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Abstract

Motivation: For many traits, causal loci uncovered by genetic mapping studies explain only a minor-

ity of the heritable contribution to trait variation. Multiple explanations for this ‘missing heritability’

have been proposed. Single nucleotide polymorphism (SNP)–SNP interaction (epistasis), as one of

the compelling models, has been widely studied. However, the genome-wide scan of epistasis, espe-

cially for quantitative traits, poses huge computational challenges. Moreover, covariate adjustment

is largely ignored in epistasis analysis due to the massive extra computational undertaking.

Results: In the current study, we found striking differences among epistasis models using both

simulation data and real biological data, suggesting that not only can covariate adjustment remove

confounding bias, it can also improve power. Furthermore, we derived mathematical

formulas, which enable the exhaustive epistasis scan together with full covariate adjustment to be

expressed in terms of large matrix operation, therefore substantially improving the computational

efficiency (�104� faster than existing methods). We call the new method MatrixEpistasis. With

MatrixEpistasis, we re-analyze a large real yeast dataset comprising 11 623 SNPs, 1008 segregants

and 46 quantitative traits with covariates fully adjusted and detect thousands of novel putative epis-

tasis with P-values< 1.48e-10.

Availability and implementation: The method is implemented in R and available at https://github.

com/fanglab/MatrixEpistasis.

Contact: shijia.zhu@mssm.edu or gang.fang@mssm.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

For many traits, including susceptibility to common diseases in

humans, causal loci uncovered by genetic mapping studies explain

only a minority of the heritable contribution to trait variation.

Multiple explanations for this ‘missing heritability’ have been pro-

posed. One of the proposals highlights the fact that non-additive

interactions among loci (called epistasis) may inflate heritability

measures (Zuk et al., 2012). There is growing evidence supporting

the important role of epistasis in the etiology of complex traits: stud-

ies employing model organisms such as Drosophilla melanogaster

and Saccharomyces cerevisiae have suggested that epistasis occurs

frequently and, in some cases, produce effects as large as the main

effects at the individual loci (Brem et al., 2005; Brem and Kruglyak,

2005; Mackay, 2001; Storey et al., 2005). An exhaustive pairwise

scan of genome-wide SNPs poses computational challenges due to

the sheer size of the combinatorial space (Marchini et al., 2005).

When searching for independent additive effects, each SNP is tested

for association with the phenotype, but in order to most powerfully

identify epistatic effects, the search must be increased to two dimen-

sions (Evans et al., 2006; Marchini et al., 2005), testing each SNP
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against all other SNPs. For example, a 106 SNP chip would require

106�106/2�5�1011 independent tests, which is a massive compu-

tational undertaking.

Furthermore, when studying epistasis, it is critical to adjust covari-

ates, e.g. batch effects, population stratification, age and gender.

Combarros et al. pointed out that failure to consider covariates might

result in lack of replication of epistasis (Combarros et al., 2009). With

covariate adjustment, an epistasis scan, however, would become even

more computationally intensive. There can potentially be dozens of

covariates, especially when using dummy variables (Pindyck and

Rubinfeld, 1998) to represent categorical variables such as batch ef-

fect and geographic location. Thus, accounting for covariates would

result in tens of fold increases in computational burden to the already

computationally intensive original epistasis search.

Some methods have been proposed for rapid epistasis searching

by restricting the analysis to a small subset of candidate markers,

those identified through single-locus analysis or those of biological

interest (Emily et al., 2009), or by only checking for interactions be-

tween SNPs that are physically close to one another (Slavin et al.,

2011). Others like EPIBLASTER (Kam-Thong et al., 2011) and

SHIsisEPI (Hu et al., 2010) make use of such specialized hardware

as multiple graphical processing units (GPUs) to accelerate the com-

putation. These strategies can be applied together with regression

models (Marchini et al., 2005), manipulating contingency tables

(Wan et al., 2010; Zhang et al., 2010) or searching for a linkage dis-

equilibrium (LD) contrast between cases and controls (Brinza et al.,

2010; Prabhu and Pe’er, 2012).

However, these methods still have limitation. First, most meth-

ods do not adjust covariates, with only several (Arkin et al., 2014;

Hemani et al., 2011) attempting a partial adjustment for covariates.

For instance, epiGPU (Hemani et al., 2011) regresses away the cova-

riates from the phenotype but ignores the confounding information

that is still implicated in the genotype and their interaction. Second,

most of epistasis tools (Gui et al., 2010; Wei et al., 2014) are de-

signed for case-control studies, whereas the available software for

quantitative studies is quite limited. Testing for quantitative associ-

ations can be more challenging than with case-control studies, as

methods utilizing contingency tables, LD-contrast or binary oper-

ations are usually inapplicable. Methods tailored for case-control

studies can be applied on quantitative traits after dichotomizing the

phenotype (Bhattacharya et al., 2011); however, the statistical test is

different than the original, resulting in a loss of power that would

be difficult to quantify. Third, it is known that reductionist, candidate

SNP-based approaches can miss many real interactions (Culverhouse

et al., 2002; Evans et al., 2006) and fail to provide novel biological in-

sights in an unbiased manner. Fourth, brute-force approaches that

rely on hardware for speedup may also scale poorly as datasets in-

crease in size and interaction tests increase in complexity.

