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Abstract

Motivation: Chromatin accessibility plays a key role in epigenetic regulation of gene activation and

silencing. Open chromatin regions allow regulatory elements such as transcription factors and

polymerases to bind for gene expression while closed chromatin regions prevent the activity of

transcriptional machinery. Recently, Methyltransferase Accessibility Protocol for individual

templates-Bisulfite Genome Sequencing (MAPit-BGS) and nucleosome occupancy and methylome

sequencing (NOMe-seq) have been developed for simultaneously profiling chromatin accessibility

and DNA methylation on single molecules. Therefore, there is a great demand in developing com-

putational methods to identify chromatin accessibility from MAPit-BGS and NOMe-seq.

Results: In this article, we present CAME (Chromatin Accessibility and Methylation), a seed-

extension based approach that identifies chromatin accessibility from NOMe-seq. The efficiency

and effectiveness of CAME were demonstrated through comparisons with other existing tech-

niques on both simulated and real data, and the results show that our method not only can pre-

cisely identify chromatin accessibility but also outperforms other methods.

Availability and Implementation: CAME is implemented in java and the program is freely available

online at http://sourceforge.net/projects/came/

Contacts: jechoi@gru.edu or khryu@dblab.chungbuk.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Chromatin is a fundamental structure for compactly packaging a

genome and reducing its volume in eukaryotic cells, and consists of

nucleosomes composed of �147 bp DNA wrapped around core his-

tone proteins (Richmond and Davey, 2003; Struhl and Segal, 2013).

Chromatin accessibility plays a key role in epigenetic regulation of

gene activation and silencing. In other words, open chromatin re-

gions (OCRs) allow regulatory molecules such as transcription fac-

tors and polymerases to bind for gene expression while closed

chromatin regions (CCRs) prevent the activity of the transcriptional

machinery. It is well known that chromatin accessibility is highly

correlated with DNA methylation and histone modifications such as
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methylation, acetylation and phosphorylation (Thurman et al.,

2012) and is the key ‘on-off’ switch of mRNA transcription. In add-

ition to its role in modulating gene transcription, chromatin accessi-

bility can also affect other cellular processes such as DNA

replication and recombination, and RNA splicing (Liu G, et al.,

2016). Numerous studies have shown that aberrant alterations in

chromatin accessibility cause disease (Hon et al., 2012; Simon et al.,

2014; Suv�a et al., 2013). For instance, decreased nucleosome occu-

pancy proximal to mis-spliced exons was observed in human kidney

tumors carrying mutations in histone H3K36 methyltransferase

SETD2 (Simon et al., 2014). The chromatin accessibility changes

caused by lack of H3K36me3 correlated with widespread RNA pro-

cessing defects in kidney tumors. Furthermore, chromatin accessibil-

ity mapping revealed subtype-specific epigenome signatures and

transcription regulatory networks in chronic lymphocytic leukemia

(Rendeiro et al., 2016). Therefore, the identification of chromatin

accessibility and nucleosome occupancy and the understanding of

the underlying epigenetic mechanism are essential for deciphering

the chromatin function in various pathophysiological processes.

