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Abstract

Motivation: Alternative splicing and alternative transcription are a major mechanism for generating

transcriptome diversity. Differential alternative splicing and transcription (DAST), which describe differ-

ent usage of transcript isoforms across different conditions, can complement differential expression in

characterizing gene regulation. However, the analysis of DAST is challenging because only a small frac-

tion of RNA-seq reads is informative for isoforms. Several methods have been developed to detect

exon-based and gene-based DAST, but they suffer from power loss for genes with many isoforms.

Results: We present PennDiff, a novel statistical method that makes use of information on gene struc-

tures and pre-estimated isoform relative abundances, to detect DAST from RNA-seq data. PennDiff has

several advantages. First, grouping exons avoids multiple testing for ‘exons’ originated from the same

isoform(s). Second, it utilizes all available reads in exon-inclusion level estimation, which is different from

methods that only use junction reads. Third, collapsing isoforms sharing the same alternative exons re-

duces the impact of isoform expression estimation uncertainty. PennDiff is able to detect DAST at both

exon and gene levels, thus offering more flexibility than existing methods. Simulations and analysis of a

real RNA-seq dataset indicate that PennDiff has well-controlled type I error rate, and is more powerful

than existing methods including DEXSeq, rMATS, Cuffdiff, IUTA and SplicingCompass. As the popularity

of RNA-seq continues to grow, we expect PennDiff to be useful for diverse transcriptomics studies.

Availability and implementation: PennDiff source code and user guide is freely available for down-

load at https://github.com/tigerhu15/PennDiff.

Contact: mingyao@pennmedicine.upenn.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA sequencing (RNA-seq) has revolutionized transcriptomics stud-

ies due to its ability to profile the entire transcriptome in an unbiased

fashion. With RNA-seq, we can quantitatively measure gene expres-

sion, discover novel transcripts and detect single nucleotide variations.

Unlike the genome, which gives a static view of the genetic and

regulatory information defining a phenotype, the transcriptome is dy-

namic and varies in different tissues, developmental stages and disease

states (Kratz and Carninci, 2014). Knowledge in transcriptomic vari-

ations is critical for understanding how genes are regulated in re-

sponse to internal and external conditions.

A major mechanism for generating transcriptomic variations is

alternative splicing, a biological process that occurs either co-
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transcriptionally or post-transcriptionally (Han et al., 2011). During

this process, specific exons of a gene can be included or excluded

from messenger RNA (mRNA), leading to different transcript iso-

forms. These isoforms are then translated into functionally unique

proteins, which may respond differently across conditions. There

are many forms of alternative splicing; common forms include exon

skipping, intron retention, mutually exclusive exons and alternative

50 donor site or alternative 30 acceptor site for an included exon.

Recent evidence suggests that over 90% of multi-exon human genes

are alternatively spliced (Wang et al., 2008). Another mechanism

for the generation of transcriptome diversity is alternative transcrip-

tion, which involves the use of alternative transcriptional initiation

and/or termination sites in gene transcription. Alternative transcrip-

tion can give rise to different pre-mRNAs, some of which can fur-

ther undergo alternative splicing. A recent study showed that

alternative transcription exceeds alternative splicing in generating

transcriptome diversity (Pal et al., 2011). Alternative splicing or

transcription may be altered in disease cells and their mis-regulation

can produce aberrant proteins that drive the development of disease

(Scotti and Swanson, 2016). Differential alternative splicing or tran-

scription (DAST), which describes different usage of transcript iso-

forms across different conditions, can complement differential

expression in characterizing gene regulation.

The analysis of DAST is challenging because the isoform origin

for only a small fraction of the sequenced reads can be determined in

a typical RNA-seq dataset. Existing methods for DAST analysis often

take conceptually different approaches (Hooper, 2014). Exon-based

methods, such as MISO (Katz et al., 2010), MATS (Shen et al., 2012),

rMATS (Shen et al., 2014), DEXSeq (Anders and Huber, 2010) and

DSGSeq (Wang et al., 2013), test for differential exon usage for each

individual exon or exon-trio consisting of a cassette exon and two

flanking exons. In contrast, gene-based methods such as Cuffdiff

(Trapnell et al., 2012), SplicingCompass (Aschoff et al., 2013),

DiffSplice (Hu et al., 2013), rSeqDiff (Shi and Jiang, 2013) and IUTA

(Niu et al., 2014), detect DAST at gene level rather than considering

each exon individually. Gene-based methods naturally account for

combined alternative splicing or transcription effects across exons and

hence reduce the need for multiple testing. However, gene-based

methods may suffer from power loss for genes with many isoforms

because estimation uncertainty for isoform expression estimation in-

creases dramatically as the number of isoforms increases.

