" transient amplitude did not change significantly across de-
velopmental stages or in mutant or drug treatment backgrounds, our
analyses focused on HSN Ca’" transient frequency. To test whether
vulval muscle Ca** transient amplitudes recorded using different trans-
genes were suitable for quantitative comparisons, we measured the aver-
age GCaMP5:mCherry fluorescence ratio from two 15 by 15 wm regions
of interest (ROIs) from the anterior and posterior vulval muscles under
identical imaging conditions (data not shown). The ROIs were posi-
tioned to ensure maximal coverage of the muscle cell area. We found that
resting GCaMP5:mCherry ratios (£95% confidence intervals) bearing
either the ceh-24 (keyls12) or unc-103e (vsIs164) vulval muscle Ca*™
reporter transgenes were not statistically different at the developmental
stages under comparison in Figure 3H [L4.7—8 (ceh-24): 1.055 = 0.027;
1L4.9 (ceh-24): 1.055 * 0.061; adult (unc-103e): 1.15 * 0.064; n = 10
animals measured per developmental stage]. The coordination of vulval
muscle contraction was determined as described previously (Li et al.,
2013).

Ether-a-Go-Go Related Gene (ERG) expression analysis. To measure
ERG (unc-103e) expression in the vulval muscles during development in
staged LX1918 L4.7—8 and L4.9 larvae and 24 h adults, we used imaging
conditions identical to those used to measure mCherry fluorescence
through a 20X Plan Apochromat objective (0.8 NA) using a Zeiss Axio
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Observer microscope onto a Hamamatsu ORCA Flash 4.0 V2 sCMOS
sensor after excitation with a 590 nm LED (Zeiss Colibri.2). After import
into Volocity, two 15 X 15 um ROIs were placed on the anterior and
posterior vulval muscles and the mCherry fluorescence of the two objects
was averaged. A control ROI placed outside of the animal was used for
background subtraction.

Behavior assays and microscopy

Optogenetics and defecation behavior assays. Channelrhodopsin-2
(ChR2)-expressing strains were maintained on OP50 with or without
all-trans retinal (ATR) (0.4 mwm). ChR2 was activated during Ca**-
imaging experiments with the same continuous laser light used to excite
GCaMP5 fluorescence.

Acute silencing experiments using HisCl. For acute silencing assays,
NGM plates containing 10 mm histamine were prepared and used as
described previously (Pokala et al., 2014). For adult behavioral assays,
HisCl-expressing strains were staged as late L4s with histamine treatment
and behavior assays performed 24 h later. For L4 activity silencing, L4.7
animals were placed on NGM plates with or without 10 mm histamine
and monitored to determine when the animals completed the L4 molt.
Each animal was then transferred to a new seeded plate (lacking hista-
mine) and the time for each animal to lay its first egg was recorded.

Animal sterilization. Animals were sterilized using floxuridine (FUDR)
as follows. First, 100 ul of 10 mg/ml FUDR was applied to OP50-seeded
NGM plates. Late L4 animals were then staged onto the FUDR plates and
the treated adults were imaged 24 h later. MIA219 glp-1(or178ts) III;
vsIs183 lite-1(ce314) lin-15(n765ts) X animals were sterilized during em-
bryogenesis as described previously (Fujiwara et al., 2016). L1-L2 ani-
mals were shifted to 25°C and returned to 15°C after 24 h. Late L4 animals
were then staged and grown at 15°C and imaged 24 h later.

Experimental design and statistical analysis

Sample sizes for behavioral assays followed previous studies (Chase et al.,
2004; Collins and Koelle, 2013; Collins et al., 2016). No explicit power
analysis was performed before the study. Statistical analysis was per-
formed using Prism 6 (GraphPad). Ca®" transient peak amplitudes,
widths, and intertransient intervals were pooled from multiple animals
(typically ~10 animals per genotype/condition per experiment). No an-
imals or data were excluded except as indicated above to facilitate com-
parisons of Ca®* transient amplitudes between different development
stages and reporters. Individual p-values are indicated in each figure
legend and all tests were corrected for multiple comparisons (Bonferroni’s
for ANOVA; Dunn’s for Kruskal-Wallis).

Results

Asynchronous presynaptic and postsynaptic development in
the

C. elegans egg-laying behavior circuit

We have described previously the function of cell activity in the
adult egg-laying behavior circuit and how developmental muta-
tions affect circuit activity and adult behavior (Collins and
Koelle, 2013; Li et al., 2013; Collins et al., 2016). Because devel-
opment of the cells in the circuit is known to be complete by the
end of the L4 stage (Li and Chalfie, 1990), we wanted to deter-
mine the relationship between circuit development and the
emergence of cell activity as the animals mature from juveniles
into egg-laying adults. We exploited the stereotyped morphology
of the developing primary and secondary vulval epithelial cells in
the fourth (final) larval stage to define discrete half-hour stages of
development until the L4 adult molt (Fig. 1A-F) as described
previously (Mok et al., 2015). We observed NLP-3 neuropeptide
promoter expression in HSNs of late L4 animals (Fig. 1G-I),
showing that L4.7—8 HSNs have specified a transmitter pheno-
type. Consistent with L4.7—8 HSN being functional, the presyn-
aptic marker GFP::RAB-3 expressed from the unc-86 promoter
showed clear punctate localization in HSN at synaptic sites at
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these stages (Fig. 1J-L), confirming previous observations with
light microscopy and serial electron microscopy reconstruction
that HSN development is complete by L4.7—8 (Shen and Barg-
mann, 2003; Shen et al., 2004; Adler et al., 2006; Patel et al., 2006).

Unlike HSNs, we found the postsynaptic vulval muscles com-
pleted their morphological development during the L4.9 stage,
just before the L4 molt. We expressed mCherry in the vulval
muscles from the ceh-24 promoter (Harfe and Fire, 1998) and
found that the vm1 and vm2 vulval muscles were still developing
at the L4.7-8 stage (Fig. 1M). After lumen collapse at the L4.9
stage, the tips of the vim1 muscles extended ventrally to the lips of
the vulva and the anterior and posterior vm2 muscle arms ex-
tended laterally along the junction between the primary and sec-
ondary vulval epithelial cells (Fig. 1N'), making contact with each
other at the HSN (and VC) synaptic release sites that continues in
adults (Fig. 10). Previous work has shown that mutations that
disrupt LIN-12/Notch signaling perturb development of the vm2
muscle arms in late L4 animals (Li et al., 2013), a time when we
observed vin2 muscle arm extension.