With advances in next generation sequencing technologies, chro-

matin accessibility and nucleosome occupancy (positioning) can be

assessed using FAIRE-seq (Giresi et al., 2007), DNase-seq (Song and

Crawford, 2010) and MNase-seq (Barski et al., 2007). Recently,

Methyltransferase Accessibility Protocol for individual templates-

Bisulfite Genome Sequencing (MAPit-BGS) and nucleosome occu-

pancy and methylome sequencing (NOMe-seq) have been developed

for simultaneously profiling of chromatin accessibility and DNA

methylation on single molecules (Kelly et al., 2012; Pondugula and

Kladde, 2008). MAPit-BGS and NOMe-seq use a GpC methyltrans-

ferase (M.CviPI; Xu et al., 1998) to methylate GpCs in OCRs fol-

lowed by bisulfite sequencing that measures the de novo

methylation of cytosines by M.CviPI. Since the methylation of GpCs

and CpGs represent chromatin accessibility and DNA methylation,

respectively, NOMe-seq can footprint active (unmethylated and

nucleosome-depleted), repressed (unmethylated and nucleosome-

occupied) and silent (methylated and nucleosome-occupied) pro-

moters. Using deep bisulfite sequencing of amplicons or long paired-

end sequencing of shotgun libraries, it is possible to detect the mi-

nority subpopulations of tumor cells that display different chroma-

tin and DNA methylation profiles from the bulk tumor population

using MAPit-BGS and NOMe-seq (Kelly et al., 2012; Nabilsi et al.,

2014).

To the best of our knowledge, there is no standard method for

de novo identification of chromatin accessibility from NOMe-seq

data. Kelly et al. (2012) analyzed nucleosome occupancy only for

given gene promoters in the�100 toþ50 bps region of transcription

start sites by averaging methylation scores of trimer GpCpHs (here-

inafter GCHs) and assessing the significance of the average methyla-

tion using the binomial test. CpG_MPs (Su et al., 2013) has been

developed for identifying unmethylated and methylated regions

based on a hotspot extension algorithm from bisulfite sequencing

data. Although it was designed for analyzing CpG methylation, it

can be easily applied to GpC methylation. Briefly, CpG_MPs div-

ided GpC dinucleotides into four groups based on their methylation

scores: unmethylated, partially unmethylated, partially methylated

and methylated. Hotspots can be defined as genomic regions that

contain more than N unmethylated or methylated GpCs. Then,

unmethylated genomic regions are identified by extending hotspots

until reaching a methylated or partially methylated GpC. A max-

gap-min-run segmentation algorithm was used to identify transcrip-

tionally active regions from tiling microarray data (Cawley et al.,

2004; Emanuelsson et al., 2007). We applied it (Emanuelsson et al.,

2007) to detect open (closed) chromatin regions from NOMe-seq

data by changing the concept of max-gap and min-run. During scan-

ning GpCs from the left to right direction, unmethylated regions can

be determined by merging GpCs with smaller (larger) methylation

score than a cutoff. GpCs that have larger (smaller) score than a cut-

off can be included if they are in a specific distance defined as max-

gap. The length of detected regions is required to be greater than a

threshold defined as minrun.

In this study, we applied two existing algorithms and present a

novel method, CAME, for analyzing NOMe-seq data. CAME uses a

seed-extension approach and non-parametric mixture model to

identify open and closed chromatin regions. As shown in experimen-

tal results with both simulated and real datasets, CAME yielded

good results and outperformed the existing approaches.

2 Methods

There are two main steps in CAME: (i) seed detection and (ii) seed

extension. In this section, we will describe each step in detail. As

mentioned in the previous section, M.CviPI treatment methylates

GpC dinucleotides in open chromatin regions (OCRs) while those in

closed chromatin regions (CCRs) are unchanged, i.e. unmethylated.

Therefore, CCRs and OCRs can be identified by searching unmethy-

lated and methylated regions of GCHs (GpCs not followed by G),

respectively. GCGs cannot be used because it is impossible to distin-

guish whether the methylation of GCGs represents endogenous

methylation or is changed by M.CviPI treatment. Note that CpGs in

CpG islands are generally unmethylated while those in the other re-

gions are methylated in mammals. In contrast, CpHs, i.e. CpAs,

CpCs, or CpTs, are largely unmethylated except in stem cells.

2.1 Seed detection
We first detect seeds to predict CCRs from NOMe-seq. Raw se-

quence reads from NOMe-seq are mapped to a reference genome

and then the methylation score of all GCHs are calculated by divid-

ing the number of methylated reads into the number of methylated

and unmethylated reads. Note that a read could not carry a methyla-

tion state due to sequencing errors or polymorphisms, i.e. neither C

nor T in each strand. Let N denote the total number of GCHs and bi

the methylation score of a GCH at position i. Seeds are defined as

GCHs with methylation score< a user-defined threshold d
(Supplementary Algorithm 1 and Fig. 1). In other words, a GCH is a

seed if the methylation score is smaller than a user defined threshold.