In this paper, we first demonstrate the difference between a few

epistasis models: non-, incomplete- and complete-covariate adjust-

ment models, using both simulation data and mathematical deriv-

ation. This analysis suggests that complete covariate adjustment

cannot only remove the bias from confounding factors but also im-

proves the power for epistasis detection. Furthermore, we present an

ultrafast exhaustive epistasis scan tool, MatrixEpistasis, that uses

large matrix operations for full covariate adjustment, which substan-

tially improved the computational efficiency (�104� faster than

the others) and also scales well with the number of covariates.

MatrixEpistasis is built on a full regression model, so that it can work

for quantitative trait, discrete genotype and continuous imputed geno-

type data. Due to excellent time-efficiency of MatrixEpistasis, we re-

analyze a large real yeast dataset comprising 11 623 SNPs, 1008 seg-

regants and 46 quantitative traits with covariates fully adjusted. We

demonstrated the difference of epistasis between models with and

without covariate adjustment, reinforcing the importance of covariate

adjustment for epistasis detection.

2 Materials and methods

Let a vector p 2 Rn be quantitative phenotypic values of all n indi-

viduals. Let a matrix Gnxm be genotypic values at m polymorphic

loci, where each SNP can take on either discrete values or continu-

ous values from imputation. Let a matrix Cnxl be covariate values

for l covariates, e.g. age, gender or population stratification.

Epistasis is a phenomenon where the effect of one genetic variant

is masked or modified by other genetic variants. From a statistical

point of view, the quantitative genetic concept of epistasis is often

defined as the departure from additive effects in a linear model

(Fisher, 1919). Many regression-based methods have been de-

veloped to detect epistasis (Cordell, 2009; Purcell et al., 2007). The

commonly used approach is to model a quantitative phenotype as a

linear function of the relevant predictor variables:

p ¼ aþ b1G�s þ b2G�t þ b3G�sG�t

þ
X

v cvC�v þ e; where eeNð0; n2Þ

where a is the overall mean of the quantitative phenotype, b1/b2, b3

and cv are, respectively, the regression coefficients for the main gen-

etic additive effect, interaction effect and covariates, and e is a normal

variable with zero mean and n2 variance. In this model, the regression

coefficient b3 gives the size of the effect that the interaction term is

having on the phenotype with both main genetic additive effects and

covariates adjusted, and therefore, tests of interaction correspond to

testing whether the regression coefficient b3 equals zero or not, i.e.

the hypotheses H0 : b3 ¼ 0 and H1 : b3 6¼ 0. However, in addition to

b3, the conventional algorithm calculates all other variables a, b1, b2,

c1::v and e. This is followed by calculation of P-values based on spe-

cific test statistics, which can be also computationally intensive.

Differing from the conventional way, MatrixEpistasis only calculates

b3 and scans exhaustively all pairwise genetic interactions, with only

the significant ones figured out.

Next, we show how the regression model can be solved progres-

sively. Let X, r Xð Þ and X0 ¼ X�X
� �

=r Xð Þ denote the mean, standard

deviation and standardized values of variable X. We start from the sim-

ple linear regression model, which only includes the interaction term.

Model 1: p ¼ bG�sG�t þ e

For the simple linear regression, the common test statistics, t, F, R2

and LR, are equivalent and can be expressed as functions of Pearson

correlation:

r ¼ cor G�sG�t;pð Þ

¼
Pn

i¼1 GisGit �G�sG�t
� �

pi � pð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 GisGit �G�sG�t
� �2Pn

i¼1 pi � pð Þ2
q

Therefore, we used the Pearson correlation as the test statistic.

In order to simplify the calculation of the sample correlation, we

standardize the phenotype to have zero mean and unit standard de-

viation. The equation is rewritten as:

cor G�sG�t; pð Þ ¼
Pn

i¼1 GisGitp
0
i

n� 1ð Þr G�sG�tð Þ (1)
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The numerator is the inner product between the SNP interaction

and phenotype, motivating us to use the matrix inner product to cal-

culate. The intuitive idea is to first calculate the interaction between

two SNPs, and next, calculate the inner product between SNP inter-

action and phenotype. However, the inner products between all

SNP interactions (Fig. 1a, large three-dimensional matrix in grey)

and one single phenotype vector (Fig. 1a, purple vector) cannot be

further improved using matrix operation. Instead, they can be

equivalently expressed in terms of the multiplication between two

two-dimensional matrices (Fig. 1a, blue and green matrices), which

can be calculated very fast using matrix operation.

On the other hand, the denominator is the standard deviation of

SNP interaction term. According to the equation:

r G�sG�tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðG�sG�tÞ2� � ½EðG�sG�tÞ�2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

nxm

� �T �G2
nxm=n� GT

nxm �Gnxm=n
� �2

q
;

it can be also expressed easily in terms of matrix operation (Fig. 1b).