Recognizing the limitations of existing methods, we propose

PennDiff, a statistical approach that can be considered as a hybrid

of exon- and gene-based methods. PennDiff is based on the observa-

tion that the distribution of isoform relative abundances is the most

general characterization of splicing or transcription pattern because

any other characteristic features such as exon-inclusion levels, can

be derived from this distribution. To reduce the impact of estimation

uncertainty on each individual isoform, exon-inclusion level for

each alternative exon is inferred by collapsing isoforms that share

the exon of interest. This allows PennDiff to make use of all aligned

reads to detect DAST. Through extensive simulations and the ana-

lysis of a real RNA-seq dataset, we demonstrate that PennDiff sig-

nificantly outperforms existing methods.

2 Materials and methods

2.1 Quantification of alternative splicing or transcription

using exon-inclusion level
Since PennDiff is a gene-by-gene based method, throughout the rest

of the text, we describe the analysis for a particular gene only. We

note that multi-mapping reads are discarded from our analysis,

hence recent paralogs are not considered in PennDiff. Given a gene,

let I denote the set of its all known isoforms (e.g. based on refSeq,

UCSC, Gencode or Ensembl gene annotation). An exon is alterna-

tively spliced or transcribed if it is included in some isoform(s) but

not in the other. Following Jiang and Wong (Jiang and Wong,

2009), when two isoforms share part of an exon, we split the exon

into non-overlapping parts and treat each part as a virtual exon.

Figure 1 shows an example in which the gene has three isoforms,

and 14 virtual exons, among which nine are alternatively spliced or

transcribed.

A vital step in PennDiff is to estimate exon-inclusion level for

each alternative exon, which is defined as the proportion of tran-

scripts that originate from isoforms with the exon included. For an

alternative exon e, the exon-inclusion level for subject i can be esti-

mated as xi;e ¼
P

j2Ie
hi;j, where Ie represents the set of isoforms that

have exon e included, and hi, j is the relative abundance of isoform j

in subject i. For the example in Figure 1, the exon-inclusion level for

exon 4 is xi, 4¼ hi, 1 þ hi, 3. Estimated isoform relative abundances

can be obtained by existing algorithms such as Cufflinks (Trapnell

et al., 2010), PennSeq (Hu et al., 2014) or RSEM (Li and Dewey,

2011). We note that, different exons may have the same exon-

inclusion level; for example, xi,2¼xi,3¼xi,5¼xi,6¼ hi,2, xi,1¼
xi,9¼ hi,3 and xi,4¼xi,7¼xi,8¼ hi,1 þ hi,3. This observation

prompted us to group exons according to their exon-inclusion levels.

To detect DAST, we treat exon group as the analysis unit rather

than considering each exon individually. In the example in Figure 1,

there are nine alternative exons, but only three exon groups, indicat-

ing that grouping exons by their isoform origins can substantially re-

duce the need for multiple testing.

2.2 Gaussian copula regression on exon-inclusion

levels
The exon-inclusion levels for exon groups within the same gene are

correlated due to the sharing of certain isoforms. After exon-

inclusion levels are quantified, the next step is to build a statistical

model to account for such correlations in DAST analysis. Since the

joint distribution of exon-inclusion levels is unknown, an alternative

way is to characterize the marginal distributions for exon-inclusion

levels and their correlations separately. A flexible and robust ap-

proach for such modeling is Gaussian copula regression, which has

been utilized previously in gene mapping of quantitative traits and

analysis of correlated data (He et al., 2012; Song et al., 2009). In

Gaussian copula regression, we model the marginal distribution of

each exon-inclusion level using a generalized linear model, and then

apply a multivariate normal distribution to link the generalized lin-

ear models together to account for the correlations. The separation

of marginal distributions and correlation structure makes Gaussian

Fig. 1. Partitioning biological exons into non-overlapping virtual exons in a

gene with three isoforms. This gene has 14 virtual exons, of which 9 are alter-

native spliced or transcribed. These alternative exons can be divided into

three exon groups
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copula regression versatile in modeling non-normal dependent

observations.

Since exon-inclusion level takes values between 0 and 1, it is rea-

sonable to assume a beta distribution for it. The beta distribution, as

is well known, is flexible in modeling proportions because its density

can have different shapes depending on the values of the two param-

eters that index the distribution. Under this assumption, the distribu-

tion of exon-inclusion level for exon group m ð1 � m � MÞ in

subject i is Xi;m � Betaðli;m;/mÞ, and the density of Xi;m can be

written as

f xi;m; li;m;/m

� �
¼ C /mð Þ

C li;m/m

� �
C 1� li;m

� �
/m

� �xi;m
li;m/m�1

� 1� xi;m

� � 1�li;mð Þ/m�1
:

The expected value and variance of Xi;m are

E Xi;m

� �
¼ li;m;

Var Xi;m

� �
¼

li;mð1� li;mÞ
1þ /m

;

where /m > 0 can be interpreted as the precision parameter of the

beta distribution.

In Gaussian copula regression, the marginal generalized linear

model is specified by

g li;m

� �
¼ b0 þ bmZi; (1)

where gð�Þ is a link function that relates the mean of Xi;m and covari-

ates that influence the mean. For the purpose of DAST detection, we

include disease status indicator Zi (1 for case; 0 for control) as a

covariate, but other covariates can certainly be included in (1). We

choose logit function g lð Þ ¼ logðl=ð1� lÞÞ as the link function.