Next, since the length of nucleosome is fixed in general, i.e. 147 bp,

adjacent seeds are merged if their distance is smaller than a specific

distance d. For each merged seed, the methylation score is recalcu-

lated by averaging their methylation scores.

2.2 Seed extension
The next step is to determine the boundary of CCRs by extending

each seed in the order of ascending average methylation scores

(Supplementary Algorithm 2). The main strategy of our extension

algorithm is to iteratively search local peaks and valleys to decide

whether a seed should be extended or not. A local peak GCHp is

defined as the first GCH that bp>bpþ1, whereas a local valley

GCHv is defined as the first GCH that satisfies bv<bvþ1. Initially,

our extension algorithm searches the nearest local peaks on both left

and right directions and compares the methylation score of the

peaks to a threshold value. If the score is smaller than a specific

threshold D, then the average methylation score is examined for ex-

tension decision. Otherwise the extension is stopped and the end
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point is decided. In the former case, the algorithm recalculates the

average methylation score of the region from seed to the valley. If

the score is smaller than a specific threshold l, it repeats the proced-

ure by considering the next nearest peak and valley until the exten-

sion stop condition is met. Otherwise the extension is stopped.

When the extension is stopped, the extended seed includes valleys in

the end and is further extended if the next GCHs have lower methy-

lation score than one standard deviation of the methylation scores

of GCHs in CCRs from the average methylation score of the seed.

Since the standard deviation of methylation scores of GCHs within

the CCR is unknown, we apply a non-parametric mixture model

based on an expectation-maximization (EM) algorithm to estimate

the mean and standard deviation of the methylation scores of GCHs

in CCRs and OCRs. For extension decision, another threshold e can

be used to exclude seeds when the average methylation score of the

extended region is calculated.

To better understand the extension algorithm, we illustrate the

procedure using a simple example. If we have 11 GCHs, denoted as

GCH1 to CGH11, which are sorted in ascending order of their gen-

omic positions and all located closely enough, i.e. the distance be-

tween adjacent GCHs are smaller than d. The methylation scores of

the GCHs are shown in Figure 1. Assuming that the input param-

eters are d¼0.1, l¼0.2, D¼0.5, only GCH1 and GCH2 are seeds

and merged because their scores are smaller than d and they are ad-

jacent. The new average methylation score of the seed is 0.09. The

nearest local peak is GCH4, and its methylation score is smaller than

D, i.e. b4¼0.45<0.5. Therefore, the algorithm searches the nearest

valley GCH6 and then calculates the average methylation score of

the GCH sites that precede it, including the seed sites, which is

(0.09þ0.09þ0.15þ0.45þ0.25þ0.13)/6¼0.19. Since the aver-

age score is smaller than l¼0.2, the end point is updated from

GCH2 to GCH6. In the same manner, GCH9 is selected as the next

nearest peak in the second iteration. Since its methylation score

b9¼0.61 is larger than D, the extension is stopped and goes to the

step to decide the end point. In the other example as drawn in the

thin line for GCH8 to GCH11, the next peak GCH8 is smaller than

D, but the average score to the next valley GCH10, (0.09þ
0.09þ0.15þ0.45þ0.25þ0.13þ0.20þ0.30þ0.25þ0.20)/10¼
0.211, is larger than l. Therefore, the extension is stopped at

GCH6. The final step is to decide the end point of the extension

using the mean and standard deviation estimated by a non-parametric

mixture model. Assuming that those of the methylation scores of GCHs

in CCRs are 0.2 and 0.1, respectively, then, the end point is updated as

long as the methylation score is smaller than 0.2þ0.1¼0.3. In this ex-

ample, GCH7 is the end point. As a result, the genomic region from

GCH1 to GCH7 is the final CCR detected by our algorithm.

