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Abstract
Functional connectivity (FC) analysis has revealed stable and reproducible features of brain network organization, as well as
their variations across individuals. Here, we localize network markers of individual variability in FC and track their
dynamical expression across time. First, we determine the minimal set of network components required to identify
individual subjects. Among specific resting-state networks, we find that the FC pattern of the frontoparietal network allows
for the most reliable identification of individuals. Looking across the whole brain, an optimization approach designed to
identify a minimal node set converges on distributed portions of the frontoparietal system. Second, we track the expression
of these network markers across time. We find that the FC fingerprint is most clearly expressed at times when FC patterns
exhibit low modularity. In summary, our study reveals distributed network markers of individual variability that are
localized in both space and time.
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Introduction
Complex human cognitive functions such as memory, language,
or logical reasoning depend on the architecture of brain net-
works (Petersen and Sporns 2015; Sporns et al. 2005). The archi-
tecture of networks derived from intrinsic (resting-state)
functional connectivity (FC) has been widely studied (Bassett
and Bullmore 2009; Buckner et al. 2013), with FC most commonly
estimated from the similarity or linear correlation of the time
courses of pairs of brain regions defined by a voxel- or template-
based parcellation (Bullmore and Sporns 2009). Numerous stud-
ies have focused on identifying network characteristics that are
common across individuals (Damoiseaux et al. 2006; Biswal et al.
2010) and on characterizing the long-time average of FC (Friston

2011). Recently, there is growing interest in identifying markers
of individual variability in brain networks (Poldrack et al. 2015;
Dubois and Adolphs 2016) as well as in characterizing temporal
patterns of FC (Hutchison et al. 2013).

Markers of individual variability have been investigated in
several recent studies (Mueller et al. 2013; Miranda-Dominguez
et al. 2014; Finn et al. 2015; Airan et al. 2016). Miranda-
Dominguez et al. (2014) proposed a model for predicting the
subject-level activity of a given brain region based on knowing
the activity of other brain regions at a particular time point.
Finn et al. (2015) used individual connectivity profiles to accu-
rately identify subjects across several scan sessions including
task and rest conditions, with the frontoparietal network (FP)
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emerging as most distinctive. Studying the effects of various
acquisition parameters (sampling frequency) and analysis
methods (parcellation) to characterize individual differences,
Airan et al. (2016) found that the precuneus as well as prefron-
tal parietotemporal cortices were among those brain regions
that contributed most to identify subjects.

These prior studies investigated individual variability as
expressed in long-time averages of FC. Recent studies have sug-
gested that FC exhibits temporal variability over shorter time
scales. Several computational models simulating spontaneous
neuronal dynamics have shown that brain dynamics are not
time-invariant, but instead exhibit fluctuations at multiple time
scales (Honey et al. 2007; Ghosh et al. 2008; Deco et al. 2009).
Experimental studies have demonstrated dynamical variations of
FC estimated from functional magnetic resonance imaging (fMRI)
resting-state recordings (Chang and Glover 2010; Hutchison et al.
2013; Allen et al. 2014; Calhoun et al. 2014). For instance, some
studies have shown fluctuations in the modularity of FC within
short temporal windows (“snapshots”), with highly modular pat-
terns displaying a consistent topology characterized by discon-
nection of task-positive from task-negative systems (Betzel et al.
2016). Changes in the patterns of FC have also been observed in
relation to the level of awareness (Barttfeld et al. 2015) and in
sleep-wakefulness transitions (Laumann et al. 2016) suggesting a
potential relationship to brain state and neuromodulation (Shine
et al. 2016). These observations of time- and state-dependence of
FC raise the important question whether markers of individual
variability are differentially expressed across brief FC snapshots.

Our study proceeds along 2 interconnected aims. The first
aim was to determine the optimal set of brain nodes needed to
reliably identify individual subjects across separate resting-
state sessions. We utilized 2 independent multi-session data
sets (DSs) and compared patterns of FC across individuals and
across sessions. We found that FC patterns in different resting-
state networks afforded different levels of accuracy, and that
highly accurate identification of individuals depended on the
granularity of the cortical parcellation. Using a simulated
annealing (SA) probabilistic optimization algorithm applied to
whole-brain FC we then identified the minimal set of cortical
nodes needed to optimally identify individuals. Our second aim
was to determine whether the level at which network markers
of individuality were expressed fluctuated across time. We
extracted brief FC snapshots across individuals and across 2
separate imaging sessions and then determined the accuracy
with which each snapshot allowed individuals to be identified.
Selecting the least and the most characteristic FC patterns, we
characterized specific features of network topology associated
with the FC fingerprint as expressed across time.

Materials and Methods
For a summary illustration of the workflow (see Supplementary
Fig. S1).

Data Sets

We used 2 independently acquired multi-session resting-state
fMRI DSs. DSs 1 and 2 were acquired under resting state condi-
tions with subjects instructed to remain still, stay awake and
with their eyes open. None of the participants of DS 1 and 2
had a history of substance abuse, neurological, or psychiatric
disorders.

DS 1 was comprised of 30 healthy young subjects (50% males,
mean age = 24) that were scanned every 3 days during 1 month,

yielding 10 scans per subject (Chen et al. 2015). In our study, we
used the first and last scanning sessions. DS 1 has been released
(http://dx.doi.org/10.15387/fcp_indi.corr.hnu1) as part of the Con-
sortium for Reliability and Reproducibility (CoRR) (Zuo et al.
2014). MRI Imaging sessions were acquired in a GE M850 3.0 Tesla
scanner (GE Medical Systems, Waukesha, WI) at CCBD, Hang-
zhou Normal University. For the brain structural analyses, a T1-
weighted Fast Spoiled Gradient echo (FSPGR: TR = 8.1ms, TE =
3.1ms, TI = 450ms, flip angle = 8°, field of view = 256 × 256mm,
matrix = 256 × 256, voxel size = 1.0 × 1.0 × 1.0mm, 176 sagittal
slices) was carried out. To minimize head movement, straps,
and foam pads were used to fix the head securely during each
scan. For the FC analyses, a T2-weighted echo-planar imaging
(EPI: TR = 2000ms, TE = 30ms, flip angle = 90°, field of view =
220 × 220mm, matrix = 64 × 64, voxel size = 3.4 × 3.4 × 3.4mm,
43 slices) sequence was performed to acquire resting state fMRI
images for 10min.