Vulval muscles express multiple serotonin receptors that me-
diate their response to HSN input (Carnell et al., 2005; Dempsey
et al., 2005; Hobson et al., 2006; Hapiak et al., 2009). To look at
the developmental expression pattern of one such serotonin re-
ceptor, we examined a transgenic reporter line expressing GFP
under the ser-4b gene promoter (Tsalik and Hobert, 2003; Giirel
etal., 2012). As shown in Figure 1, P and Q, we observed strong
GFP expression in VulF and VulE primary and VulD secondary
epithelial cells. The ser-4b promoter also drove weak GFP expres-
sion in the vim2 muscles in L4.7-9 and this was elevated in adults
(Fig. 1P-R). Serial EM reconstruction has shown that HSN makes
transient synapses onto the vulval epithelial cells in developing L4
animals and the expression of a serotonin receptor in these cells
and the vim2 muscles during this period suggests that they have
specified a receptor phenotype (Shen et al., 2004). Last, we
wanted to determine whether the VC motor neurons and uvl
neuroendocrine cells had completed their development in late L4
animals. To visualize HSN, VC, and the uvl neuroendocrine cells
simultaneously, we expressed mCherry from the ida-1 promoter,
agene expressed in a subset of peptidergic cells, including those in
the egg-laying circuit (Cai et al., 2004). We observed mCherry
expression in all three cell types in 1L4.7—8 animals, consistent
with their development of a peptidergic phenotype in late L4
animals (Fig. 1S-U). As expected, HSN and VC presynaptic ter-
mini assembled at the junction between the primary and second-
ary vulval epithelial cells in L4.7—8. The uv1 cells were positioned
laterally to the HSN/VC synaptic regions and extended dorsal
processes around the primary vulval epithelial cells (Fig. 1S-U).
These results indicate that the morphological development and
peptidergic expression phenotype of the HSN, VC, and uvl cells
is largely complete by 14.7-8 stage. In contrast, vulval muscle
morphological development is completed in the L4.9 stage when
the vm2 muscle arms reach each other and the HSN and the VC
presynaptic boutons and begin to express the serotonin receptor
SER-4b.

HSNs switch from tonic activity in juveniles to burst firing in
egg-laying adults

We next wanted to determine whether the HSNs show activity as
they develop and how that activity compares to that seen in egg-
laying adults. To follow HSN activity, we expressed the Ca**
reporter GCaMP5 along with mCherry in HSN using the nlp-3
promoter and performed ratiometric Ca*" imaging in freely be-
having animals as described previously (Collins et al., 2016).
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Morphological development of the C. elegans egg-laying circuit. A—F, Representative images of vulval morphology at late L4 stages: (A) L4.7, (B) L4.7- 8, (C) L4.8, (D) L4.9, (E) molt,

and (F) young adult. 6/, Morphology of HSN labeled with mCherry (top) and the vulva (bottom) in L4.7— 8 (G) and L4.9 (H) larval stages and in adults (/). J-L, Morphology of HSN synapses labeled
with GFP::RAB-3 (top) and the vulva (bottom) in L4.7—-8 (/) and L4.9 (K) larval stages and in adults (£). M—0, Morphology of vm1 and vm2 vulval muscles labeled with mCherry (top) and the vulva
(bottom) in L4.7— 8 (M) and L4.9 (N) larval stages and in adults (0). P—R, Developmental expression of ser-4 from a GFP transcriptional reporter (top) at the L4.7— 8 (P) and L4.9 (Q) larval stages
and in adults (R) and the vulva (bottom). S—U, Morphology of HSN, VC4, V(5, and the uv1 neuroendocrine cells labeled with mCherry (top) and the vulva (bottom) in L4.7- 8 (S) and L4.9 (T larval
stages and in adults (U) visualized using the ida-7 promoter. Arrowheads in all images indicate the location of presynaptic boutons or postsynaptic vm2 muscle arms. Scale bar, 10 m. Anterior is
atleftand ventral is at bottom unless indicated otherwise. Asterisks indicate the position of the developing or completed vulval opening. Vertical half-brackets indicate the approximate position of

primary (1°) vulval epithelial cells and horizontal bracket indicates progress of vulval lumen collapse at each larval stage.

Starting at the L4.7-8 larval stage, we observed rhythmic Ca®"
activity in both HSN presynaptic termini and in the soma
(Fig. 2A,B). During the L4.9 larval stage, when animals exhibited
behavioral features of the developmentally timed L4 quiescence
(Raizen et al., 2008), rhythmic Ca*™ activity in the HSN's slowed
(Fig. 2B, Movie 1). The tonic HSN activity that we observed in
juveniles (Fig. 2B, Movie 2) differed from the alternating, two-
state pattern seen previously in adult animals, in which periods of
infrequent activity are interrupted by bouts of HSN burst firing
that drive the egg-laying active state (Collins et al., 2016). We
quantitated changes in HSN Ca’*" transient peak amplitude and