2.3 Simulation model
It is challenging to benchmark CCRs and OCRs using real data since

there is no gold standard data for the mammalian genome. In add-

ition, robust evaluation measures such as sensitivity and specificity

are needed to assess the performance of detection methods. To ad-

dress these issues, we propose a simulation model. Since methylation

scores range from 0 to 1, beta distribution is natural for modeling

observed methylation scores. Normal distribution cannot be used to

generate the scores because the scores may have the values under 0

or over 1. As shown below, the mean and standard deviation of nor-

mal distribution can be defined using the shape parameters of beta

distribution to control alpha and beta values for a simulation. For

the coordinate of CCRs given, our simulation model generates the

methylation scores of GCHs in CCRs and OCRs using �Betaðac;bcÞ
and �Betaðao; boÞ, respectively. The shape parameters ao;bo; ac; bc

were computed from lo; ro; lo;rc which are input parameters of our

simulation model based on the following equations:

ao ¼
1� lo

r2
o

� 1

lo

� �
l2

0;bo ¼ ao
1

lo

� 1

� �
; (1)

ac ¼
1� lc

r2
c

� 1

lc

� �
l2

c ;bc ¼ ac
1

lc

� 1

� �
; (2)

where lo and ro (lc and rc) are the mean and standard deviation of

the methylation scores of GpCs within OCRs (CCRs), respectively.

2.4 Correlation to DNA methylation
Since chromatin accessibility is highly correlated to DNA methyla-

tion, CAME has a function to correlate chromatin accessibility to

DNA methylation. To this end, the average methylation of trimer

HpCpGs (hereinafter HCGs) in OCRs and CCRs are computed and

then used to separate OCRs and CCRs based on thresholds for

hyper- and hypo-methylation. Finally CAME outputs 4 groups of re-

gions: hyper-methylated OCRs, hypo-methylated OCRs, hyper-

methylated CCRs, and hypo-methylated CCRs, and visualizes them

using smoothed scatter plots. Those groups can be further analyzed

for functional analysis using DAVID (Huang et al., 2008) and

Panther (Thomas et al., 2003).

3 Results

3.1 Simulation
To simulate realistic data, input CCRs were derived from micrococ-

cal nuclease (MNase) sequencing data in the NCBI Sequence Read

Archive (SRX021427). Raw sequence reads were mapped to the

human reference genome (hg19) using Bowtie2 (Langmead and

Salzberg, 2012) and then DANPOS (Chen et al., 2013) was used to

identify nucleosome positions with parameter -jd 70 (Fig. 2). Finally

we chose 550 089 CCRs and 550 088 OCRs in chromosome 1 from

this data, resulting in 12 974 716 and 5 800 580 GCHs, respectively.

From those CCRs and OCRs, we generated four datasets using the

simulation model described in the previous section with different

parameters: D1 (lC ¼ 0:1, rC ¼ 0:1, lO ¼ 0:9, rO ¼ 0:1), D2

(lC ¼ 0:2, rC ¼ 0:1, lO ¼ 0:8, rO ¼ 0:1), D3 (lC ¼ 0:3, rC ¼ 0:1,

lO ¼ 0:7, rO ¼ 0:1) and D4 (lC ¼ 0:4, rC ¼ 0:1, lO ¼ 0:6,

rO ¼ 0:1). Figure 3 shows the density curves of the methylation

scores of GCHs for the generated datasets. As shown in the figure,

the closer input parameters lO and lC were, the more two groups

overlapped. These simulation datasets can extensively assess the per-

formance of CAME from well separated case to highly overlapped

case.

Fig. 1. Illustration of seed-extension algorithm. The x-axis indicates 11 GCHs

(from GCH1 to GCH11). GCH1 and GCH2 are seeds, merged and extended to

GCH7 by the proposed algorithm (Color version of this figure is available at

Bioinformatics online.)
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As mentioned in the previous section, CAME decides final exten-

sion end points based on sum of mean and standard deviation of the

methylation scores of GCHs within CCRs. To estimate these values,

we adopted npEM function in the mixtools R package (Benaglia

et al., 2009). Table 1 shows the estimated mean and standard devi-

ation of the methylation scores of GCHs in both CCRs and OCRs.