Details on fMRI preprocessing can be found in Xu et al. (2015).
Briefly, processing consisted of: (1) removing the first 5 EPI volume
(10 s) to avoid possible effects T1 stabilization; (2) temporal despik-
ing to limit extreme values from hardware instability or head
motion (including scrubbing procedures, Power et al. 2014); (3) slice
timing correction and volume realignment; (4) mean-based inten-
sity normalization to 10.000; (5) matching spatial correspondences
between individual functional images and anatomical images by
employing white surface boundary-based registration algorithm
(Greve and Fischl 2009); (6) regress out the estimated Friston’s 24-
parameter motion curves (Yan et al. 2013) and nuisance signals
from the white matter and cerebrospinal fluid to reduce physio-
logic noise; (7) temporally band-pass filter (0.01–0.08Hz) and
removing of linear and quadratic trends; and (8) global signal
regression and spatial smoothing using a 6mm FWHM Gaussian
kernel.

DS 2 comprised 40 healthy young subjects’ (62% males,
mean age = 24.5) test–retest with 1 month of difference
recruited as part of the Brain Genomic Superstruct Project
(Holmes et al. 2015). Scans were acquired on a 3 Tesla TimTrio
system (Siemens) using a 12-channel phased-array head coil
supplied by the vendor. High-resolution 3D T1-weighted magne-
tization multiecho images for structural anatomic reference
(multiecho MPRAGE) (van der Kouwe et al. 2008) and a gradient-
echo echo-planar pulse sequence sensitive to blood oxygenation
level-dependent (BOLD) contrast for functional imaging data
were obtained. Multi echo MPRAGE parameters were as follows:
TR, 2200ms; TI, 1100ms; TE, 1.54ms for image 1–7.01ms for
image 4; flip angle, 7°; 1.2 × 1.2 × 1.2mm; FOV, 230. EPI para-
meters were as follows: TR, 3000ms; TE, 30ms; flip angle, 85°;
3 × 3 × 3mm voxels; FOV, 216; 47 slices (each run lasted 6.2min,
124 time points).

Details on fMRI preprocessing can be found in Sepulcre et al.
(2012). Briefly, processing consisted of: (1) removal of first 4
volumes (12 s) to allow T1-equilibration effects; (2) slice-timing
correction, volume realignment, and motion correction; (3) tem-
porally band-pass filter (0.01–0.08Hz) and removing of constant
offsets and linear trends; (4) removing of nuisance signals, along
with their temporal derivatives, through linear regression includ-
ing: 6 parameters obtained from correction for rigid-body head
motion, averaged white matter signal from the centrum semio-
vale and averaged cerebrospinal fluid signal from the body of the
lateral ventricles; and (5) global signal regression and spatial
smoothing using a 6mm FWHM Gaussian kernel.

For both DSs, individual correlation matrices were false dis-
covery rate (FDR)-corrected at 0.05 significance level (Benjamini
and Hochberg 1995). The FDR step in our analysis was aiming
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to remove the very weak (and unreliable) connections. The per-
centage of edges removed were approximately ~22% in average
in both sessions. We also performed additional analyses with-
out the FDR correction step resulting in identical results in all
cases.

Parcellations

For DS 1, we created a set of 10 random (spatially continuous
and non-overlapping) parcellations over a broad range of coarse-
ness [18 levels, ranging from 30 to 3198 nodes or regions of inter-
est (ROIs)] using pyClusterROI (Craddock et al. 2012). All the
parcels were required to fit into a gray matter mask and into a
common mask across all the subjects. All ROIs that did not meet
these conditions were discarded; as a result, the number of ROIs
across random parcellations within a given level varied slightly.

Similarity of FC across Sessions

The static FC analyses were performed by calculating the
Pearson correlation of the time series (intrinsic activity) of every
pair of brain regions. Thus, for each subject we obtained a set of
square symmetric weighted FC matrices of varying sizes ni,
where ni is the number of ROIs defined by the random parcella-
tion. We transformed the upper triangle of each matrix into a
functional connectome vector (FCv) of length ni(ni− 1)/2, con-
taining the complete individual pattern of FC. This procedure
was performed separately for each subject and each session,
resulting in 2 sets of FCv1(si) and FCv2(si), where the subindex on
FCv denotes the session and si identifies the subjects. Then,
these vectors were compared across all M subjects and across
both sessions. We tested 2 measures of similarity, the Pearson
correlation (adopted for most of the results reported in this
paper) and the cosine vector angle; both measures yielded quali-
tatively highly similar results. The final output was a similarity
matrix S of size M × M. It is expected that maximum similarity
values are to be found on the diagonal of this matrix, represent-
ing the similarity between corresponding single subject’s FCs
across the 2 sessions. Hence, we define the accuracy of matrix S
as the number of diagonal elements Si,i that are maximal with
respect to all other elements Si,j (j = 1,…,M) in the jth column of
S. Note that the similarity matrix is not symmetric. Here, we
report the analyses both column-wise (similarity from 1 to 2) as
well as the average of column- and row-wise similarity.

Accuracy was determined on whole-brain FC, as well as on
specific brain networks (Yeo et al. 2011), specifically the visual
network (VIS), the auditory and somatosensory network (ASM),
the dorsal-attention network (DAN), the saliency network
(SAL), the orbito-frontal-temporopolar network (ORB), the FP,
and the default mode network (DMN), referred to here as rest-
ing state networks (RSNs). In addition, we used the accuracy
score to guide optimization runs (see below).

Optimization

We implemented optimization algorithms to identify the mini-
mum set of nodes needed for optimal identification of subjects
across sessions. To do so, we defined a cost function based on
the similarity matrix, computed as the average across the val-
ues along the main diagonal minus the average of the off-
diagonal values. We impose the additional constraint that the
identification accuracy must increase or remain constant at
each step. We explored 2 strategies. The first is a deterministic
“greedy algorithm” (GA) strategy which maximizes the cost

function by removing, at each step, 1 node such that the
increase in the cost function is maximal. The drawback of this
strategy is that it may lead to suboptimal solutions that repre-
sent local maxima. An alternative strategy is to apply SA, a
probabilistic search algorithm (Kirkpatrick et al. 1983), which
implements the Metropolis criterion (Metropolis et al. 1953) to
guide optimization. SA proceeds by probabilistically removing
nodes, including occasionally nodes whose removal results in
lower accuracy, in the service of identifying a globally opti-
mum. As the algorithm proceeds, the probability of accepting
suboptimal solutions gradually decreases (a computational
analog to “cooling” or lowering the temperature). The initial
temperature was set to T0 = 1, determined analytically using
formulas proposed on the basis of different prior studies (Ben-
Ameur 2004) as well as with pilot runs.

Optimization runs are carried out on whole-brain FC data as
well as on FC from individual resting-state networks. The mini-
mal set of “survivor nodes” resulting from optimization runs on
whole-brain or individual network FC is defined as the “global
fingerprint” and “network-specific fingerprint”, respectively.