frequency during the different developmental stages and behav-
ior states. We found no significant differences in HSN Ca** tran-
sient amplitude (Fig. 2C), but we did observe significant changes
in frequency. The median intertransient interval in L4.7-8 ani-
mals was ~34 s and this interval increased to ~60 s as animals
reached the L4.9 stage (Fig. 2D). The reduction of HSN transient
frequency seen in L4.9 animals resembled the egg-laying inactive
state. However, none of the developmental stages recapitulated
the “burst” Ca** activity with <20 s intertransient intervals seen
during the egg-laying active state (Fig. 2D). Together, these re-
sults indicate that the HSNs show tonic Ca®™ activity after their
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Figure 2. HSN neurons show tonic Ca™ activity during the late L4 stage and burst firing
during the egg-laying active state. A, Representative images of the intensity-modulated
GCaMP5:mCherry fluorescence ratio during HSN Ca* transients in L4.7-8 and L4.9 larval
stages and in adults. White arrowheads show Ca>* activity localized to the anterior and pos-
terior presynaptic boutons. Scale bar, 10 um. Anterior is at left and ventral is at bottom. See also
Movies 1and 2. B, Representative GCaMP5:mCherry ratio traces (AR/R) of HSN Ca 2+ activityin
L4.7- 8 (top), L4.9 (middle), and in adult (bottom) animals. Adults show distinct active (yellow)
and inactive (gray) egg-laying behavior states. Black arrowheads indicate egg-laying events. C,
Cumulative distributions of HSN Ca™ peak amplitudes in L4.7-8 (filled black circles), L4.9
(open black circles), and adults (filled green circles). n.s. indicates p > 0.0809 (one-way
ANOVA). D, Cumulative distribution plots of instantaneous HSN Ca* transient frequencies
(and intertransient intervals) from L4.7—8 (filled black circles) and L4.9 (open black circles)
animals and from adult egg-laying inactive (filled green circles) and active (green open circles)
states. *p << 0.0001; #p = 0.0283; n.s. indicates p = 0.1831 (Kruskal-Wallis test).

morphological development is complete. HSN activity then
switches into distinct inactive and active states as animals become
egg-laying adults.

The onset of Ca®™" activity in the HSN neurons during the late
L4 stage coincided with changes in animal locomotion, pharyn-
geal pumping, and defecation behaviors that accompany the L4
lethargus (Raizen et al., 2008). Previous published work has
shown that there is an increase in animal locomotion in adult
animals around egg-laying active states driven by serotonin sig-
naling from HSN onto AVF (Hardaker et al., 2001). Loss of HSN
neurons or serotonin signaling from HSN reduces reversals and
increases forward locomotion and exploratory behavior (Flavell
etal., 2013). To understand whether the tonic HSN activity seen
in juveniles was associated with locomotor arousal, we analyzed
movement in L4.9 animals 10 s before and after each HSN Ca**
transient. Approximately one-third of L4.9 HSN transients failed
to show any movement before or after the transient (35 = 7%)
and the remaining HSN transients were approximately evenly
split between those that showed movements before (30 = 7%),
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Movie 1.
stage. High Ca® " is indicated in red and low calcium is in blue. The HSN
cell body and presynaptic terminal are indicated. Head is at bottom and
tail is at left.

» = cell body
“.— synapse

Movie 2. Ratio recording of a HSN Ca*™
laying event in an adult animal during the active state. High Ca™
indicated in red and low calcium is in blue. The HSN cell body and pre—
synaptic terminal are indicated. Head is at bottom and tail is at top.

after (15 = 7%), or before and after (20 == 7%) the transient (n =
156 transients). These results show that, although HSN Ca?*
transients can occur around locomotion events, there does not
appear to be a causal relationship between HSN activity and
movement in juvenile animals. We anticipate that these differ-
ences in HSN activity during locomotion are related to develop-
mental changes in HSN serotonin levels. Adult HSNs show
increased GFP expression from a tryptophan hydroxylase (tph-1)
transcriptional reporter (data not shown) and have elevated se-
rotonin levels as measured by immunostaining (Desai et al.,
1988).

Vulval muscle Ca’* transients increase in strength and
frequency during development

We next wanted to determine whether the HSN activity that we
observed in late L4 animals drives early vulval muscle activity. We
used the ceh-24 promoter to drive expression of GCaMP5 and
mCherry in the vulval muscles of L4 animals. We detected Ca**
transients at the L4.7—8 larval stage in the still-developing vulval
muscles and these transients continued and increased in fre-
quency as the muscles completed their development at the L4.9
stage (Fig. 3A-C,F, G, Movies 3, 4, and 5). The median interval
between vulval muscle Ca** transients was ~32 s in L4.7-8 an-
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not require presynaptic HSN input. A—E, Representative images of the intensity-modulated
GCaMP5:mCherry fluorescence ratio during vulval muscle Ca 2 transients at the L4.7- 8 (),
L4.9 larval stages (B, €), and during the adult active state (D, E). White arrowheads show
localization of Ca® transients. Scale bars, 10 .um. Anterior is at left and ventral at bottom. See
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Movie 3.
transient at the L4.7— 8 larval stage. High Ca ™ is indicated in red and
low calciumis in blue. Developing anterior and posterior vulval muscles
are indicated. Head is at top and tail is at bottom.

anterior muscle —
posterior muscle —

Movie 4. Ratio recording of an uncoordinated vulval muscle (a®* []
transient at the L4.9 larval stage. High Ca> " is indicated in red and low [
calcium is in blue. Anterior and posterior vulval muscles are indicated.
Head is at left and tail is at bottom.

imals, which dropped to 18 s in L4.9 animals. L4 vulval muscle
activity differs from that observed previously in egg-laying adults
(Fig. 3D, E, Movie 6). The frequency of vulval muscle Ca*" tran-
sients increased significantly in animals during the egg-laying
active state, with median intervals dropping to ~7 s phased with
each body bend (Fig. 3G), as described previously (Collins and
Koelle, 2013; Collins et al., 2016). We found that vulval muscle
Ca’" transients become stronger after development. Although
Ca’" transient amplitudes in the L4.7—8 and L4.9 stages were not

<«

(Kruskal-Wallis test). I, Scatterplots show time spent by 9—10 animals with frequent Ca*
transients (intertransient intervals =60 s) at L4.7— 8 (pink), L4.9 (blue), and in adults (gray).
Error bars indicate 95% confidence interval for the mean. *p = 0.0002, one-way ANOVA. J,
Scatterplots showing percentage synchronous anterior and posterior vulval muscle Ca®* tran-
sients in each individual at L4.7- 8 (pink), L4.9 (blue), and in adult egg-laying inactive (green)
and active states (orange) in wild-type (top) and egl-7(n986dm) animals (red) lacking HSNs
(bottom). Error bars indicate 95% confidence intervals for the mean from =5 animals. *p =
0.0022; n.s. indicates p = 0.1653, one-way ANOVA. K, Representative images of mCherry
fluorescence in the vulval muscles from a unc-103e (ERG) transcriptional reporterinan L4.7-8,
14.9, and adult animal. White arrowheads show anterior (left) and posterior (right) vulval
muscle cells. Scale bar, 10 wm. L, Scatterplots showing mCherry fluorescence from the unc-
103e promoter in 10 animals. Error bars indicate 95% confidence interval for the mean. #p =
0.0288; *p = 0.0001, one-way ANOVA.
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indicated, along with a previously laid egg. Head is at right and tail is at
left.