The estimation results were accurate with error range 60.02 com-

pared with actual values, confirming that the EM-based non-

parametric mixture model used in our algorithm accurately predicts

the true statistics of GCH methylation. Similar results can also

found in the estimation for the OCRs.

We first evaluated the performance of CAME by individual

GCHs in terms of sensitivity and specificity on simulated datasets.

True positives (TPs) and false negatives (FNs) represent correct pre-

diction and wrong rejection of GCHs because they are in CCRs, re-

spectively. True negatives (TNs) and false positives (FPs) represent

correct rejection and wrong prediction of GCHs because they are in

OCRs, respectively. Sensitivity, specificity and accuracy are defined

as TP/(TPþFN), FP/(FPþTN) and (TPþTN)/(TPþFPþFNþ

TN), respectively. Table 2 shows a contingency table on different

datasets with parameter d¼150, D¼0.6 and (d, e)¼ (0.1, 0.4), (0.2,

0.5), (0.3, 0.5) and (0.4, 0.5) for D1, D2, D3 and D4 respectively.

While the sensitivities were 0.9954, 0.9964, 0.9941 and 0.9470, the

specificities were 0.9999, 0.9997, 0.9928 and 0.9271 for D1, D2, D3

and D4, respectively (Supplementary Table S1 and Supplementary

Fig. S1). The sensitivities were very high (>97%) for all the datasets

and the specificities were also extremely high for all the datasets ex-

cept D4 which is the most challenging dataset because the distribu-

tion of the methylation scores of GCHs in CCRs and OCRs overlap

much (Fig. 3(d)). It makes our method difficult to accurately predict

the regions. Then we performed ROC (Receiver Operating

Characteristic) analysis and compared the results with that of CpG_

MPs and max-gap-min-run. Figure 4 shows the ROC curves of three

methods for different datasets. The curves were generated using

ROCR R package (Sing et al., 2005). From the figure, we can easily

see that CAME significantly outperforms the other two methods on

all datasets.

Next, we examined how much predicted CCRs and OCRs over-

lap with true regions identified from MNase-seq. Figure 5 illustrates

the histogram of overlapping fraction of CCRs detected by CAME

(blue), CpG_MPs (green) and max-gap-min-run (pink) to true CCRs

(top row) and true OCRs (bottom row) on four simulated datasets.

The overlapping fraction was calculated as the length of overlapping

region divided by the length of true region using BEDTools

(Quinlan and Hall, 2010). Thus, a value of 1 indicates perfect over-

lap while a value of 0 means no common regions. As shown in the

top plots, the number of complete overlapping (fraction 1) regions

derived from CAME is higher than that of CpG_MPs and max-gap-

min-run on all the simulated data, which verifies CAME more ac-

curately identifies CCRs than the other two methods. However, the

result of overlapping fraction between predicted CCRs to true CCRs

was affected by the length of the predicted region. In particular, lon-

ger predicted regions result in higher counts for complete overlap,

i.e. overlapping fraction will be 1 for all CCRs if all of GCHs are

merged into one region. To avoid this issue, we also investigated the

overlapping fraction between CCRs to true OCRs, which was

shown in bottom plots. It is observed that most of CCRs predicted

by CAME do not overlap with OCRs while that of the other two

methods do overlap.

Finally, we tested and evaluted the algorithm with different de-

tection strategies and thresholds. Supplementary Table S1 shows the

results using CCR (left) and OCR (right) detection methods, which

first detect CCRs and OCRs, respectively, using the algorithm ex-

plained in Section 2. There was trade-off between sensitivity and

specificity, and overall performance in terms of accuracy was quite

similar. The average methylation score of extended regions l and

jump methylation score D were tested. The sensitivity and specificity

was not changed much.