To address the generalizability of our results, we performed
additional optimization analyses using a cross-validation proce-
dure. First, we merged DS 1 (30 subjects) and DS 2 (40 subjects)
into 1 single DS of 70 subjects. As DS 1 was sampled with a TR = 2
and DS 2 with a TR = 3, we resampled DS 1 at 3 s. Then, we ran-
domly divided the subjects into training DS (58 subjects) and test-
ing DS (12 subjects) using a 5-fold cross-validation. We run the
optimization analyses on the whole-brain (using a random parti-
tion of 200 ROIs) in the training DS. Then, the survivor nodes
(SNs) were used to perform identification analyses on the testing
DS. The optimizations were run 10 times for each 1 of the 5 subdi-
visions (5-fold) of the merged DS. Afterwards, we determined
which of the 7 RSNs (Yeo et al. 2011) accounted for the largest
number of SNs. This network was then used to carry out another
set of optimization and cross-validation analyses.

FC Snapshots and Dynamic Expression

To examine possible fluctuations in the expression of the fin-
gerprint over time, we subdivided each scan session into brief
FC snapshots (40 s non-overlapping windows, 14 windows per
subject-session), using a fine-grained parcellation of 1739
nodes. For each window tq, we estimated the FC [FC(tq)] by cal-
culating the Pearson correlation of the corresponding time
series. Each FC matrix FC(tq) was converted to a vector (FCv(si, tq),
s1 = 1,…,M, tq = 1,…,tmax) of length ni(ni− 1)/2, comprising
1 511 191 connections (ni = 1739). FC snapshots of subject si,
window tq and session 1/2 were denoted as FCv1(si,tq) and
FCv2(si,tq), respectively. Within each session, we compared the
pairwise correlations of all patterns FCv1(si,tq) with all other
patterns FCv1(sj,tr) (j = 1,…,M; r = 1,…,14) and identified the time
intervals tq, tr that yielded the maximal similarity score

〈 { ( ( ) ( ))}〉S s t s tmax FCv , , FCv , ,t i q j r s1 1r j

where sj denotes the average across all subjects and S (·,·) is
the similarity. Thus, for each subject si and a time interval tq,
we find the functional connectome FCv1(sj,tr) corresponding to
subject sj and time interval tr, such that the similarity between
FCv1(si,tq) and FCv1(sj,tr) is maximal. Then, we compute the aver-
age across all maximum similarity values between FCv1(si,tq),
and all FCv1(sj,tr) j = 1,…,M. This process is repeated for all
FCvs of subject si and all subject pairs, yielding a row vector
of length 14, whose qth element represents the average
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maximal similarity scores between FCv1(si,tq) and all other FC
snapshots of all other subjects. Finally, we repeat this process
for all M subjects, resulting in M row vectors of average maxi-
mum similarities.

The same process was carried out to identify minimum sim-
ilarities between all FCvs of all subjects, that is:

〈 { ( ( ) ( ))}〉S s t s tmin FCv , , FCv ,t i q j r s1 1r j

This resulted in 2 sets of M row-vectors of length 14: 1 set con-
taining average maximum similarity values and the second set
containing the average minimum similarity values. Because these
values have been averaged across subjects, maximum similarity
values are associated with patterns that are more common (“least
unique”) across subjects, whereas minimum average similarity
values are associated with less common (“more unique”) pat-
terns. The least commonly shared connections across time are
defined as the “dynamic fingerprint” because they represent char-
acteristic fluctuations of FC across time.

We statistically tested average connectivity strength displayed
on the 30 most unique and 30 least unique dynamical FC snap-
shots of each subject. This comparison accounted for the number
of differential functional connections between most and least
unique pattern. Briefly, we performed a paired t-test between
most and least unique patterns for each link. Subsequently,
paired t-test matrices were FDR-corrected (P < 0.05), yielding a
P-value matrix. To increase reliability, this procedure was repeated
for sessions 1 and 2 of DS 1. Then we quantified the overlap
between the significant connections from the 2 sessions perform-
ing a spatial cross correlation of the 2 maps.

Furthermore, given that the comparison between the more
and less common patterns may facilitate the emergence of signif-
icant differences we generated null FC data using a stationary
vector autoregressive (VAR) model as described by Zalesky et al.
(2014) to perform additional comparisons. The surrogate regional
time series were generated with the VAR model under the null
hypothesis of a linearly correlated and stationary process. The
order of the VAR model was set to 4 to use a maximum lag of
approximately 8 s (Zalesky et al. 2014; Fukushima et al. 2016). The
VAR models were estimated from the experimental resting state
fMRI (DS 1) and then used to individually simulate time series for
each pair of regions. VAR model was simulated using an
approach used previously (Zalesky et al. 2014; Fukushima et al.
2016). Briefly, the initial values for the simulation are randomly
sampled from contiguous blocks of resting state fMRI time series
data while the innovation terms are randomly sampled residuals
of the VAR estimation. Approximately, a total of 2500 null sam-
ples (30 subjects × 84 samples) were generated from actual data
as in Zalesky et al. (2014) and Fukushima et al. (2016). The FC
matrices obtained from the null data were compared with the
common patterns (least unique patterns) using the same proce-
dure as described above.

We used 2 metrics to investigate the topology of the most
unique and least unique FC snapshots. We computed the aver-
age of the absolute magnitude of FC across the whole network,
which provides an indication of the overall FC amplitude. In
addition, we performed modularity maximization (Sporns and
Betzel 2016) using the Louvain algorithm (Blondel et al. 2008) to
search for optimal module partitions (Newman and Girvan
2004). We ran 1000 repetitions of the algorithm and selected
the partition that yielded the maximum modularity metric.

We performed an analogous analysis between sessions.
More specifically, We performed a similarity analysis across
subjects and across time by correlating, for each subject si and

a given time interval tq from session 1, the pattern FCv1(si,tq),
with all other patterns FCv2(sj,tr) of session 2, and found the
best matching patterns along time intervals in session 1 and
session 2:

{ ( ( ) ( ))}S s t s tmax FCv , , FCv ,t i q j r1 2t

We carried out this analysis using the nodes from the whole
brain, the SNs extracted from the optimization analyses (explained
below) and the 7 RSNs.

Gyrification and Temporal Signal-to-Noise Ratio

Gyrification and Temporal Signal-to-Noise Ratio (TSNR) analy-
ses were both performed to rule out any potential confounds
associated with the individual pattern of gyrification on the
cortical mantle. Specifically, in order to evaluate the individual
cortex curvature as a potential confounding factor for identifi-
cation accuracy we computed the local cortical folding (Schaer
et al. 2012) in DS 1. Briefly, we first created cortical mesh mod-
els (~150 000 vertices) for each subject from the MRI structural
image using a standard Freesurfer pipeline procedure (Dale
et al. 1999; Fischl et al. 1999). Then, we compute the local gyrifi-
cation index (lGI) which measures the amount of cortex buried
within the sulcal folds compared to the amount of visible cor-
tex. The lGl ranges from 1 to 5, with 1 indicating a flat surface
and 5 indicating a highly folded cortex (Schaer et al. 2012). As a
final step, we resampled the lGI individual data to an average
subject (using the fsaverage template comprising 163 842 verti-
ces) and smoothed the data on the cortical surface (full-width
at half-maximum of 10mm). Then, we compute the vertex-
wise mean values for each hemisphere and assign each vertex
to 1 of the 7 RSNs after registering a RSN mask provided by
freesurfer to the fsaverage template.