significantly different, inactive phase Ca*" transients of adults
were stronger than those observed in L4 animals (Fig. 3H). In
adult animals, strong Ca*" transients were observed during the
egg-laying active states, with the strongest Ca*>™ transients driv-
ing the complete and simultaneous contraction of anterior and
posterior vulval muscles to allow egg release (Fig. 3E, H).

We were surprised that vulval muscle transient frequencies
decreased in adults as circuit activity bifurcated into distinct in-
active and active egg-laying behavior states. We quantified peri-
ods of increased activity by measuring time spent with vulval
muscle Ca®" transient intervals <1 min. We found that vulval
muscle activity increased as L4.7—8 animals developed into L4.9
animals, but then dropped significantly in egg-laying adults.
L4.7-8 animals on average spent ~50% of their time in periods
of increased vulval muscle activity and this increased to 85% as
animals entered the L4.9 stage (Fig. 3I). In contrast, adult animals
spent only ~33% of their time in periods with elevated vulval
muscle activity (Fig. 3I) approximately half of which were coin-
cident with the ~3 min egg-laying active states that occur ap-
proximately every 20 min (Waggoner et al., 1998). What
depresses vulval muscle activity in adult animals? We have shown
previously that the loss of unc-103, which encodes ERG K chan-
nel, results in increased vulval muscle excitability and egg-laying
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behavior (Collins and Koelle, 2013). Using an mCherry tran-
scriptional reporter transgene, we found that unc-103e expres-
sion in vulval muscles is low in L4 animals and increases >15-fold
as animals mature into egg-laying adults (Fig. 3K,L). These re-
sults are consistent with our previous functional results showing
that that ERG depresses vulval muscle electrical excitability in
adults to promote distinct inactive and active egg-laying behavior
states (Collins and Koelle, 2013).

Development of coordinated vulval muscle activity for

egg laying

Egg release through the vulva requires the synchronous contrac-
tion of the anterior and posterior vulval muscles (Fig. 3E). Previ-
ous work has shown that loss of Notch signaling blocks
postsynaptic vim2 muscle arm development in L4 animals, result-
ing in asynchronous vulval muscle contractility and defects in egg
release in adults (Li et al., 2013). Because of the vulval slit, the
lateral vm2 muscle arms that develop between L4.7-8 and L4.9
form the only sites of potential contact between the anterior and
posterior vulval muscles (Fig. 1 M, N). To determine the relation-
ship between vulval muscle morphology and activity, we exam-
ined the spatial distribution of vulval muscle Ca** during
identified transients. We found that only 5% of vulval muscle
Ca’" transients were coordinated in the L4.7-8 stage (Fig. 3A,
Movie 3), with nearly all transients occurring in either the ante-
rior or posterior muscles (Fig. 3F, ). The degree of vulval muscle
coordination increased significantly to ~28% of transients dur-
ing L4.9 (Fig. 3J; cf. Movies 4 and 5), a time when vm1 and vm2
muscles, as well as vm2 muscle arms, complete their development
(cf. Fig. 1 M, N). This level of coordinated muscle activity was not
significantly different from that found in adult animals during
the egg-laying inactive state (Fig. 3J; cf. Fig. 3C,D). During the
egg-laying active state, ~60% of vulval muscle transients were
found to be coordinated, with Ca®" transients occurring syn-
chronously in the anterior and posterior muscles (Movie 6).

To test whether HSN activity was required for the develop-
ment of coordinated muscle activity, we analyzed muscle activity
in animals missing the HSNs. Surprisingly, we observed that vul-
val muscles develop wild-type levels of coordinated activity even
without HSN input (Fig. 3J). We have shown previously that
vulval muscle activity in adults is phased with locomotion (Col-
lins et al., 2016), possibly via rhythmic acetylcholine release from
the VA7 and VB6 motor neurons that synapse onto the vml
muscles (White et al., 1986). Vulval muscle activity in L4.9 ani-
mals accompanied ongoing locomotion as well. We analyzed re-
cordings from L4.9 animals for movement 10 seconds before and
after each vulval muscle Ca’" transient. A clear majority of tran-
sients (62 = 5%) were accompanied by movements occurring
both before and after vulval muscle activity, with a smaller frac-
tion of transients occurring just before or just after movement
(11 = 4% and 10 =* 4%, respectively; n = 291 transients). Move-
ment was not strictly required for vulval muscle activity because
Ca’" transients were still observed in nonmoving animals
(17 %= 4%). Our results show that coordinated vulval muscle
activity in L4.9 stage is independent of HSN input and may
instead be driven by input from the locomotion motor neu-
rons into vml and through the lateral vim2 muscle contact
along the vulval slit.

