
Sequence analysis

Parallelization of MAFFT for large-scale multiple

sequence alignments

Tsukasa Nakamura1,2, Kazunori D. Yamada2,3, Kentaro Tomii1,2,4,5 and

Kazutaka Katoh2,6,*

1Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of

Tokyo, Chiba 277-8562, Japan, 2Artificial Intelligence Research Center (AIRC), National Institute of Advanced

Industrial Science and Technology (AIST), Tokyo 135-0064, Japan, 3Graduate School of Information Sciences,

Tohoku University, Sendai 980-8579, Japan, 4Biotechnology Research Institute for Drug Discovery (BRD), AIST,

Tokyo 135-0064, Japan, 5AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory (RWBC-

OIL), Tokyo 152-8550, Japan and 6Research Institute for Microbial Diseases, Osaka University, Suita 565-0871,

Japan

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on October 19, 2017; revised on February 7, 2018; editorial decision on February 24, 2018; accepted on February 28, 2018

Abstract

Summary: We report an update for the MAFFT multiple sequence alignment program to enable

parallel calculation of large numbers of sequences. The G-INS-1 option of MAFFT was recently

reported to have higher accuracy than other methods for large data, but this method has been im-

practical for most large-scale analyses, due to the requirement of large computational resources.

We introduce a scalable variant, G-large-INS-1, which has equivalent accuracy to G-INS-1 and is ap-

plicable to 50 000 or more sequences.

Availability and implementation: This feature is available in MAFFT versions 7.355 or later at

https://mafft.cbrc.jp/alignment/software/mpi.html.

Contact: katoh@ifrec.osaka-u.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

A large number of biological sequences from widely divergent

organisms are becoming available. Accordingly, the need for mul-

tiple alignments of large numbers of sequences is increasing for vari-

ous kinds of sequence analysis. The G-INS-1 option of MAFFT was

recently reported to have higher accuracy than other methods for

large multiple sequence alignments (MSAs) in independent bench-

marks (Le et al., 2017; Yamada et al., 2016). However, this method

was impractical for actual analyses, requiring large computational

resources in both space and time to perform all-to-all pairwise align-

ments by dynamic programming (DP) (Needleman and Wunsch,

1970), which are used for a guide tree and a scoring function similar

to COFFEE (Notredame et al., 1998). Here, we introduce a scalable

variant, G-large-INS-1, which has equivalent accuracy to G-INS-1

and is applicable to 50 000 or more sequences. Our strategies to re-

duce computational costs are (i) parallelization across multiple ma-

chines and/or processor cores using MPI and Pthreads to increase

speed and (ii) the use of a high-speed shared filesystem, which is

becoming common for processing big data. An MPI-based parallel-

ization of another high-accuracy MSA method, MSAProbs, was re-

cently released (González-Domı́nguez et al., 2016), but it cannot be

applied to thousands of sequences. The present update of MAFFT is

designed to satisfy the need for accurately aligning large numbers of

sequences but is not applicable to long genomic sequences since the

length dependence of the computational cost is unchanged. The G-

large-INS-1 option is available in MAFFT versions 7.355 or later

and the online service (Katoh et al., 2017).

Accuracy of G-large-INS-1 was compared with that of conven-

tional G-INS-1 using different benchmarks, QuanTest (Le et al.,

2017) (Fig. 1a), HomFam (Sievers et al., 2011), OXFam (Raghava

et al., 2003; Yamada et al., 2016) and ContTest (Fox et al., 2016)

(Supplementary Table S1). Both methods ran with different input

orders and/or minor variations in pairwise alignment and guide tree
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(see Supplementary Data) in order to assess instability of accuracy

scores (Boyce et al., 2015). In all cases, the difference between G-INS-1

(blue lines in Fig. 1a) and G-large-INS-1 (red lines) was small.

Large amounts of RAM are required if conventional tools

for high-quality MSAs are applied to a large number of sequences.

For example, MAFFT-L-INS-i and MSAProbs-MPI used at most

9.23GB and 74.8GB for a subset of 1000 sequences in QuanTest.

For a larger subset (4000 sequences), MAFFT-G-INS-1 and

QuickProbs2 (Gudy�s and Deorowicz, 2017) used at most 26.0 GB

and 411 GB RAM, respectively. In contrast, G-large-INS-1 used

only 5.72GB at most, for the subset of 4000 sequences. Memory

usage for larger problems (up to �90 000 sequences) is shown in

Supplementary Table S1, which suggests that this advantage in-

creases with the number of sequences. Note that G-large-INS-1 uses

files to save temporary data and thus requires a high-speed filesys-

tem when the input sequences are very short, as discussed below.