BOLD variance could be influenced by partial volume effects
induced by variation in regional volumes as well as gyral cortical
folding. To account for this potential confound we computed the
TSNR on DSs 1 and 2, as the temporal mean BOLD signal of each
voxel divided by its standard deviation. TSNR was computed in
DS 1 in both sessions, and the resulting measurements were cor-
related with the values of SNs coming from the global finger-
prints on parcellations A and B. The relationship between TSNR,
gyrification and the SNs was assessed using the non-parametric
correlation measure Goodman–Kruskal Gamma (γ), where γ = 1
and γ = −1 indicate a perfect positive and negative association,
respectively.

We wanted to rule out the possibility that the node volume
could predict node survivability in the optimization procedure.
Since SNR is proportional to the square root of volume this sug-
gests that node volume could be a potential confounding vari-
able. Although the parcellations were generated in such a way
that ROIs were designed to contain similar numbers of voxels
we compared specifically the node volume of the SNs versus
non-SNs. The node volume was computed for each ROI (node)
quantifying the number of voxels comprising the ROI. Then, we
averaged and compared (via t-test) the number of voxels from
the survivor and non-SNs on different parcellations.

Results
Identification Accuracy is Network and Parcellation
Dependent

As a first step in identifying network markers of individual vari-
ability, we performed analyses on whole-brain FC data in a
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parcellation of 1739 nodes acquired from a set of 30 indivi-
duals (DS 1). For the whole brain, 29 out of 30 individuals are
identifiable across 2 sessions (accuracy = 0.96). We tested
which RSN contributed most. Highest accuracy was found
for 2 heteromodal networks, the DMN (30/30 = 1) and the FP
(30/30 = 1), and for 2 multimodal networks, the SAL (30/30 =
1) and the DAN (29/30 = 0.97). Lower accuracy was associated
with 2 unimodal networks, the ASM (24/30 = 0.8), the VIS (25/
30 = 0.83) and 1 multimodal network, the ORB (22/30 = 0.73).
A similar pattern of results was obtained for DS 2 (40 sub-
jects, 1739 nodes). We found an accuracy of 0.85 (34/40) for
the whole brain, with strongest contributions from the DMN
(39/40 = 0.98), FP (39/40 = 0.98), and SAL (38/40 = 0.95), inter-
mediate contributions from the DAN (35/40 = 0.88), and
weaker contributions from ORB (27/40 = 0.68), ASM (31/40 =
0.78), and VIS (30/40 = 0.75).

These data were derived from a 1-way (session 1–session 2,
or “column-wise”) match. We also performed an identification
analysis by averaging across both directions (1–2 and 2–1). The
analyses performed on DS 1/2 revealed similar results as
described above: VIS (0.76/0.8), ASM (0.76/087), DAN (0.93/0.82),
SAL (0.93/0.92), ORB (0.63/0.65), FP (1.00/1.00), DMN (0.96/0.97),
and WB (0.96/0.85). These results suggest that different resting-
state networks express different degrees of individual vari-
ability that afford different levels of accuracy in identifying
individuals across sessions.

To ensure robustness of our findings, we employed an alter-
native measure of similarity, the cosine vector angle, on DS 1.
We found very similar results to those reported above based on
a Pearson correlation metric. For a 1-way match the accuracy
was 29/30 for the whole-brain, with lower accuracy associated
with 2 unimodal networks, the VIS (23/30 = 0.77), the ASM (24/
30 = 0.8), and 2 multimodal networks, the ORB (24/30 = 0.8), and
the SAL (25/30 = 0.83). Highest accuracy was achieved by 2 het-
eromodal networks, the DMN (28/30 = 0.93) and the FP (30/30 =
1) and 1 multimodal network, the DAN (27/30 = 0.9). The 2-way
match yielded VIS (0.66), ASM (0.5), DAN (0.73), SAL (0.76), ORB
(0.5), FP (0.9), and DMN (0.86).

Next, we investigated whether our results depended on the
“granularity” (number of ROIs) of the random parcellation. In
DS 1, we found a strong effect of parcellation size on the accu-
racy with which individuals could be detected, and on the qual-
ity of the cost function used to estimate correspondence
between FC patterns across sessions (Fig. 1A). Figure 1B,C show
examples of 2 maximum filtered similarity matrices (from net-
works of 38 and 1792 nodes) of low and high accuracy, respec-
tively. Figure 1D,E show examples of 2 similarity matrices (from
networks of 48 and 1792 nodes) of low and high value of the cost
function, respectively. Averaged over 10 runs of random parcella-
tions, the accuracy reached a plateau (at 100%) at 701 nodes and
the cost function at around 1220 nodes. For parcellations at or
below 100 nodes, the accuracy with which individuals could be
identified across sessions was markedly diminished.

Optimization Identifies a Minimal Set of Nodes
for Fingerprinting

The network-specificity of fingerprinting shown above, in line
with previous work (Finn et al. 2015), suggests that certain por-
tions of the cerebral cortex contain more reliable networks mar-
kers of individuality than others. We attempted to identify
these locales using an optimization approach applied to the
whole cerebral cortex (“global fingerprint”). We implemented a
SA algorithm searching for nodes that allow optimal identifiabil-
ity of individuals across sessions. The algorithm was run on 3
different random parcellations. Two were of comparable granu-
larity (322 nodes, parcellation A; 382 nodes, parcellation B) and a
third parcellation comprised 701 nodes (parcellation C). These
parcellation sizes were chosen since they allowed identification
accuracy approaching 100% (Fig. 1) while also permitting com-
putationally tractable optimization runs. The goal of the optimi-
zation algorithm was to gradually reduce the number of nodes
used for identifying individual subjects across sessions while
maintaining optimal levels (100%) of accuracy.