The joint distribution for exon-inclusion levels across all M exon

groups is given by

UM U�1 F Xi; 1; b0; b1;u1

� �� �
; . . . ;U�1 F Xi;M; b0;bM;uM

� �� �
jC

� �
;

where um is the dispersion parameter of the marginal generalized

linear model for exon group m, F Xi;m; b0;bm;um

� �
is the cumulative

beta distribution function of Xi;m given b0; bm;um, Uð�Þ is the cumu-

lative distribution function of a standard normal random variable,

and UMð�; . . . ; �jC) is the cumulative distribution function of multi-

variate normal random variables with M dimensions and correlation

matrix C. Due to the complexity of gene structure, it is difficult to

explicitly derive correlations for exon-inclusion levels. Therefore,

we choose to use exchangeable correlation structure for C, which de-

pends on a single parameter q. A detailed description of the notation

is shown in Supplementary Table S4.

2.3 Detection of DAST events
Based on the above Gaussian copula regression model, the likeli-

hood function for a dataset with n subjects can be written as

Lðb;u;qÞ ¼
Yn

i¼1
Cj j�

1
2

1

2
qT IM � C�1
� �

q

� �
f xi; 1; b0; b1;u1

� �
� � � �

� f xi;M; b0; bM;uM

� �
;

(2)

where q ¼ ðq1; . . . ; qMÞ
T with qm ¼ U�1 Fm xi;m; b0; bm;/m

� �� �
, and

f xi;m; b0; bm;um

� �
is the density function of xi;m given b0;bm;/m

and IM is an M-dimensional identity matrix.

With Gaussian copula regression, we can detect DAST both at

the exon level and the gene level. In exon-based analysis, we test

H0 : bm ¼ 0 versus H1 : bm 6¼ 0 for exon group m to determine

differential exon usage. Rejection of this null hypothesis indicates

that all exons within this exon group are differentially utilized be-

tween cases and controls. In gene-based analysis, we test

H0 : b1¼���¼bM¼0 versus H1 : bm 6¼0 for any 1�m�M.

Rejection of this null hypothesis indicates differential isoform usage

of the gene. Both hypotheses can be tested using likelihood ratio test

with test statistic 2½logL bbH1

� �
� logL bbH0

� �
�. Under the null hy-

pothesis, this test statistic approximately follows a v2
df distribution

in which df ¼1 for exon-based test and df ¼M for gene-based test.

2.4 RNA-seq data simulation
We conducted simulations to evaluate the performance of PennDiff

and compared it with other state-of-the-art algorithms for DAST

analysis based on RefSeq and Enselbml, two commonly used gene

annotations in published studies. To simulate a realistic dataset with

known ground truth, we used Flux Simulator to generate RNA-seq

data (Griebel et al., 2012). The Flux Simulator program assigns ex-

pression value for each isoform following a mixed power/exponen-

tial law. Additionally, it simulates common sources of systematic

bias in the abundance and distribution of produced reads by in silico

library preparation and sequencing. The use of Flux Simulator facili-

tates the comparison of different methods under a more realistic set-

ting than evaluations based on simulating directly count data and

not the full RNA-seq protocol.

To simulate RNA-seq reads using Flux Simulator, the human

genome sequence (hg19, NCBI build 37) was downloaded from

UCSC Genome Browser (https://genome.ucsc.edu/). We simulated

76 bp paired-end reads for 20 cases and 20 controls (�12 million

reads per subject) based on RefSeq annotation and 20 cases and 20

controls (�60 million reads per subject) based on Ensembl annota-

tion. To make our simulated data close to those seen in real studies,

the isoform relative abundances of each gene were sampled from a

Dirichlet distribution in which the mean and variance parameters

were determined from a real human eye RNA-seq dataset (Li et al.,

2014). The simulated RNA-seq reads were mapped to the hg19 ref-

erence human genome using Tophat with default options (Trapnell

et al., 2009). For each gene, isoform relative abundances were esti-

mated using PennSeq (Hu et al., 2014), a program that we recently

developed for isoform relative abundance estimation, which is ro-

bust to non-uniformity in read coverage.

In all results presented in this paper, we only considered genes

with at least two isoforms. Additionally, we required a gene to have

at least 20 mapped reads on average across all RNA-seq samples.

We also evaluated the impact of sample size by analyzing a subset of

n cases and n controls (n¼5) randomly chosen from the full simu-

lated dataset. There were 4408 genes (19 310 alternative exons) for

the RefSeq annotation and 6321 genes (180 478 alternative exons)

for the Ensembl annotation, respectively.

2.5 Human induced pluripotent stem cell RNA-seq

study
2.5.1 Differentiation of human induced pluripotent stem cells

(iPSCs) to macrophages

Detailed protocols were described in our recent publication (Zhang

et al., 2015). Briefly, to induce differentiation, embryoid bodies

were generated by culturing small aggregates of feeder-depleted

iPSCs in COSTAR ultra-low attachment surface multiwell plate in

StemPro-34 media supplemented with different cytokine cocktails.