Early neuronal and vulval muscle activity is not required for
the onset of adult egg-laying behavior

Activity in developing circuits has been shown previously to con-
tribute to mature patterns of activity that drive behavior. Is the
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Figure5. Timeline ofkey developmental events and the onset of Ca > activity in the C. elegans egg-laying circuit. The HSNs complete their morphological and synaptic development by the early
to mid-L4 stages, synthesize TPH-1 for serotonin biosynthesis (weakly during late L4) and NLP-3 (expression levels comparable to adults) during L4, and show Ca ™ activity beginning at late L4
(Shenand Bargmann, 2003; Shen etal., 2004; Adler et al., 2006; Patel et al., 2006). The vulval muscles complete their morphological development toward the end of the late L4 (Sulston and Horvitz,
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early activity that we observed in HSN and vulval muscles re-
quired for the proper onset of egg-laying behavior in adults? To
test this, we first set out to determine when adults initiate egg
laying. We found that wild-type animals laid their first egg at
~6-7 h after the L4 adult molt (Fig. 4A) after accumulating
~8-10 eggs in the uterus, a time when VC and uv1l Ca*™ activity
is first observed (data not shown). Animals without HSNs laid
their first egg much later, ~18 h after molt (Fig. 4A). Gain-of-
function receptor mutations in EGL-6, a neuropeptide receptor
coupled to Ge,, (Ringstad and Horvitz, 2008), or EGL-47, a pu-
tative gustatory receptor, block neurotransmitter release from

HSN (Moresco and Koelle, 2004) and delay egg release until
~15-17 h after the L4 molt, resembling animals without HSNs
(Fig. 4A). Surprisingly, tph-1 knock-out animals that are unable
to synthesize serotonin showed only a small, albeit significant,
delay in egg release compared with wild-type (~7-8 h after L4
molt), suggesting that HSN promotes egg laying via release of
neurotransmitters other than serotonin.

To silence HSN and vulval muscle activity acutely and revers-
ibly, we expressed Drosophila Histamine-gated chloride channel
(HisCl) using cell-specific promoters and tested how histamine
affected egg-laying behavior (Pokala et al., 2014). Egg laying was
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Figure 6.  Vulval muscle responsiveness to HSN input correlates with egg accumulation. A-D, Representative traces of vulval muscle Ca** activity in L4.9 juveniles (4, blue), 3.5 h adults (B,
orange), 6.5 h wild-type adults (C, black), and 6.5 h serotonin-deficient tph-1(mg280) mutant adults (D, green) with and without optogenetic activation of HSN. Animals were grown in the presence
(+ATR, top) or absence (—ATR, bottom) of ATR (see diagram). Continuous 489 nm laser light was used to stimulate HSN ChR2 activity and excite GCaMP5 fluorescence simultaneously for the entire
recording. Arrowheads indicate egg-laying events. Blue bars under the Ca>™ traces indicate the period of continuous blue light exposure. E, Cumulative distribution plots of instantaneous peak
frequencies (and intertransient intervals) of vulval muscle Ca*™ activity in 6.5 h adult wild-type (black filled circles, no ATR; black open circles, plus ATR) and tph-1(mg280) mutant animals (green
filled circles, no ATR; green open circles, plus ATR). *p << 0.0001; n.s. indicates p = 0.2863, Kruskal—Wallis test. F, Cumulative distribution plots of instantaneous peak frequencies (and intertransient
intervals) of vulval muscle Ca® " activity in L4.9 juveniles (blue filled squares, no ATR; blue open squares, plus ATR), 3.5 h adults (orange filled circles, no ATR; orange open circles, plus ATR), and 6.5 h
adults (blackfilled circles, no ATR; black open circles, plus ATR). *p << 0.0001; n.s. indicates p = 0.3836, Kruskal—Wallis test. G, Plot showing the average number of unlaid eggs present in the uterus
and the average vulval muscle Ca* transient peak frequency, 95% confidence intervals. H, Representative traces of HSN-induced vulval muscle Ca* activity in untreated (top, black) and
FUDR-treated 24 h adult animals (bottom, red). Arrowheads indicate egg-laying events. /, Cumulative distribution plots of instantaneous peak frequencies (and intertransient intervals) of vulval
muscle Ca** activity after optogenetic activation of HSNs in untreated animals grown with ATR (+ATR, open black circles), FUDR-treated animals with ATR (+ATR, open red circles), and in
untreated animals without ATR (no ATR, filled black circles). *p << 0.0001, Kruskal—Wallis test.

unaffected by exogenous histamine in nontransgenic animals,
but was potently inhibited when HisCl channels were expressed
transgenically in the HSNs, the vulval muscles, or in the entire
nervous system (Fig. 4B). Silencing these cells in late L4 animals
for the entire period when we observed early activity caused no
significant changes in the onset of adult egg laying after histamine
washout in molted adults (Fig. 4C). We also observed no
change in the steady-state number of unlaid eggs in the uterus
after developmental silencing of L4 animals with histamine
(data not shown). These results suggest that presynaptic and

postsynaptic activity in the developing circuit is not required
for circuit development or behavior.

Figure 5 summarizes the timeline of key developmental events
in the egg-laying circuit (HSN, VC, vulval muscles, and uv1 cells)
from birth of the individual cells/precursors to their final differ-
entiated state in adults: (1) morphological and synaptic develop-
ment, (2) neurotransmitter/neuropeptide/receptor specification,
and (3) the onset of early and mature patterns of Ca*™ activity.
Similar to morphological development, which occurred asyn-
chronously in the egg-laying circuit (Fig. 1), we observed that the
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onset of activity in the cells of the circuit occurred at different
developmental stages and continued to be shaped after morpho-
logical development (in the case of HSN and vulval muscles).
Patterns of activity characteristic of adult egg-laying behavior
were observed for all cells by the time the first egg was laid in
~6—7 hour old adults.