Ten separate runs were conducted for parcellations A and B
to ascertain convergence onto a common neural substrate. SNs

Figure 1. Cost function and accuracy in relation to parcellation size. (A) Red markers (right y-axis) show mean accuracy, measured as the fraction of correctly identi-

fied subjects (average of 10 random parcellations). Red-shaded areas correspond to +/− 1 standard deviation. Blue markers (left y-axis) show the mean cost function,

measured as the difference between the main diagonal and the off-diagonal of the similarity matrix, normalized by the number of elements in the matrix (average of

10 random parcellations). Blue-shaded areas correspond to +/− 1 standard deviation. Black upper-case letters within the graph refer to panels on the right (data from

1 random parcellation). (B–E) Similarity matrices obtained by correlating the subjects’ FCv of session 1 and 2. Accuracy was computed as the number of elements that

fall within the main diagonal of the similarity matrix. In panels (B) and (C) the accuracy is at 50 and 100%, respectively. Panels (D) and (E) show the Pearson correlation

matrices corresponding to networks of 48 and 1792 nodes (low and high values of the cost function), respectively.
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were aggregated to show patterns of localization (Fig. 2, light
gray panels) and were found to be localized mainly in medial
and dorsolateral prefrontal cortex as well as in the left parietal
cortex. We calculated the percentage of SNs localized within
each 1 of the 7 RSNs, correcting for network size. The largest
proportion of SNs was encountered in the FP network, with the
DMN containing the second highest proportion, followed by
SAL and DAN. In both parcellations, the unimodal networks
VIS and ASM, and ORB contained significantly fewer SNs.

For coarser parcellations, random parcels may straddle the
boundaries of several RSNs preventing unambiguous assignment
to a single RSN. To improve spatial resolution, we ran 3 SA opti-
mizations on a finer partition of 701 nodes (Fig. 2, parcellation C)
with each node comprising approximately 110 voxels. The results
show that, once again, the highest proportion of survivor is found
in the FP network, followed by DMN and SAL. Other RSNs make
much smaller contributions to the global fingerprint.

To determine if the optimization approach can also improve
identification of subjects across sessions when applied to spe-
cific networks (i.e., on subsets of nodes selected from whole-
brain FC) we ran the SA algorithm separately on FC (both DSs)
from the 7 RSNs. Successful optimizations were possible for the
DMN, FP, and SAL network on DS 1; only the FP showed

improvement on DS 2. Figure 3 shows the spatial localization of
the network-specific fingerprint from DSs 1 and 2 (SA and GA
algorithms) for the FP network (Table 1 summarizes the
results).

The cross-validation analyses performed after merging the 2
DSs revealed identical results as those reported independently in
each DS. More specifically, the analyses carried out on the whole
brain revealed that the FP aggregated most of the SNs (see
Supplementary Fig. S2). In addition, the distribution of the SNs
across the cortical mantle followed a highly similar distribution
compared to that shown in Figure 2 (compared with bar graphs
of Supplementary Fig. S2). The largest proportion of the SNs fell
within the FP, the second largest was in the DMN, followed by
SAL and DAN. Again, the primary areas (VIS and ASM) and the
ORB network contained the lowest percentage of SNs (see
Supplementary Fig. S2). Further analysis revealed an increase in
the identification accuracy (except in 1 case) using the SNs
obtained from the training DS on the testing DS (see Supplemen-
tary Fig. S3, first column). Once, we determined that the FP
network accounted for most of the SNs we conducted an opti-
mization analysis within the FP network. The distribution
of the SNs followed a similar pattern as the patterns shown in
Figure 3 (cf. see Supplementary Fig. S4).

Figure 2. SNs (global fingerprints) obtained from SA on whole-brain data. Columns show results from 3 different whole-brain parcellations. Parcellations A, B, and C compris-

ing 382, 322, and 701 parcels, respectively, are shown in the upper row. The middle row shows surface projections of the SNs (fingerprints) on the brain aggregated over ten

SA runs on parcellations A and B, and 3 SA runs on parcellation C. The color bar represents the number of runs that a given brain node survived the SA procedure. Surface

projections of the 7 RSNs from Yeo et al. (2011) are superimposed as outlines. The histograms in the bottom row indicate the fraction of SNs (normalized by size of network)

averaged across all the repetitions of the SA. Surface projections use the PALS approach of Van Essen (2005). See text for abbreviations of brain networks.
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Contributions of Local and Long-Distance Connections

We were interested to investigate the relative contributions of
the spatial distances spanned by functional connections to iden-
tifying subjects across sessions. We classified local and long-
distant connections following Sepulcre et al. (2010). Local and
long-distance connections were distinguished by introducing
physical distance restrictions in the voxel-by-voxel FC network.
The contiguous neighborhood of a given voxel was considered as
local connectivity while the voxels outside of this neighborhood
were considered as distant connections. To define the local
neighborhood we used spheres of different radii, spanning 14, 16,

and 18mm. These distance thresholds provide information about
the connectivity between local areas and also minimize correla-
tion that reflect smoothing between adjacent voxels (Sepulcre
et al. 2010). We run the analyses independently for each radius.

We then approached the analysis in 2 ways. First, we per-
formed the identification analysis separately for local and long-
distance connections on the whole brain and on each individual
RSN. We did not observe any strong differential contribution of
either local or long-distance connections. Second, we tested
whether local and long-distance connections contributed differ-
entially as part of the functional network maintained among the

Figure 3. Surface projections of network-specific fingerprints. Panels (A) and (B) show SNs obtained from 20 runs of the SA algorithm on the FP on data set (DS) 1

(panel A) and DS 2 (panel B). Panels (C) and (D) show SNs obtained from 20 runs of the SA algorithm on the DMN and the SAL on DS 1. Panels (E) and (F) shows SNs

obtained from a single run of the GA algorithm on the FP on DS 1 and DS 2 (compare to panels (A) and (B)). Color map in panels (A)–(D) indicates the number of times

that a node was found within the SN set across 20 optimization runs. Black symbols with lower-case letters indicate the location of nodes that were consistently

encountered in the network-specific fingerprint. (A) a (50, 18, 24 MNI; BA44, inferior frontal gyrus) was found in 12 runs, b (42, 10, 56 MNI; BA8, middle frontal gyrus)

was found in 15 runs and c (−38, 26, 40 MNI; BA9, middle frontal gyrus) was found in 12 runs. (B) a (26, 42, −16 MNI; BA47, frontal pole) was found in 17 runs, b (42, 34,

24 MNI; BA9, middle frontal gyrus) was found in 15 runs, c (42, 18, 48 MNI; BA8 middle frontal gyrus) was found in 17 runs, d (58, −38, 40 MNI; BA40, supramarginal

gyrus) was found in 12 runs, and e (−54, −38, 48 MNI; BA40, supramarginal gyrus) was found in 7 runs (left hemisphere). (C) a (−46, −54, 32 MNI; BA39, angular gyrus)

and d (42, 62, 32; BA39, angular gyrus) was found in 19 runs, c (−14, 26, 56 MNI; BA8, superior frontal gyrus) was found in 7 runs, b (−6, 66, 8 MNI; BA10, frontal pole)

was found in 10 runs, and e (18, 26, 56; BA6, superior frontal gyrus) was found in 13 runs. (D) a (−30, 42, 24 MNI; BA10, lateral frontopolar cortex) was found in 18 runs,

b (−60, −38, 40; BA40, supramarginal gyrus) was found in 16 runs, c (−6, 2, 48 MNI; BA6, supplementary cortex) was found in 13 runs, d (26, 42, 24 MNI; BA9, dorsolateral

prefrontal cortex) and e (18, 2, 72 MNI; BA6, superior frontal gyrus) were found in 17 runs each.