Parallelization efficiency in three examples is shown in

Figure 1(b–g), separately for two stages: (i) the all-to-all alignment

stage (b, d and f) and (ii) the progressive alignment stage (c, e and g).

For LSU rRNA sequences (b, 1521–4102 bases, 1000 sequences

randomly selected from the SEED alignment in Silva (Glöckner

et al., 2017) and protein sequences with usual lengths (d, 21–297

amino acids, 50 157 sequences, the ‘sdr’ family taken from

HomFam), the wall-clock time for the all-to-all alignment stage

decreased almost linearly with the number of cores used for the cal-

culation. However, for a dataset with very short sequences (f, 12–35

amino acids, 88 345 sequences, the ‘zf-CCHH’ family taken from

HomFam), the efficiency differs depending on filesystem: high in

Lustre (shown with magenta triangles) but low in NFS (shown with

green squares). This difference is due to the balance between calcula-

tion and disk operations. As noted earlier, a considerable amount of

temporary data is written in parallel into the filesystem: approxi-

mately 218 MB, 100 GB and 142 GB for LSU rRNA, ‘sdr’ and

‘zf-CCHH’, respectively, in the examples shown here. Overhead due

to these disk operations is almost negligible in the former two

cases but not in the latter case, where alignment of �23 amino acids

takes only a short time in comparison with the time to write the

temporary data to disk using NFS.

Figure 1c, e and g suggest that the wall-clock time of the progres-

sive stage varies for each run and does not linearly decrease, but usu-

ally this is not a speed-limiting step. CPU time and wall-clock time

for various problems are shown in Supplementary Table S1.

Until now, it was necessary to use highly approximate methods,

such as the FFT-NS-2 option of MAFFT or the progressive option of

Clustal Omega, in order to construct large MSAs. In terms of the

MSA itself, the accuracy of these methods tends to decrease along

with the increase in the number of sequences. This was first pointed

out by Sievers et al. (2013) and confirmed by Le et al. (2017). The

(a) (b)

(d) (e)

(f) (g)

(c)

Fig. 1. (a) QuanTest. Accuracy of protein secondary structure prediction based on various sizes of MSAs by G-large-INS-1 (red bold lines), G-INS-1 (version 7.245;

blue bold lines) and other popular methods. We used 1940 (out of 2265) entries so that JPred (Drozdetskiy et al., 2015) can be consistently applied to the MSAs by

all methods. (b)–(g), Parallelization efficiency of all-to-all alignment stage (b, d and f) and progressive stage (c, e and g) when applying G-large-INS-1 to LSU rRNA

(b, c) sdr (d, e) and zf-CCHH (f, g). Green squares and magenta triangles are the computational time on NFS and Lustre filesystem, respectively. Lines are the ex-

pected time based on the cases using seven cores [NFS; green solid lines in (b), (d) and (f)], 35 cores [Lustre; magenta dotted lines in (b), (d) and (f)] and single

core (c, e and g), assuming a perfect efficiency. The calculations with NFS (green) were performed on a heterogeneous cluster system (each node has 16–20 cores

of Intel Xeon E5-2660 v3 2.6 GHz, E5-2680 2.7 GHz and E5-2670 v2 2.50 GHz with 64–128GB RAM). The calculations with the Lustre filesystem (magenta) were per-

formed on Intel Xeon E5-2695 v4 2.10 GHz 36 cores with 256GB RAM per node using Lustre version 2.5.42
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increase in accuracy observed in Figure 1a for more than 200 se-

quences is due to the prediction phase not due to the alignment

phase (see the last section in Supplementary Data and black dashed

lines in Supplementary Fig. S1). As a result, it was difficult to know

how many sequences should be included in an MSA. With more

sequences, the MSA has richer comparative information, but the

alignment quality is expected to decrease. The optimal balance

between these two factors may differ by case. In contrast, the accur-

acy of G-large-INS-1 and G-INS-1 (red and blue dashed lines

in Supplementary Fig. S1) was robust to data size in this test. The

number of sequences to include in the MSA can now be determined

simply based on the computational resources available and the

requirements for the downstream analysis.
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