From day-8, macrophage culture media (20% fetal bovine serum in

RPMI 1640 media supplemented with 100 ng/ml M-CSF) was used
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to enrich for myeloid precursors. At day-15, single cells were trans-

ferred to BD PrimariaTM tissue culture plate for expansion and mat-

uration, completed at day-22. Human protocols for this work were

approved by the University of Pennsylvania and Columbia

University Medical Center Human Subjects Research Institutional

Review Boards. RNA samples from iPSCs and iPSC derived macro-

phages were extracted using All Prep DNA/RNA/miRNA Universal

Kit (Qiagen, Valencia, CA). With a minimum of 300 ng input RNA,

libraries were prepared using the TruSeq RNA Sample Preparation

Kit (Illumina, San Diego, CA), followed by 100 bp paired-end

sequencing on an Illumina’s HiSeq 2000 machine. The RNA-seq

data were aligned to the hg19 reference genome using STAR 2.3.0

with default options. The aligned data were filtered using the fol-

lowing criteria: the mapping quality score of each read was�30,

reads from the same pair were mapped to the same chromosome

with expected orientations and mapping distance between the read

pair was<500 000 bp, and each read was uniquely mapped. Isoform

relative abundances for RefSeq annotated isoforms were estimated

using PennSeq based on the filtered alignment files.

2.5.2 RT-PCR validation

Total RNA was isolated as previously described (Zhang et al.,

2015). Reverse transcription was performed from 500 ng total RNA

per sample using the High Capacity RNA to cDNA Master Mix kit

(Applied Biosystems, Life Technologies) following the standard

protocol. PCR amplification (28 cycles) was performed using the

following primers targeting the constitutive exons flanking the alter-

native one for SYTL2 (Forward 50—CCACAGTGCCTACACAACC

TGATA—30; Reverse 50—CCAGATTGCCAAAGTCTCCACT

AT—30). The amplification products were analyzed on a 3% eth-

idium bromide agarose gel alongside a DNA ladder that allows for

resolution of small bp changes in PCR product sizes (pBR322 DNA-

MspI Digest ladder, New England BioLabs). Gel images were ana-

lyzed using ImageJ.

3 Results

3.1 Exon-inclusion level estimation
Reliable estimation of exon-inclusion level is critical for DAST de-

tection. In PennDiff, a key step is the estimation of exon-inclusion

level by collapsing isoforms sharing the same alternative exon. The

reliance on isoform relative abundances allows us to utilize all

aligned reads to estimate exon-inclusion levels. To evaluate whether

PennDiff yields more accurate estimate, we randomly selected one

subject from the simulated dataset, estimated its exon-inclusion lev-

els for all alternative exons using PennDiff. Figure 2 shows that for

exons with inclusion levels estimated by PennDiff based on both an-

notations (RefSeq and Ensembl), the estimates have a good agree-

ment with the true values and the Spearman correlation coefficients

were 0.87 and 0.76, respectively, on the logit scale.

3.2 Performance of exon-based tests
Next, we evaluated the performance of PennDiff in exon-based ana-

lysis, and compared it with two other exon-based methods including

DEXSeq and rMATS. All methods were run with the same input

dataset. We set a threshold t1 on mean exon-inclusion level differ-

ence between cases and controls, to define the ground truth of

DAST. An exon was considered to be a DAST event if the mean

exon-inclusion level difference, denoted by Dexon, was greater than

t1. To evaluate power with different effect sizes, the value of t1 was

set at 0.1, 0.15 and 0.2, respectively. To evaluate type I error rate, a

true non-DAST event was defined as an exon with Dexon ¼ 0.

In practice, we encountered many instances of exons that showed

statistically significant DAST but exhibited exon-inclusion level

difference that is too small to warrant biological significance.

Therefore, we required an alternative exon to show exon-inclusion

level difference>0.05 in order to be declared as a DAST event.

Since different methods use different criteria to filter out exons

with invalid results (failure of numerical algorithms, or small num-

ber of junction reads etc.), the numbers of tests returned by each

method are quite different. To make a fair comparison, we calcu-

lated type I error rates and power in two ways. In the first approach,

the calculations were based on the true number of DAST and non-

DAST events in the input data, which include those failed to be ana-

lyzed by each method. Including all events in the input data allows

us to better assess each method’s sensitivity and specificity. In real

studies, it is desirable to have a method that yields valid results for

all events. In the second approach, the type I error rates and power

of each method were calculated based on its own returned test re-

sults. The denominators in these calculations can be substantially

different among methods.

Figure 3 shows the comparison results based on virtual exons

when PennDiff and DEXSeq were evaluated using the first approach

when t1 was 0.1. For data generated with the RefSeq annotation, the

number of DAST events detected by PennDiff ranged from 2876 to

3575, and only 1.59 to 2.42% of these events were false positives.