2928 | Cerebral Cortex, 2018, Vol. 28, No. 8

http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhx170/-/DC1


SNs. Again, local and long-distance functional connections con-
tributed equally (49/51%, respectively).

Role of TSNR and Gyrification

Regional differences in the TSNR may impact estimates of FC
and fingerprinting. TSNR (meanSN−1 = 423, meanR−1 = 391,
meanSN−2 = 409, meanR−2 = 376, from parcellation A; meanSN−1 =
407, meanR−1 = 389, meanSN−2 = 396, meanR−2 = 374, from par-
cellation B; indices 1, 2, SN, R denote session 1, session 2, SNs
and non-SNs, respectively) was computed on the SNs obtained
from 2 parcellations of DS 1 (see Fig. 2). No significant correla-
tion between the TSNR values and the propensity of the nodes
to be included in the survivor set was found on both sessions
(Fig. 4A: γ1 = 0.01, P1 = 0.69, γ2 = 0.01, P2 = 0.66 for parcellation
A; Fig. 4B: γ1 = 0.01, P1 = 0.25, γ2 = 0.02, P2 = 0.16, parcellation
B). As a surrogate index of the SNR, the comparison between
the node volume from SNs and non-survivors nodes resulted
in nonsignificant differences (P-values = 0.23, 0.24 correspond-
ing to the parcellations A and B).

Local differences in gyrification (meanSN = 3.04, meanR = 3.03,
parcellation A; meanSN = 3.02, meanR = 3.11, parcellation B)
across the cortical mantle may have an impact on the computa-
tion of FC by biasing the contribution of cortical regions to
between-session identifiability of subjects. To address this issue,
we extracted the gyrification across the brain for 2 parcellations
of the DS 1 (Fig. 4). No significant correlation between the gyrifi-
cation values and the propensity of the nodes to be included in
the survivor set was found (Fig. 4C; γ= 0.01, P = 0.95 for parcella-
tion A; Fig. 4D; γ= 0.01, P = 0.85 for parcellation B).

Expression of Fingerprints across Time

Next, we investigated the temporal expression of fingerprints
by examining brief FC snapshots, computed for non-
overlapping 40 s windows from 30 subjects (DS 1). We identified
those patterns that, within a single session, exhibited the
most/least unique features, that is, the weakest/strongest
between-session similarity across all windows and all subjects,
respectively. Figure 5A shows the distributions of the sorted
averaged maximum/minimum correlation magnitudes for each
subject and time window. Figure 5A (bottom) shows the matrix
organization of the RSNs that was used to show the FC patterns
and the statistical maps. Figure 5B shows the FC patterns that
exhibited the lowest average correlations (“most unique”) and
the highest correlations (“least unique”), aggregated across all

subjects. The 2 patterns exhibit different network topologies.
The “most unique” patterns display relatively low absolute FC
magnitude (FC = 0.39, +/− 0.03 session 1; FC = 0.40, +/− 0.04 ses-
sion 2) and low modularity (Q = 0.37, +/− 0.03 session 1; Q =
0.38, +/− 0.04 session 2), while the “least unique” patterns dis-
play higher absolute FC magnitude (FC = 0.45, +/− 0.05 session
1; FC = 0.44, +/− 0.04 session 2) and higher modularity (Q = 0.41,
+/− 0.03 session 1; Q = 0.42, +/− 0.04 session 2). These differ-
ences were statistically significant (P < 0.01) and were reproduc-
ible across sessions. Figure 5B also shows the average FC null
data patterns generated using the VAR models.

Figure 5C shows a statistical map comparing the set of “least
unique” and “most unique” patterns (first and second columns)
as well as the set of “least unique” and “null data” patterns (third
and fourth columns) across all of the 30 subjects (paired t-test, P <
0.05, FDR-corrected), with hot colors indicating greater FC in the
“least unique” versus the “most unique” and “least unique” ver-
sus “null data” patterns. We note that the sharpest positive differ-
ences are seen within the DMN, VIS, ASM, DAN, and SAL network
(in contrast to the FP and ORB networks) This suggests that less
unique network patterns are associated with FC that is internally
strong within DMN, VIS, ASM, DAN, and SAL networks. Figure 5D
shows a projection of the density of connections that are signifi-
cantly stronger in the “most unique” versus “least unique” and
versus “VAR null data” patterns within each network. All results
replicate across sessions 1 and 2.

We note that most of the highly similar significant connec-
tions are not falling within the FP and ORB networks. It is also
worth noting the high similarity in both contrasts comparing
the “least unique” versus “most unique” and “least unique” ver-
sus “null data” (Fig. 5D). While the number of significant con-
nections is diminished in the null data comparison, their
pattern is highly similar (Fig. 5C,D).

Figure 5E shows 2 overlapping maps, 1 showing the overlap
across sessions from the comparisons between “least unique”
versus “most unique” (Fig. 5E overlap 1) and the other showing
the overlap across sessions from the comparisons between
“least unique” versus “null data” (Fig. 5E overlap 2). In addition,
we quantified the overlap between the 2 sessions for each 1 of
the 2 comparisons. The spatial cross correlation value for over-
lap 1 was 0.68 while for overlap 2 it was 0.93. Once again it can
be seen that highly similar significant connections are mainly
outside of the FP and ORB network.