MNase-seq 

DANPOS 

...GCT..........GCA.......GCC .......GCT..........GCA..........GCT.......GCC..........GCA... 

Beta(0.1, 0.05) Beta(0.9, 0.05) 

Random Random 

0.9 0.1 0.15 0.95 0.85 0.05 0.1 0.9 

Fig. 2. Simulation data was generated from CCRs identified by DANPOS from

MNase-seq. The methylation score of GCHs in CCRs and OCRs were ran-

domly chosen based on beta distribution with two means and standard devi-

ations, e.g. (0.1, 0.05) and (0.9, 0.05), respectively (Color version of this figure

is available at Bioinformatics online.)

Fig. 3. Density curves of the methylation scores of GCHs in CCRs (blue) and

OCRs (red) for four simulated datasets with different means and standard devi-

ations. The dotted red lines indicate the true average methylation scores in the

two groups (Color version of this figure is available at Bioinformatics online.)

Table 1. Estimated mean (Ave.) and standard deviation (Std.) of the

methylation of scores of GCHs in CCRs and OCRs

CCRs OCRs

Ave. Std. Ave. Std.

D1 0.0980 0.0967 0.8990 0.1040

D2 0.2000 0.0979 0.8010 0.1010

D3 0.2920 0.0909 0.6920 0.1010

D4 0.3880 0.0838 0.5960 0.0922
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3.2 hct116
We also tested CAME on our own NOMe-seq and BS-seq data from

the human HCT116 cell line, a colon cancer cell line widely used by

cancer researchers. Colon cancer cell line, HCT116, was treated

GpC methyltransferase (M.CviPI) to methylate all GpC sites in the

open chromain. The genomic DNA was then analyzed by targeted

bisulfite sequencing. Oligo capture probes are designed to target 84

Mb sequences covering 3.7 million CpGs including CpG islands,

cancer- or tissue-specific DMRs, Gencode promoters, DMRs or

regulatory feature in CpG shores and shelves, DNase I hypersensi-

tive sites, Refseq genes and Ensembl regulatory features. This data-

set, which was deposited to NCBI GEO (GSE86823), is very useful

because it includes M.CviPI-treated and -untreated data for the

same cell line. Sequencing reads were mapped to hg19 using BWA

(Li and Durbin, 2010) with in silico conversion. As a result, 21 578

352 GCHs were reported in the untreated data and 46 637 807

GCHs were reported in the treated data. Among them, 10 750 538

GCHs were found in both the untreated and treated sample (Table

3). Note that we only considered the common GCHs since we can-

not determine the methylation changes for GCHs that are not found

in both samples. Thus, the gold standard chromatin accessibility

was determined as follows. If the methylation score difference of a

GCH between enzyme treated and control was 0.2 or less, it was

considered to be unmethylated, thus belonging to the CCRs,

otherwise, it was considered to be methylated, and belonging to the

OCRs. Subsequently, as shown in Table 4, 74% of GCHs belong to

CCRs and 26% of GCHs belong to OCRs in chromosome 1. We

chose the methylation score 0.2 as the methylated and unmethylated

boundary for gold standard construction since the proportion of se-

quences within nucleosomes on chromosome 1 from the MNase-seq

was approximately 70%, which was similar to our result of 74%.

Then, we ran CAME only on the enzyme treated data with par-

ameters d¼150, D¼0.25, d¼0.15, l¼0.2 and e¼0.2 and assessed

the performance in terms of sensitivity and specificity based on the

gold standard, and then compared the results with those of

CpG_MPs and max-gap-min-run. Figure 6 shows the results of three

methods evaluated by individual GCHs. The sensitivity and specifi-

city of CAME were found to be 0.985 and 0.960, respectively,

which was significantly better than max-gap-min-run. The sensitiv-

ity of CpG_MPs was slightly better than ours, however, the specifi-

city was extremely low. This is because the length of regions

reported in CpG_MPs was too long, which means it tends to merge

too many GCHs into one CCR. Similar results can also be found in

region-based evaluation, which is shown in Figure 7.