Vulval muscle responsiveness to HSN activity increases as
maturing animals accumulate unlaid eggs
We and others have shown previously that optogenetic activation
of the HSNs in adult animals is sufficient to induce egg-laying
circuit activity and behavior (Emtage et al., 2012; Collins et al.,
2016). Despite the fact that both the HSNs and vulval muscles
show activity in L4.9 animals, egg laying does not begin until 67
h later, when the animals have accumulated ~8—-10 unlaid eggs in
the uterus. To determine the relationship between developmen-
tal time, egg production, and circuit functionality, we tested
when the vulval muscles develop sensitivity to HSN input. We
activated the HSN's optogenetically using ChR2 while simultane-
ously recording Ca** activity in the vulval muscles at 3 stages: in
L4.9 juveniles and in 3.5-h- and 6.5-h-old adults. L4.9 animals
have no eggs in the uterus, 3.5 h adults contained 0—1 unlaid eggs,
and 6.5 h adults had accumulated ~8-10 eggs. Stimulating HSNs
in L4.9 juveniles or in 3.5 h adults failed to induce detectable
changes in vulval muscle Ca>" activity (Fig. 6 A, B,F). In contrast,
optogenetic activation of HSNs in 6.5 h adults increased vulval
muscle Ca®" activity significantly and triggered egg laying (Fig.
6C,F). L4.9 juveniles or 3.5 h adults with 0—1 eggs in the uterus
had a mean transient frequency of =100 mHz, similar to the
inactive state vulval muscle Ca*" response seen in 6.5 h adult
animals with ~8 unlaid eggs grown in the absence of ATR, a
cofactor necessary for ChR2 activation. The vulval muscle Ca*"
response to HSN input was increased to ~170 mHz in 6.5 h
adults that had accumulated ~8 unlaid eggs (Fig. 6G). Surpris-
ingly, vulval muscles in serotonin-deficient mutants responded
normally to HSN activation at 6.5 h (Fig. 6 D, E), a finding con-
sistent with the normal onset of egg laying in these mutants (Fig.
4A). Together, these results show that, despite having significant
Ca** activity in juveniles, the adult vulval muscles only develop a
robust response to HSN input ~6 h after the molt, a time when
fertilized embryos are being deposited in the uterus to be laid.
We next investigated whether this change in vulval response in
older adults was caused by ongoing developmental events or was
instead a consequence of egg accumulation. We demonstrated
previously that adults sterilized with FUDR, a chemical blocker of
germline cell division and egg production, showed inactive state
levels of vulval muscle activity (Collins et al., 2016). We found
that vulval muscles in FUDR-treated animals 24 h after the molt
were also significantly less responsive to HSN optogenetic stim-
ulation (Fig. 6H,I). The residual vulval muscle response in
FUDR-treated animals is likely caused by incomplete sterilization
when FUDR is added to L4.9 animals. We interpret these results
as indicating that animal age or circuit maturity is not sufficient
for the onset of the egg-laying active state.

Retrograde signal of egg accumulation and vulval muscle
activity drives presynaptic HSN activity

HSN activity can be inhibited by external sensory signals and
feedback of egg release (Ringstad and Horvitz, 2008; Emtage et
al., 2012; Collins et al., 2016; Banerjee et al., 2017), but the factors
that promote HSN activity are not clear. We tested whether egg
accumulation promotes circuit activity through the presynaptic
HSNSs, the postsynaptic vulval muscles, or both. We found that
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HSN Ca** activity, particularly the burst-firing activity associ-
ated with the active state, was dramatically reduced in FUDR-
treated animals (Fig. 7A). Although we did observe single HSN
Ca’* transients after FUDR treatment, the intervals in between
were prolonged, often minutes apart (Fig. 7C). We quantified the
total time spent by animals with HSN Ca*" transient intervals
<30 s apart as a measure of HSN burst-firing seen in the active
state. We found that, although untreated animals spent ~13% of
their time with the HSNs showing high-frequency activity, such
bursts were eliminated in FUDR-treated animals (Fig. 7D). We
confirmed the FUDR results using a conditional glp-1(or178ts)
Notch receptor mutant that causes germline loss and sterility
when shifted to 25°C during the L1 stage (Fig. 7B). We observed
a dramatic reduction in HSN Ca*™ transient frequency in sterile
glp-1(or178ts) adults, phenocopying the results seen with FUDR
(Fig. 7B,C). Whereas glp-1(or178ts) fertile animals (raised at
15°C) animals spent a typical 13% of their time with the HSNs
showing high-frequency activity, such bursts were eliminated in
sterile glp-1(or178ts) adults (Fig. 7D). These results show that
feedback of germline activity, egg production, and/or egg accu-
mulation modulates the frequency of HSN activity.

We performed a reciprocal experiment to test how the accu-
mulation of unlaid eggs would affect presynaptic HSN activity.
We have shown previously that passage of eggs through the vulva
mechanically activates the uvl neuroendocrine cells that release
tyramine and neuropeptides that inhibit HSN activity and egg
laying (Collins et al., 2016; Banerjee et al., 2017). We hypothe-
sized that prevention of egg release would block inhibitory uvl
feedback and increase HSN activity. We expressed HisCl chan-
nels in the vulval muscles and recorded HSN Ca?™ activity after
silencing with exogenous histamine. Surprisingly, we found that
acute silencing of vulval muscles reduced presynaptic HSN Ca**
activity significantly, resembling the effects of animal sterilization
(Fig. 8 A, B). Although untreated animals spent ~16% of record-
ing time with high-frequency HSN activity, this was reduced to
~2% of the total recording time in histamine-treated animals
(Fig. 8C). These results indicate that postsynaptic vulval muscle
activity is required for the burst firing in the presynaptic HSN
neurons that accompanies the egg-laying active state.

We next looked at how HSN Ca** activity recovers when
histamine inhibition of the vulval muscles and egg laying is re-
versed. As shown in Figure 84, adult animals were treated with or
without histamine for 3—4 h and then moved to plates without
histamine for a 20—30 min recovery period. Presynaptic HSN
Ca’" activity was then recorded as the animals resumed egg-
laying behavior. The HSNs showed a rapid and dramatic recovery
of Ca*®™ activity after histamine washout resulting in a prolonged
active state with increased HSN Ca®™ transient frequency and
numerous egg-laying events (Fig. 8 A, B). Washout animals spent
~40% of their recorded time with elevated HSN activity com-
pared with 15% of the total recorded time in untreated controls
(Fig. 8C). During this recovery period, we observed increased
vulval muscle twitching contractions in the bright-field channel,
indicating that muscle activity was restored (data not shown).
These results are consistent with a model whereby accumulation
of unlaid eggs promotes vulval muscle activity, which drives a
homeostatic increase in presynaptic HSN activity and burst firing
that sustains egg laying.