In contrast, DEXSeq detected 2218 to 3107 events; however, type I

error rates (5.46, 9.10%) were inflated under RefSeq annotation.

For data generated with the Ensembl annotation, the number of

DAST events ranged from 7726 to 9095 for PennDiff, and 2666 to

3841 for DEXSeq. Both methods had well-controlled type I error

rates. To control for multiple testing, we also evaluated the false dis-

covery rate of each method. Supplementary Table S5 shows that

both PennDiff and DEXSeq had false discovery rate controlled at

the 5% level.

In power comparison, both methods had increased power as the

threshold value t1 increased because differentially spliced or tran-

scribed exons with larger inclusion level difference were easier to de-

tect. The power of PennDiff was consistently higher than DEXSeq

under both gene annotations (RefSeq and Ensembl) because the reli-

ance on isoform relative abundances for exon-inclusion level estima-

tion allows PennDiff to utilize all aligned reads, whereas count-

based method such as DEXSeq only use reads mapped to the tested

exon and ignore reads mapped elsewhere even if they are inform-

ative for exon-inclusion level estimation. We observed similar

Fig. 2. Smooth scatter plot of logit transformed estimated exon-inclusion lev-

els versus logit transformed true values. Correlation was calculated on the

logit transformed values. (A) Exon-inclusion levels estimated by PennDiff

based on RefSeq annotation (8061 alternative splicing or transcription

events). (B) Exon-inclusion levels estimated by PennDiff based on Ensembl

annotation (49 607 alternative splicing or transcription events)
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patterns at other threshold values of t1 (Supplementary Figs S1 and

S3). Supplementary Table S1 shows the comparison results of

PennDiff and DEXseq based on the second approach. The power of

DEXSeq was consistently lower than PennDiff.

Next, we compared with rMATS, an exon-based method that

was designed to detect differential alternative splicing events only.

To make a fair comparison with rMATS, we focused on those differ-

ential alternative splicing events that were analyzed by rMATS,

including cassette exon, mutually exclusive exons, retained intron,

alternative 50 splice site and alternative 30 splice site (Supplementary

Table S3). The type I error rates of rMATS exceeded the nominal

level, especially when sample size was small. Additionally, PennDiff

had greater power than rMATS for all scenarios we considered.

3.3 Performance of gene-based tests
Next, we evaluated the performance of PennDiff in gene-based ana-

lysis and compared it with three other gene-based methods, includ-

ing IUTA, SplicingCompass and Cuffdiff. A gene was considered

DAST when the mean Hellinger distance between cases and con-

trols, denoted by Dgene, was greater than t1. Hellinger distance,

which describes the similarity between two probability distributions

was calculated as

Dgene ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j2I

ffiffiffiffiffiffiffiffiffiffiffi
hcase;j

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hcontrol;j

q� �2
s

;

where hcase¼ðhcase; 1; . . . ;hcase;jIjÞ and hcontrol¼ hcontrol; 1; .. . ;
�

hcontrol; Ij jÞ represent the mean isoform relative abundances deter-

mined based on the human eye RNA-seq dataset (see Materials and

methods section). This distance has been utilized previously

(Monlong et al., 2014) to measure the splicing ratio difference

between two genes with multiple isoforms. The threshold values of

t1 varied at 0.1, 0.15 and 0.2, respectively. We required a gene with

estimated Hellinger distance>0.05 in order to be declared as a

DAST gene. We also compared the type I error rates and power

among different methods using two ways, similar to those employed

in exon-based comparisons.

Figure 4 (Supplementary Figs S2 and S4) shows that empirical type I

error rates and power of PennDiff, IUTA, SplicingCompass and

Cuffdiff based on true DAST and non-DAST genes in the input data

under RefSeq and Ensembl annotations. All methods had type I error

rates controlled at the 5% significance level when n was 20; however,

when n was 5, the type I error rate of IUTA was slightly above 5%

under the RefSeq annotation. Furthermore, PennDiff had higher power

than the other methods for most situations, and method-specific results

(Supplementary Table S2) indicate a similar pattern. Supplementary

Table S6 shows that all methods had false discovery rate controlled at

the 5% level. The power of Cuffdiff is much lower than the other gene-

based methods. The poor performance of Cuffdiff is possibly due to the

fact that it detects splicing change at gene level by directly comparing

the relative usage of all isoforms in each gene. This requires highly ac-

curate isoform relative abundance estimation, which is challenging es-

pecially for genes with complicated exonic structure and low read

coverage. Indeed, this challenge motivated PennDiff to test differential

splicing by comparing exon-inclusion levels for exons in the same

group. Compared to isoform relative abundance, exon-inclusion level

can be estimated more accurately by collapsing isoforms sharing the

same exon while utilizing all reads mapped to the gene.