3.3 imr90
To confirm the reliability of regions identified by CAME, we identi-

fied CCRs and OCRs using seed extension in IMR90 NOMe-seq

data. The NOMe-seq raw reads on IMR90 cells were downloaded

from the Sequence Read Archive (SRX186031), and were mapped

to hg19 using BWA (Li and Durbin, 2010) with in silico conversion.

We obtained in total 191 962 355 GCHs (15 722 569 for chr1) and

identified CCRs with parameter d¼150, D¼0.3, d¼0, l¼0.1 and

e¼0.1. Then we compared CCR calls with nucleosome positions de-

tected from MNase-seq and OCRs with that called from DNase-seq

on the same cell type. The nucleosome positions from MNase-seq

were achieved as mentioned in the previous section (see 3.1). The

DNase-seq was downloaded from the UCSC genome browser

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/enco deDCC/wg

EncodeOpenChromDnase/wgEncodeOpenChromDnaseImr90Pk.

narrowPeak.gz). We only examined the results on chromosome 1.

Figure 8 shows the overlapping fraction of CCRs from CAME to

MNase-seq (left) and OCRs from CAME to DNase-seq (right).

From the figure, it is observed that 20% of nucleosome-occupied re-

gions from MNase-seq were the same as OCRs detected by CAME,

and 64% overlapped with at least 60% of lengths. Moreover, 30%

of OCRs (peaks) from DNase-seq were exactly identified by CAME

and 84% overlapped with at least 60% of lengths.

Table 2. Contingency table. The sensitivities were 0.9954, 0.9964, 0.9941 and 0.9470, and the specificities were 0.9999, 0.9997, 0.9928 and

0.9271 for D1, D2, D3 and D4, respectively

D1 Condition D2 Condition

CCR OCR CCR OCR

Prediction CCR 12 915 487 537 Prediction CCR 12 928 007 1739

OCR 59 229 5 800 043 OCR 46 709 5 798 841

D3 Condition D4 Condition

CCR OCR CCR OCR

Prediction CCR 12 897 794 41 893 Prediction CCR 12 287 053 422 909

OCR 76 922 5 758 687 OCR 687 663 5 377 671

Fig. 4. ROC curves of CAME, CpG_MPs and max-gap-min-run on different

datasets (Color version of this figure is available at Bioinformatics online.)
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The predicted OCRs were further compared to nucleosome-

depleted CTCF sites, TSS sites, and enhancers published in Kelly

et al. As shown in Figure 9B, CAME completely identified all TSS

sites and enhancers, and 81% of CTCF sites. Panel (A) shows a

screenshot of IGV in chr1:182 359 738–182 373 646 with those

tracks while panel (C) shows that most of nucleosome-depleted TSS

sites were hypo-methylated.

The OCRs and CCRs identified by CAME were further corre-

lated to DNA methylation. As shown in Supplementary Figure S4,

CCRs and OCRs were clearly separated and their methylation was

mostly hyper- and hypo-methylated, respectively. DAVID analysis

clearly showed that hyper-methylated CCRs and OCRs, and hypo-

methylated CCRs and OCRs were enriched in different biological

process based on GO terms (Supplementary Fig. S5).

4 Discussion

Recently, it was reported that nucleosome positioning affects DNA

methylation patterns throughout the genome, which means that

these two important epigenetic mechanisms are closely associated

rather than independent (Chodavarapu et al., 2010; Portela et al.,

2013; Taberlay et al., 2014). To this end, MAPit-BGS and NOMe-

seq are innovative technologies since they measure DNA methyla-

tion and nucleosome occupancy simultaneously at the single mol-

ecule level using GpC methyltransferase and bisulfite sequencing.

In this study, we presented a novel algorithm, namely CAME,

for identifying chromatin accessibility from MAPit-BGS and

NOMe-seq. CAME first identifies seeds that are very likely GCHs in

CCR, next extends seeds as long as the average of GCH methylation

scores are smaller than a threshold, and finally decides the end point

of the extended seeds using the predicted mean and standard devi-

ation of methylation scores based on non-parametric mixture model.