HSN synapses are formed exclusively on the lateral vm2 mus-
cle arms, which provide sites of contact between the anterior and
posterior vulval muscles (White et al., 1986; Feinberg et al., 2008;
Collins and Koelle, 2013). Hypomorphic Notch signaling mu-
tants fail to develop vm2 muscle arms and are egg-laying defec-
tive, but have normal presynaptic HSN and VC development
(Sundaram and Greenwald, 1993; Li et al., 2013). To determine
whether retrograde signaling from the vulval muscles to the
HSNs occurs through the vim2 muscle arms, we recorded HSN
Ca*" activity in lin-12(wy750) Notch receptor mutant animals
(Fig. 9A,B). We found that HSN Ca*" transient frequency was
strongly reduced in the lin-12(wy750) mutants compared with
wild-type control animals (Fig. 9C,D). HSN Ca** transients still
occurred in lin-12(wy750) mutants, but burst firing was elimi-
nated. Wild-type animals spent ~13% of their time with HSN
transients <30 s apart, whereas this was reduced to zero in the
lin-12(wy750) mutant (Fig. 9E), resembling activity seen in ster-
ilized or vulval muscle-silenced animals. Together, these results
suggest that muscle activity feeds back through the vm2 muscle
arms onto the presynaptic HSN neurons to promote additional
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laying adults (data not shown), suggesting
that activity in these cells does not con-
tribute to circuit development. In adults,
the juvenile HSN and vulval muscle activ-
ity disappears, leading to the establish-
ment of characteristic “inactive” states in
which adult animals spend ~85% of their
time. Inactive state activity closely resem-
bles that seen in sterilized animals that do
not accumulate any eggs. Figure 10 shows
a working model for how postsynaptic
muscle activity could promote burst firing
in the presynaptic HSNs. We propose that
uterine cells depress or excite the vulval
muscles depending on the degree of
stretch. Activation of the uterine muscles,
which make gap junctions onto the vm2
muscles, would increase vulval muscle
sensitivity to serotonin and other neu-
rotransmitters released from HSN, which
subsequently allows for rhythmic acetyl-
choline input from the VA/VB locomo-
* tion motor neurons to drive vulval muscle

twitching contractions. Coordinated
Ca*" activity in the anterior and posterior
° vulval muscles diffuses into the vm2 mus-
° cle arms to restimulate the HSNs and pro-

long the egg-laying active state. VC
activity is coincident with strong vulval
muscle contractions, whereas uv1 activity
° follows the passage of eggs through the
vulva. Once sufficient eggs have been laid,
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Figure 9.

heads). C, Representative traces showing HSN Ca®™"

E, Scatter plots showing fraction of time spent by each individual with frequent HSN Ca?

indicate 95% confidence intervals for the mean. *p = 0.0011, Student’s ¢ test.

Ca’" transients that drive burst firing and sustain the egg-laying
active state.

Discussion

We used a combination of molecular genetic, optogenetic and
chemogenetic, and ratiometric Ca** imaging approaches to de-
termine how coordinated activity develops in the C. elegans egg-
laying behavior circuit. We found that the presynaptic HSNs,
VCs, and uvl neuroendocrine cells complete morphological de-
velopment during early to mid-L4 stages, whereas the vulval
muscles finish developing at the late L4 stages. Like HSNs, the
vulval muscles show Ca*" activity in the L4.7-8 stage. Coordi-
nated vulval muscle Ca** transients are not observed until the
L4.9 stage, when the anterior and posterior vm2 muscle arms
complete a Notch-dependent lateral extension around the pri-
mary vulval epithelial cells (Li et al., 2013). We did not observe
Ca’* transients in the VC neurons and uvl cells except in egg-

The vm2 muscle arms are required for vulval muscle feedback to HSN and burst firing. 4, B, Diagram of egg-laying
circuit structure (ventral view) in wild-type (4) and /in-12(wy750) mutant (B) animals missing lateral vm2 muscle arms (arrow-
activity in wild-type (green) and /in-12(wy750) mutant animals (blue).
Arrowheads indicate egg-laying events. D, Cumulative distribution plots of instantaneous Ca®*
intertransient intervals) in wild-type (green circles) and /in-12(wy750) mutants (blue circles). *p << 0.0001, Mann—Whitney test.
* transients characteristic of the egg-
laying active state (<30 s) in wild-type (filled green circles) and /in-12(wy750) mutant animals (open blue circles). Error bars

transient peak frequencies (and

subsequent HSN Ca*" transients, return-
ing the circuit to the inactive state.
Changes in gene expression likely con-
tribute to the changes in circuit activity
patterns that we observed between L4s
and adults. Previous work has found that
serotonin expression is low in L4 and in-
creases as animals increase egg laying (De-
sai et al., 1988). Because mutants lacking
serotonin have little effect on the timing of
the first egg-laying event, we anticipate that other neurotransmit-
ters released from the HSNs promote egg laying in young adults.
KCC-2 and ABTS-1, two Cl~ extruders required for inhibitory
neurotransmission, show a developmental increase in HSN ex-
pression from L4 to adult (Tanis et al., 2009; Bellemer et al., 2011)
that may be associated with the disappearance of spontaneous
rhythmic activity in the HSNs after the late L4 stages. At the same
time, we found that inhibitory ERG K channel expression be-
comes upregulated in the vulval muscles of young adults. Studies
in vertebrate models have shown that mechanical stretch can
increase the transcription of receptors that enhance muscle con-
traction during parturition (Terzidou et al., 2005; Shynlova et al.,
2007). We speculate that similar mechanisms may operate in the
C. elegans reproductive system to drive expression of receptors
and channels that modulate vulval muscle sensitivity to presyn-
aptic input. Identifying additional genes with expression that in-
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Figure 10.  Working model of how retrograde signals from the postsynaptic vulval muscles
(question mark) might modulate, directly or indirectly, burst firingin the presynaptic HSNs. HSN
is a serotonergic and peptidergic modulatory command motor neuron that synapses onto the
vulval muscles and the VC motor neurons. VA, VB, and VC are cholinergic motor neurons that
synapse onto the vulval muscles; uv1 is a tyraminergic and peptidergic neuroendocrine cell
mechanically activated by egq release that then feedback inhibits HSN. Arrows indicate activa-
tion and bar-headed lines indicate inhibition. See text for more details.

creases upon egg accumulation could help to explain how HSN-
deficient animals are still able to enter otherwise normal egg-
laying active states after sufficient eggs have accumulated.