It is worth noting that these differences are independent of
the size of the network and the underlying node degree.
Specifically, the SAL and DAN which are smaller networks than

Table 1 Algorithm performance by network

Networks nodes DS 1 DS 2

GA SA GA SA

Acci–f Cfi–f Rn Acci–f Cfi–f Rn Acci–f Cfi–f Rn Acci–f Cfi–f Rn

DMN-418 30–30 0.28–0.62 400 30–30 0.28–0.62 401 ± 0 39–39 0.27–0.27 0 39–39 0.27–0.27 0
FP-192 30–30 0.32–0.39 72 30–30 0.32–0.62 181 ± 1.7 39–40 0.32–0.45 61 39–40 0.32–0.55 176 ± 3.4
ORB-185 22–22 0.22–0.23 9 22–22 0.22–0.23 85 ± 9.2 27–28 0.17–0.17 4 27–31 0.17–0.37 171 ± 3
SAL-124 28–28 0.27–0.27 0 30–30 0.27–0.51 111 ± 1.5 38–38 0.27–0.27 0 38–38 0.27–0.27 0
DAN-76 29–29 0.28–0.28 0 29–29 0.28–0.48 63 ± 2 35–37 0.27–0.34 29 35–37 0.27–0.34 52 ± 4
ASM-394 24–24 0.21–0.22 9 24–24 0.21–0.34 347 ± 4 31–33 0.23–0.26 90 31–34 0.23–0.44 381 ± 2.8
VIS-350 25–25 0.19–0.21 28 25–25 0.19–0.25 140 ± 10 30–30 0.17–0.17 0 30–30 0.17–0.17 0

Acc: Accuracy, Cf: Cost function, Rn: Removed nodes. Subindices i and f denote the values before and after running the algorithm, respectively. Values (mean ± std)

from the SA algorithm were obtained after averaging across multiple runs (20). Names and total number of nodes comprising each network are listed on the leftmost

column. See text for abbreviations of brain networks.
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the FP and ORB (see Fig. 5A bottom), aggregate significantly
more highly similar connections across subjects (see Fig. 5C).
Instead, the FP and ORB, while containing nodes of very high
degree (cortical hubs), do not contain many highly similar
connections.

Finally, we attempted to identify patterns that best allowed
the identification of subjects across the 2 sessions (30 subjects,
DS 1), by computing the similarities of FC snapshots obtained
from all subjects across the 2 sessions. This was performed for
the whole brain, network-by-network (VIS, ASM, DAN, SAL, ORB,
FP, and DMN) and for the set of SNs identified by SA (Fig. 6A).
Then, we generated 20 networks comprising 67 nodes selected at
random from each one of the functional networks (Fig. 6B). The
number 67 was chosen because it is the number of SNs after 20
runs of SA in the FP. Accuracy is very similar to that achieved
when using each individual network as a whole (compare
Fig. 6A). However, when generating 20 networks comprising an
equivalent numbers of nodes to the 7 network partition (but ran-
domly selected from the whole brain; Fig. 6C), we did not observe
an effect of network size and accuracy levels were similar to
levels seen for the whole brain (compare Fig. 6A).

Discussion
In this study, we identified network markers of individual vari-
ability in FC, both in space, by localizing them to specific regions

in the human brain, and in time, by characterizing how expres-
sion varies across brief FC snapshots. Our spatial analysis indi-
cated that these markers were aggregated within heteromodal
and multimodal regions. An optimization analysis carried out on
specific networks as well as the whole brain determined a specific
set of key nodes mainly located within the FP that allowed identi-
fication of individuals with high accuracy. In these spatial identifi-
cation analyses, we found a strong effect of parcellation size, with
finer parcellations resulting in better accuracy. Looking across
shorter time windows, we classified and compared connectivity
snapshots according to high similarity (“least unique”) and low
similarity (“most unique”) across individuals. Importantly, these
patterns exhibited different network topology as measured by
modularity, with least unique patterns showing higher modular-
ity than most unique patterns.

Previous studies have reported on the spatial localization of
potential individual FC fingerprints in the human brain
(Miranda-Dominguez et al. 2014, Finn et al. 2015, Airan et al.
2016). For instance, Finn et al. (2015) identified subjects using
cross-session Pearson correlations of FC mapped into a 268-
node parcellation. To investigate the role of parcellation size on
identification accuracy, we created 10 random parcellations on
18 levels of granularity, with 6 of these levels (313, 378, 701,
1220, 1792, and 3198) exceeding the spatial resolution of the
268-node atlas. We found that increasing the number of parcels
generally improved identification accuracy, with maximal

Figure 4. Scatter plots of frequency (out of 10 runs total) of SN as a function of TSNR (panels (A) and (B)) and gyrification (panels (C) and (D)). Red and blue markers in

panels (A) and (B) correspond to data from sessions 1 and 2, respectively. Panels (A) and (C) show data computed from parcellation A. Panels (B) and (D) show data

computed from parcellation B. There is no significant correlation between TSNR or gyrification and the frequency of a node being designated as SN. Data points are

jittered along the y-axis to improve legibility (SN values are integers).
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performance reached at ~700 nodes (see Fig. 1). Consistent with
our findings, Airan et al. (2016) pointed out that a higher num-
ber of ROIs in the parcellation increases the ability to differenti-
ate between individuals, and Finn et al. (2015) reported an
increase in accuracy after changing the parcellation from 68
nodes to 268 nodes.

Regarding localization, Finn et al. (2015) found that the medial
frontal network and the “FP” yielded higher accuracy for individual
identification. In our study, we ran an optimization algorithm on
the whole brain allowing us to prune the network and identify
the minimal set of nodes needed for fingerprinting. In accor-
dance with Finn et al. (2015), our analyses indicated that the FP
contributed most to this minimal set. Further, in partial accor-
dance with their “medial prefrontal network”, we found that the
SAL network also made significant contributions. However, the

authors’ definition of the medial prefrontal network includes the
ORB network which in our analyses performed poorly for identi-
fication purposes. Notwithstanding, it is worth noting that orbi-
tofrontal cortex is a known area susceptible to signal dropout
which may partially account for the areas poor performance in
identification analyses. In parallel, we ran the same analysis on
each one of the RSNs reducing the number of nodes needed to
identify individuals, creating a network-specific fingerprint for
each RSN. Among these, we found that the fingerprint of the FP
allowed highest identification accuracy.

Miranda-Dominguez et al. (2014) found that the most vari-
able connections between individuals were located within
higher-order heteromodal association areas. It is worth noting
that their results are consistent with the results presented by
Finn et al. (2015) regarding the “FP” but not the “medial frontal

Figure 5. Temporal expression of fingerprints. (A) Sorted similarity z-score values of FC patterns of all 14 time windows of each subject for sessions 1 and 2. Green

and red markers indicate the minimum and maximum similarity values, respectively. In the bottom, it is shown the matrix organization of the RSN used to display

the FC patterns and the statistical maps. (B) Most unique and least unique FC snapshots, corresponding to patterns with lowest and highest similarities across all

windows and all subjects, respectively. The average of most/least unique features corresponds to the green and red markers in panel A. In the second row (third and

fourth columns), are shown the average FC patterns corresponding generated by the VAR model. (C) Significant differences (P < 0.05, FDR-corrected, paired t-test) of

the links between the most and least unique patterns in both sessions (first and second columns) and the most and null data patterns (third and fourth columns) in

both sessions. The color map represents P-values. Hot colors indicate that FC connections (averaged across subjects) are greater for the least unique compared with

the most unique patterns and compared with the null data. (D) Brain projection of the significant links in both sessions for both comparisons. The color map indicates

the extent of similarity of FC connections across subjects. Hot colors indicate a high degree of similarity. The FP network is outlined on the surface. It exhibits low val-

ues, indicating (consistent with previous analyses; see Figs 2 and 3) that this network aggregates a large number of dissimilar (less consistent, more variable) links

across subjects. (E) Overlapping maps of the sessions from the comparisons between “least unique” versus “most unique” (overlap map 1, spatial correlation value of