3.4 Impact of exon grouping and gene structure
An important feature of PennDiff is grouping exons that originate

from the same isoform(s). As shown in Figure 1, exon grouping can

Fig. 3. Type I error and power of exon-based methods with different sample

sizes and gene annotations. Calculations were based on all DAST and non-

DAST exons in the input data. Significance was evaluated at the 5% signifi-

cance level. An exon with true exon-inclusion level difference>0:1 was

defined as a true DAST exon. (A) 5 versus 5 based on RefSeq annotation. (B)

20 versus 20 based on RefSeq annotation. (C) 5 versus 5 based on Ensembl

annotation. (D) 20 versus 20 based on Ensembl annotation

Fig. 4. Type I error and power of gene-based methods with different sample

sizes and gene annotations. Calculations were based on all DAST and non-

DAST genes in the input data. Significance was evaluated at the 5% signifi-

cance level. A gene with true Hellinger distance>0:1 was defined as a true

DAST gene. (A) 5 versus 5 based on RefSeq annotation. (B) 20 versus 20

based on RefSeq annotation. (C) 5 versus 5 based on Ensembl annotation. (D)

20 versus 20 based on Ensembl annotation
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substantially reduce the need for multiple testing. Among the 4408

RefSeq genes (6321 Ensembl genes) that met our analysis criteria in

the full dataset, the number of alternative exons is 19 310 (180 478

for Ensembl), but the number of exon groups is 9684 (108 997 for

Ensembl), suggesting that multiple testing corrections can be reduced

by about twofold. To evaluate the impact of exon grouping on power,

we calculated power separately by the number of exons per group.

Figure 5A shows that PennDiff performed consistently better than

DEXSeq. The power of PennDiff was relatively stable as the number

of exons per group increased, whereas DEXSeq had reduced power.

These results demonstrate the advantage of PennDiff in exon-based

analysis, especially for exon groups having many alternative exons.

Gene-based methods tend to have reduced power for genes with a

large number of isoforms. To circumvent this problem, PennDiff tests

DAST at the gene level by comparing exon-inclusion levels of all exon

groups of a gene. To evaluate if this grouping is effective, we com-

pared with IUTA and SplicingCompass. We focused on the analysis

of data generated based on Ensembl annotation due to its more com-

prehensive annotation on isoforms than RefSeq. We classified the

6321 Ensembl genes into six groups based on the number of isoforms

per gene. Figure5B shows that the power of SplicingCompass dropped

significantly as the number of isoforms increased. In contrast,

PennDiff and IUTA were relatively stable as the number of isoforms

increased. These results suggest that PennDiff and IUTA were robust

to the increased complexity of gene structure.

3.5 Robustness to under- and over-annotation of

isoforms
As PennDiff relies on gene annotation in isoform expression estima-

tion and exon grouping, it is important to evaluate its robustness

when isoforms are misannotated. To this end, we evaluated the per-

formance of PennDiff with under- and over-annotated isoforms. For

under-annotation, we simulated RNA-Seq reads based on 100% of

the Ensembl annotation and analyzed the simulated data with vari-

ous methods using 90% (10% less), 75% (25% less) and 50%

(50% less) of the Ensembl annotation. Figure 6A shows that

PennDiff outperformed the other methods in most settings.

Compared to IUTA, PennDiff had lower power only when n¼20

and t1 ¼0.2 and this gap was reduced when isoforms were more

under-annotated. Also, from 100 to 75% annotation, PennDiff was

clearly more robust than IUTA. For SplicingCompass, it had

significantly lower power than PennDiff and IUTA, even though its

power was less affected by the degree of under-annotation.

Similarly, for over-annotation, we simulated data based on 66% of

the Ensembl annotation and analyzed the simulated data with vari-

ous methods using 73% (10% more), 83% (25% more) and 100%

(50% more) of the true annotation. Figure 6B shows that the power

of PennDiff was robust to over-annotation and it was generally

more powerful than IUTA. SplicingCompass still had the lowest

power compared to other two methods.

3.6 Application to a human-induced pluripotent stem

cell study
To evaluate the performance of PennDiff in real settings, we ana-

lyzed a RNA-seq dataset generated from a human induced pluripo-

tent stem cell (iPSC) study in which RNA-seq data were generated

on iPSCs and iPSC-derived macrophages (iPSDMs) (Zhang et al.,

2015). In this paper, we focused on DAST analysis between iPSC

and iPSDM samples generated from three subjects each with two

replicates. These samples were sequenced using Illumina’s HiSeq

2000 machine, yielding approximately 130 million 101 bp pair-end

reads per sample, 95% mapping rate to the reference genome, and

approximately 70% reads uniquely mapped and filtered. In the

DAST analysis, among genes with two or more isoforms annotated

by RefSeq, we considered the 4889 genes that had at least 20

mapped reads on average and performed DAST analysis using

PennDiff, DEXSeq, IUTA and SplicingCompass. For PennDiff, the

isoform relative abundances were estimated using PennSeq for

RefSeq annotated isoforms. We did not compare with Cuffdiff and

rMATS due to their lack of sensitivity or inflated type I error rates

shown in the simulations (Supplementary Tables S2–S3).