The HSNs show dramatic changes in Ca®" transient fre-
quency between the inactive and active states. Major G-proteins,
Ga, and Ga,, signal in HSN to increase and inhibit egg laying,
respectively (Ringstad and Horvitz, 2008; Tanis et al., 2008).
G-protein signaling in HSN may modulate an intrinsic pace-
maker activity, similar to that seen in other central pattern gen-
erator circuits and in the cardiac pacemaker (Hille, 2001). G,
signaling in HSN activates inhibitory IRK K™ channels (Emtage
etal., 2012) and recent work has identified the T-type Ca** chan-
nel, CCA-1, and the Na™ leak channels NCA-1 and NCA-2 as
possible targets of excitatory Ga, signaling (Yeh et al., 2008; To-
palidou et al., 2012; Zang et al., 2017). The balance of both
G-protein signaling pathways would allow for HSN frequency
modulation and dictate whether animals enter or leave the egg-
laying active state.

Early vulval muscle activity may be spontaneous or driven by
neuronal input. Spontaneous Ca>" transients promote the mat-
uration of activity in many other cells (Moody and Bosma, 2005).
We observed no change in behavioral onset or egg-laying rate in
animals in which neuron or vulval muscle activity was silenced in
the L4 stage. Although this may result from incomplete silencing
using the HisCl-based approach, previous results in other circuits
indicate that synapse development does not require Ca’"-
dependent excitatory transmission (Verhage et al., 2000; Lu et al.,
2013; Sando etal., 2017). Although G-protein signaling may drive
early Ca’™ activity in the absence of electrical activity, synaptic
transmission would still require Ca*"-dependent vesicle fusion.
The persistence of vulval muscle activity in animals that lack
HSNSs and its recovery after acute neural silencing suggests that
the activity that we observed arises from a shared mechanism that
is not strictly required for synapse development and/or recovers
quickly after histamine washout.

Ravi et al. ® C. elegans Egg-Laying Circuit Activity Development

Our work shows the functional importance of the postsynap-
tic vm2 muscle arms in coordinating muscle activity during egg-
laying behavior. Because of the intervening vulval slit through
which eggs are laid, the vm2 muscle arms are the only sites of
contact between the anterior and posterior muscles. Coordinated
muscle Ca®" transients appear during the L4.9 larval stage after
vm2 muscle arm development. After development, the vim2 mus-
cle arms may be electrically coupled at their points of contact,
allowing for the immediate spread of electrical activity and/or
Ca*" signals between the anterior and posterior muscles. In ad-
dition to uncoordinated vm1 and vm2 Ca*" activity, mutants
missing the vm2 muscle arms do not show regenerative HSN
Ca’*" activity, resembling the consequences of vulval muscle elec-
trical silencing (Li et al., 2013). The vm2 muscle arms also form
the sites of synaptic input from HSN and VC. We have shown
previously that the ERG K™ channel and SER-1 serotonin recep-
tor localize to the vm2 muscle arm region (Collins and Koelle,
2013; Lietal., 2013). Both ERG and SER-1 have C-terminal PDZ
interaction motifs and SER-1 has been shown to interact with the
large PDZ scaffold protein MPZ-1, which may drive the local
organization of these and other molecules to the vm2 muscle
arms (Xiao etal., 2006). Innexin gap junction proteins, which are
potential targets of G-protein signaling (Correa et al., 2015), may
also play a role in driving the development of coordinated vulval
muscle contractility and HSN “burst” activity in the circuit dur-
ing egg laying.

The importance of stretch-mediated feedback is well charac-
terized in circuits that control autonomic functions (Dethier and
Gelperin, 1967; Gelperin, 1971; Spencer et al., 2002), the rhyth-
mic uterine activity during parturition (Ferguson’s reflex) (Fer-
guson, 1941), and in circuits which generate rhythmic motor
outputs (Grillner, 2003; Marder et al., 2005; Blitz and Nusbaum,
2011). Stretch can provide either positive or negative feedback to
downstream reflex and homeostatic circuits. For example, spe-
cialized mechanosensory neurons activated by gastric stretch in-
duce satiety by providing negative feedback to neural circuits
controlling food consumption (Dethier and Gelperin, 1967;
Zagorodnyuk et al., 2001). In guinea pigs, stretch-sensitive in-
terneurons provide ascending excitatory and descending inhibi-
tory inputs to generate peristaltic neural reflexes in the distal
colon (Spencer and Smith, 2004). Mechanical stretch (from egg
accumulation) or artificially induced distension of the reproduc-
tive tract in female flies induces an attraction to acetic acid so that
eggs can be laid in optimal environments (Gou et al., 2014). In the
cases described above, how stretch sensory inputs modulate the
activity of neural circuits and synaptic transmission is not always
clear.

The C. elegans egg-laying homeostat is regulated by egg accu-
mulation that sustains rhythmic activity in a motor neuron for
muscle contraction and egg release. In the case of the Ferguson’s
parturition reflex, initial stretch-induced myogenic contractions
engage the neuroendocrine feed-forward loop, similar to our re-
sults showing that vulval muscle activity promotes a feed-forward
increase in HSN activity. Does mechanosensory stretch also play
arolein the feedback inhibition of C. elegans egg laying? Although
the release of eggs and the loss of uterine stretch should decrease
feed-forward drive into the vulval muscles and HSN, additional
mechanical feedback from the VC motor neurons and the uvl
neuroendocrine cells may be required to exit the active state com-
pletely. VC Ca®" activity is coincident with egg release and mu-
tants with reduced acetylcholine or VC function have more
frequent egg-laying events (Bany et al., 2003). The uv1 cells are
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mechanically deformed and activated by egg release and tyramine
and inhibitory neuropeptides released from uv1 inhibit HSN ac-
tivity (Collins etal., 2016; Banerjee et al., 2017). Further studies of
the C. elegans egg-laying homeostat described here should allow
the determination of conserved molecular, cellular, and synaptic
mechanisms that drive stretch-dependent feedback.
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