CAME also has function to correlate predicted chromatin accessibil-

ity to DNA methylation. Using different simulated datasets, we dem-

onstrated that CAME was very effective for detecting open and

closed chromatin regions, and significantly outperformed existing

approaches. In the application to our experimental HCT116 colon

cancer cell line dataset, CAME precisely identified most of the im-

portant regions verified by experimental data (enzyme treated – con-

trol) with >96% of sensitivity and specificity. This represents a

crucial achievement since there is no need to make the additional ef-

fort to perform biological experiments to generate control data for

verification of methylation status changes. Furthermore, compara-

tive analysis of CAME’s results to nucleosome positions from

Fig. 5. Histogram of overlapping fraction of CAME (blue), CpG_MPs (green) and max-gap-min-run (pink) on four simulated datasets. The top figures indicate results between

predicted CCRs and true CCRs, the bottom figures show the results between predicted CCRs and true OCRs (Color version of this figure is available at Bioinformatics online.)

Table 3. Summary of HCT116 colon cancer data

# of GCHs in chr1 # of GCHs in all chr

Control 1 992 885 21 578 352

Enzyme treated 3 975 423 46 637 807

Common 1 044 073 10 750 538

Table 4. Brief summary of gold standard for chr1

# of GCHs Percentage

CCRs 772 569 74%

OCRs 271 504 26%

Fig. 6. Sensitivity and specificity of three methods on HCT116 colon cancer

data (Color version of this figure is available at Bioinformatics online.)

Fig. 7. Histogram of overlapping fraction of CAME (blue), CpG_MPs (green) and

max-gap-min-run (pink). The left plot indicates the fraction between predicted

CCRs and true CCRs, the right one indicates the fraction between predicted CCRs

and true OCRs (Color version of this figure is available at Bioinformatics online.)
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MNase-seq and to accessible regions identified by DNase-seq on

IMR90 cell reveals that many detected regions were completely or

partially overlapping although these assays have different technical

variations, i.e. DNase-seq has a preference for GC-rich regions

(Taberlay et al., 2014).

The seed detection cutoff d in CAME is an important parameter

and may directly affect the final results, and thus should be carefully

determined. Although we already set reasonable values as default,

they may not be always appropriate for all datasets. Based on our

experiences, we can make a general recommendation to obtain a re-

liable result. The seed detection threshold could be set as the pre-

dicted mean methylation scores M estimated from mixture model or

could be selected from the ranges of M-0.1 to Mþ0.1. The seed ex-

tension cutoff parameters are also important. We recommend Mþ S

to Mþ2S for the average methylation score of extended regions

including and excluding seeds, i.e. l and e where S represents the

standard deviation. CAME is implemented in Java and it takes ap-

proximately 6 minutes on genome-wide IMR90 NOMe-seq data

with 1.18 billion reads resulted in 191 962 355 GCHs using

2.7 GHz Inter Core i5 CPU and 2 GB of memory running under Mac

operating system.

As nucleosomes are dynamic structures (nucleosomes can dis-

place or move along chromosomes), chromatin accessibility is also

subject to a dynamic change, which could impact the predictability

of the model that we developed (Flores et al., 2014). However, one

of the advantages of NOMe-seq is that it reflects the chromatin ac-

cessibility at the single molecule level. The patterns of the GpC in a

group of sequencing reads present the chromatin accessibility of a

group of single cells. Therefore, if there are dynamic changes among

populations of cells, NOMe-seq can detect these changes. Our

model is well prepared to deal with these possible dynamic changes

that may occur in a population of cells.

In summary, there has been increasing interest in determining

genome-wide chromatin accessibility for deciphering important epi-

genetic changes in cell differentiation, environmental signaling and

disease development. We believe that the excellent performance of

CAME will greatly facilitate the understanding of the roles of chro-

matin and DNA methylation in various cellular functions and dis-

ease processes.
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