Figure 7A (left panel) shows the number of DAST genes detected

by each method. Since DEXSeq is an exon-based method, for ease of

comparison, we consider a gene to be DAST by DEXSeq if at least

one virtual exon of the gene was detected by DEXSeq. 89% of the

genes detected by PennDiff were detected by at least another method

(IUTA, SplicingCompass, or DEXSeq), and the corresponding num-

bers were 90% for IUTA, 74% for SplicingCompass and 80% for

DEXSeq. To have a better understanding on the behavior of

DEXSeq and PennDiff when the interest is in virtual exons, we fur-

ther compared DEXSeq and PennDiff exon-based test when the test-

ing unit is virtual exons. Figure 7A (right panel) shows that PennDiff

detected 6675 exons and 60% were also detected by DEXSeq. As a

comparison, DEXSeq detected 8303 exons and 48% were detected

Fig. 5. The impact of gene complexity on power of different methods. (A)

Power comparison between PennDiff and DEXSeq when results were strati-

fied by the number of exons per group (�2: 2765 exon groups,�3: 1103 exon

groups,�4: 668 exon groups,�5: 460 exon groups,�6: 370 exon groups).

Significance was evaluated at the 5% level. (B) Power comparison between

PennDiff, IUTA and SplicingCompass when results were stratified by the

number of isoforms per gene (�2: 6321 genes,�5: 4232 genes,�10: 2102

genes,�15: 941 genes,�20: 426 genes,�25: 189 genes). Significance was

evaluated at the 5% level

Fig. 6. The impact of mis-annotation of isoforms on power of different meth-

ods. (A) Evaluation of the impact of under-annotation of isoforms. Shown are

the power estimates of PennDiff, IUTA and SplicingCompass based on 100%

(true), 90% (10% less), 75% (25% less) and 50% (50% less) of the Ensembl

annotated isoforms. (B) Evaluation of the impact of over-annotation of iso-

forms. Shown are the power estimates of PennDiff, IUTA and

SplicingCompass based on 66% (true), 73% (10% more), 83% (25% more) and

100% (50% more) of the Ensembl annotated isoforms
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by PennDiff. Given the high percentage of unique exons detected by

DEXSeq, we next examined if the corresponding genes detected by

DEXSeq can be detected by other gene-based methods. Our results

indicate that only 76% of the DEXSeq detected genes were detected

by at least another gene-based method, whereas the corresponding

percentage was 87% for PennDiff exon-based test. Supplementary

Figure S9 shows that the lack of concordance for DEXSeq with

other methods is likely due to its inflated false positive rates.

For genes that were detected by PennDiff but missed by IUTA

and SplicingCompass, we searched for empirical evidence in RNA-

seq coverage plot. Among the 528 genes detected by PennDiff only,

35.1% have more than three isoforms, which is significantly higher

than the corresponding percentage among the remaining 4302 quali-

fied genes (21.5%). We randomly picked 10 genes (ACSL3, CAPS,

INTS12, LRRCD8, MGAT1, MYO9B, ST7, SYTL2, TGIF2 and

UBA1) among the 528 genes, and generated coverage plots using

the sashimi plot feature in IGV to verify our results. For example,

ACSL3 and INTS12 both have two annotated isoforms but only one

alternatively spliced exon. The boxed areas in Supplementary Figure

S9 show visual evidence of DAST between iPSC and iPSDM in these

two genes. The P-value from PennDiff was 0.000014 for ACSL3,

and was 0.00058 for INTS12, whereas both genes were missed by

IUTA and SplicingCompass. For SYTL2, we generated coverage

plot for alternatively spliced exon chr11: 85422155–85422275, and

further conducted real time polymerase chain reaction (RT-PCR) to

validate the differential usage of this cassette exon. Both results were

consistent with PennDiff (P¼0.00011, estimated exon-inclusion

level difference¼0.23).

To compare the performance of PennDiff and DEXSeq, we next

randomly picked a gene ST7 and generated coverage plot for alter-

natively spliced exons to empirically check the evidence of DAST.

The isoform structure of ST7, shown in Supplementary Figure S7C,

is relatively simple with only two isoforms and three alternatively

spliced exons. The signals of exon 15 and alternate exon 15 have

‘switch-like’ pattern, which strongly suggests DAST. However, exon

7 was detected by PennDiff but not by DEXSeq. Since exon 15 and

exon 7 share the same exon-inclusion level, and the exon-inclusion

level of the alternate exon 15 is complementary to exon 15 and exon

7, these three exons should yield the same result if there is evidence

of DAST. PennDiff reported evidence of DAST for all three exons,

but DEXSeq failed to detect DAST for exon 7. This example indi-

cates the importance of exon grouping in DAST analysis. We further

examined the DAST events detected by PennDiff by their types

(Supplementary Fig. S8). Consistent with our simulations, most of

the detected DAST events had alternative promoters.