0.68) and from the comparisons between “least unique” versus “null data” (overlap map 2, spatial correlation value of 0.93). The overlapping maps show that highly

similar significant connections are mainly located outside of the FP and ORB network.
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network”. Airan et al. (2016) used a non-parametric statistical
test for individual differentiation. Consistent with our results,
these authors found that the FP contributes substantially
toward individual subject identification, with additional signifi-
cant contributions of the precuneus and posterior cingulate,
both key components of the DMN. This corresponds to our find-
ing that the DMN allowed for highly accurate identification of
subjects. However, the optimization analyses pinpointed the FP
as an individual marker in both DSs while localization of addi-
tional SNs to the DMN occurred only in DS 1. Our study
together with previous investigations strongly suggests that FP
is the strongest candidate carrying network markers of individ-
uality. We add additional support by applying a whole-brain
optimization approach that localizes network markers of indi-
vidual variations in FC to a small number of key nodes within
the FP network.

The neurobiological mechanisms that determine the location
of the human brain FC fingerprint remain largely unknown. In this
context, it is worth noting that Mueller et al. (2013) showed a spe-
cific topographic distribution of FC variability, with greater variabil-
ity in heteromodal or association areas of cortex. Corresponding to
their results, we found greater interindividual variability associ-
ated with heteromodal association areas than unimodal areas.
Notably, these areas are associated with higher order cognitive
functions (Goldman-Rakic 1988) such as intelligence (Cole et al.
2012), memory, and learning (Fuster 2001), mental rotation
(Kosslyn et al. 1998) or problem solving (Christoff et al. 2001). The
function of the FP network has been linked to the integration
and processing of different kinds of information. The possibility
to reorganize, recombine, and integrate information in a variety
of ways to solve different problems might confer an evolutionary
advantage. Regions which experienced the largest cortical sur-
face expansion across evolution coincide with the FP (Van Essen
and Dierker 2007) with specific hot spots in the DLPFC and the
temporo-parietal junction (TPJ). Interestingly, these areas (DLPFC
and TPJ) also stand out in our optimization analysis (see Fig. 2).
In contrast, areas that experienced less cortical expansion such
as visual and motor systems (unimodal networks) correspond in
our analyses with areas or networks which had lower accuracy
in identification analyses.

In addition to the function of the FP as a higher cognitive or
control network, other characteristics have been described asso-
ciated with the topological properties within the network. For
instance, the FP has been described to be a member of an

anatomically defined rich club (van den Heuvel and Sporns
2011). However, other areas that are also members of the struc-
tural rich club, such as the precuneus, do not appear to be strong
network markers of individual differences in FC (see Fig. 5). This
suggests only partial overlap between FC fingerprints and under-
lying structural connectivity. In addition to clarifying the ana-
tomical substrate, other open issues concern developmental
patterns, cross-species comparisons, and relation to cognitive
function and genetics. Regarding development, future studies
across different ages may illuminate the developmental mecha-
nisms through which fingerprints emerge. Cross-species com-
parisons would be essential to clarify their association with
phylogenetically late-developing regions, for example, in the FP
system. Regarding cognitive function, future studies might inves-
tigate whether variations in FC fingerprints can predict individ-
ual differences in cognitive and behavioral performance, and
whether they are selectively disrupted in the course of brain dis-
orders. Finally, the role of genetic factors and patterns of herita-
bility on FC fingerprints remain to be examined.

In addition to spatial localization, our study also tracked the
expression of FC functional fingerprints across time. Within
single scanning sessions, we classified and compared the least
unique and most unique patterns for each of the subjects. The
analysis revealed that the least unique connection patterns
across subjects were found outside of the FP. Consistent with
our identification and optimization analysis that focused on
spatial localization, the FP aggregates the most dissimilar con-
nections when examining dynamic patterns that unfold across
the subjects’ actual time series as well as using a surrogate null
FC data (Fig. 5). These results have several implications. First,
using independent approaches we have shown convergent evi-
dence pointing to the FP as the most reliable marker of individ-
ual variations in FC. Second, we have shown that during a
single scanning these markers are expressed at different levels.
The latter finding resonates with recent work on dynamical
variations of FC that has shown fluctuations in specific topolog-
ical network characteristics such as modularity, with highly
modular patterns characterized by disconnection of task-
positive from task-negative systems (Betzel et al. 2016). In our
analysis, we find that most unique snapshots are characterized
by lower modularity as well as lower average FC, compared to
more commonly shared FC patterns. Third, we showed that
this is a robust phenomenon observed across different scan-
ning sessions separated by one month (Fig. 5D,E). Furthermore,

Figure 6. Fingerprint expression across sessions separated one month apart on DS 1. (A) Accuracy levels on specific RSNs, SNs (obtained by SA optimization) and the

whole-brain network (WB). (B) Accuracy levels of networks constructed using 67 randomly selected nodes from each RSN (20 repeats). (C) Accuracy levels of networks

constructed using randomly selected nodes from the entire brain, with the number of nodes corresponding to the sizes of the seven RSNs (20 repeats).
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using FC snapshots of the fingerprint network identified by
whole-brain optimization we were able to identify the subjects
across sessions with the highest accuracy in comparison with
other networks (Fig. 6A).

Our study is subject to several limitations. The scope of the
study was focused on functional fingerprints measured at the
macroscale, corresponding to large neural populations aggre-
gated into voxel clusters. Working at finer scales, for example
at the single voxel level (or below), would likely allow pinpoint-
ing network markers of individual variability with greater spa-
tial accuracy. Currently, limits on computational time prohibit
the use of the voxel scale for the optimization approach used in
our study to identify network markers from whole-brain data.
Other limitations include the modest sizes of our 2 subject
cohorts, the brief duration of the resting-state scans, bound-
aries on window sizes used for creating FC snapshots, and
choices of preprocessing parameters. Additional studies will be
needed to address these limitations more comprehensively.

In summary, our study takes an additional step toward the
characterization of individual differences in human FC, by exam-
ining these individual differences in both space and time. Using
network-specific and whole-brain optimization approaches we
identify a specific subset of nodes corresponding to network mar-
kers of individual variability. This fingerprint is not only localized
in space, but differentially expressed across time. By identifying
neural substrates of individual differences in brain architecture
our study opens new avenues for mapping brain-behavior rela-
tions in basic and clinical research.
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