4 Discussion

Detection of genes with mis-regulated alternative splicing or tran-

scription is a critical step in transcriptomics studies. Existing meth-

ods either test each exon individually or examine the overall

distribution of isoform relative abundances. Exon-based approaches

focus on junction reads and those that map exclusively to the exon

of interest, but ignore other reads even if they are informative for al-

ternative splicing or transcription. Gene-based methods can prevent

information loss, but they often have little power to detect DAST

for genes with many isoforms. In this article, we present PennDiff, a

statistical approach that can be considered as a hybrid of exon- and

gene-based methods. The central idea of PennDiff is to quantify

exon-inclusion levels using relative abundances of isoforms sharing

the same exon and grouping exons based on their isoform origin.

This was motivated by the observation that the distribution of iso-

form relative abundances offers the most general characterization of

splicing pattern because any other features on alternative splicing or

transcription can be derived from this distribution.

Compared to existing methods, PennDiff has several advantages.

First, collapsing isoforms sharing the same alternative exon leads to

more accurate estimation of exon-inclusion levels than methods that

only utilize junction reads. Additionally, PennDiff can estimate

exon-inclusion levels for both alternative splicing and alternative

transcription event, a desirable feature as the majority of alternative

exon events in human genes are extremely complex. Indeed, a recent

study showed that alternative transcription exceeds alternative splic-

ing in generating transcriptome diversity (Pal et al., 2011). Through

simulations and the examination of real data, we found PennDiff to

be particularly powerful in detecting alternative promoters, a versa-

tile mechanism for creating diversity and flexibility in gene

regulation.

Second, exon-based methods such as DEXSeq test all exons in a

gene, regardless whether an exon is alternatively spliced or tran-

scribed. The ignorance of isoform structure may increase the num-

ber of tests unnecessarily. For example, we found that among the

105 312 virtual exons from the 7390 human genes with two or

more isoforms annotated by RefSeq, 72 460 of the exons are not al-

ternatively spliced or transcribed. However, DEXSeq would per-

form tests on these non-informative exons, and unnecessarily

increases the number of tests.

Third, exon-based methods such as rMATS rely on junction

reads mapped to splicing sites to detect differential alternative splic-

ing, which limit their ability to detect splicing events with complex

exonic structure and those without enough junction read coverage.

Here we showed that PennDiff offers a useful alternative to rMATS.

By quantifying exon-inclusion levels using pre-estimated isoform

relative abundances, PennDiff cannot only test all alternatively

spliced exons but also those alternative exons and this feature makes

PennDiff particularly attractive in real studies.

Fourth, by grouping alternative exons that originate from the

same isoform(s), PennDiff avoids conducting unnecessary tests, thus

reduces the burden of multiple testing. In our simulations, we found

that PennDiff was more powerful than DEXSeq, especially when

more alternative exons are grouped together. Since PennDiff is per-

formed for each exon group under the assumption that exons within

the same group share a common exon-inclusion level, more reads

Fig. 7. (A) DAST genes detected by different methods for human induced

pluripotent stem cells (iPSCs) versus iPSC-derived macrophages (iPSDMs).

(B) RT-PCR validation of alternatively spliced exon chr11: 5422155–85422275

in SYTL2 in samples of two human donors we performed the RNA-seq stud-

ies. The exon-inclusion levels shown in the table were estimated based on

the gel image. (C) IGV sashimi plot of gene SYTL2. M4 and M8 are two study

subjects
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can be utilized to estimate exon-inclusion level when more exons are

included and hence lead to more accurate estimation.

The current evaluation of PennDiff used isoform relative abun-

dances estimated from PennSeq as the input. Since PennSeq is robust

to non-uniformity of read coverage, it is of interest to evaluate the

contribution of PennSeq to the good performance of PennDiff. To

this end, we divided genes in our simulated data into two categories

based on the degree of non-uniformity of read coverage.

Supplementary Figure S5 shows that PennDiff consistently outper-

forms the other methods for both exon-based and gene-based tests

regardless of the degree of non-uniformity, suggesting that the good

performance of PennDiff is not completely due to the use of

PennSeq. Supplementary Figure S5 also shows that PennDiff per-

formed especially better than the other methods for genes showing

higher degrees of non-uniformity, indicating that when read cover-

age is not uniform, PennDiff would benefit from the use of an iso-

form expression estimation method that is robust to non-uniformity.

Although PennDiff can take isoform relative abundances estimated

from other programs as the input, to achieve better performance, we

recommend using PennSeq for isoform relative abundance estima-

tion or other programs that can properly handle non-uniformity in

read coverage.

We also evaluated the impact of gene expression levels on

PennDiff. Specifically, we divided genes in the simulated data into

three groups based on the number of mapped reads adjusted by gene

length (low: [0, 33%); medium: [33, 66%); high: [66, 100%]).

Supplementary Figure S6 shows that all methods had increased

power when gene expression level increased, but PennDiff was more

robust to the impact of gene expression levels than the other

methods.

In summary, we have developed a flexible regression framework

to detect DAST at both exon and gene levels. Through extensive

simulations and the analysis of a real RNA-seq dataset, we showed

that PennDiff outperformed competing methods, particularly when

sample size is small or the difference between groups under compari-

son are small. We believe that PennDiff will be a valuable tool for

future transcriptomics studies.
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