Model 2: p ¼ b0 þ b1G�s þ b2G�t þ b3G�sG�t þ e

For this multiple regression model, the partial correlation between

SNP–SNP interaction and phenotype conditional on two SNPs, i.e.

pcor G�sG�t; pjG�s;G�tð Þ can be used as the test statistic to rank the sig-

nificance of regression coefficient b3. By definition, the partial correl-

ation is the Pearson correlation between residuals of SNP–SNP

interaction and residuals of phenotype with two SNP additive effects

regressed away. It can be also calculated using the iterative equation:

pcor X;YjZð Þ ¼ cor X;Yð Þ � cor X;Zð Þ cor Z;Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cor X;Yð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cor Y;Zð Þ2

q

We show the detailed iterative steps as follows. First, we calculated

the Pearson correlations using the following equations:

cor G�sG�t;G�tð Þ ¼
Pn

i¼1 GisGitG
0
it

n� 1ð Þr G�sG�tð Þ (2)

cor G�s;pð Þ ¼
Pn

i¼1 G0isp
0
i

n� 1
(3)

cor G�s;G�tð Þ ¼
Pn

i¼1 G0 isG
0
it

n� 1
(4)

By introducing the Pearson correlations (1)–(4) into the iterative

equation, we obtain the partial correlations:

pcor G�sG�t;pjG�sð Þ ¼ cor G�sG�t;pð Þ � cor G�sG�t;G�sð Þ cor G�s;pð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cor G�sG�t;G�sð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cor G�s; pð Þ2

q
(5)

pcor G�sG�t;G�tjG�sð Þ¼cor G�sG�t;G�tð Þ�cor G�sG�t;G�sð Þcor G�s;G�tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�cor G�sG�t;G�sð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�cor G�s;G�tð Þ2

q
(6)

pcor G�t; pjG�sð Þ ¼ cor G�t;pð Þ � cor G�s;pð Þ cor G�s;G�tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cor G�s;pð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cor G�s;G�tð Þ2

q (7)

By introducing the partial correlations (5)–(7) into the iterative

equation again, we finally obtain

pcor G�sG�t;pjG�s;G�tð Þ

¼ pcor G�sG�t; pjG�sð Þ � pcor G�sG�t;G�tjG�sð Þ pcor G�t;pjG�sð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pcor G�sG�t;G�tjG�sð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pcor G�t;pjG�sð Þ2

q (8)

Model 3: p ¼ aþ b1G�s þ b2G�t þ b3G�sG�t þ
X

vcvC:v þ e

In addition to additive and interactive effects, the model 3 also con-

siders covariates. For fast computation, it can be reduced to testing

of the model 2 for the residuals of G�sG�t, G�s, G�t and p with all

covariates C regressed away. For example, we used the regression

model: G�sG�t ¼ k0 þ
X

vkvC:v þGGres�st to get the residual of

G.sG.t, denoted as GGres.st There are multiple parameters in such

regression model, including k0 and k1::l, but we only need the re-

siduals and do not care the exact values of those parameters. So, we

orthonornalize the set of covariates in an inner product space using

such methods as principal component analysis, so that we can inde-

pendently solve the regression coefficient for each resulting ortho-

normalized covariate. Let C0 be the orthonormalized covariate

matrix. The new equations are (9)–(11), where the regression

Fig. 1. Pearson correlation between SNP interaction and phenotype can be expressed in term of large matrix operation. (a) Calculation of inner product between

SNP interaction and phenotype, i.e.
Pn

i¼1 Gis Git pi and (b) variance of SNP interaction, i.e. varðG�sG�t Þ using matrix operation. The numbers of SNPs and samples

are m and n. The grey matrix (mxmxn) represents interactions of all pairwise SNPs; the purple vector (mx1) represents the quantitative trait; the blue matrix

(mxn) represents the individual-level genotype; the green matrix represents the product between genotype and quantitative trait; the red matrix (nxn) represents

the inner product between SNP interaction and quantitative trait, and the orange matrix (nxn) represents the variance of interactions of all pairwise SNPs. The op-

eration A � B represents the inner product of two matrices A and B, and the operation AB represents the product
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coefficients are expressed in terms of Pearson correlations, which

can be solved independently and fast using equations (1) and (3)

p ¼ �p þ
X

vkvC0 �v þ pres; where kv ¼ r pð Þcor p;C0vð Þ: (9)

G�t ¼ G�t þ
X

vktvC0 �v þGres�t; where ktv ¼ r G�tð Þcor G�t;C
0
�vð Þ
(10)

G�sG�t ¼ G�sG�t þ
X

vkstvC0:v þGGres�st; where kstv

¼ r G�sG�tð Þcor G�sG�t;C
0
:v

� �
(11)

It does not increase much complexity to calculate the residuals Gres

and pres, however, it would be very time-consuming to calculate the

residuals for all interaction terms, GGres�st. Fortunately, the ortho-

nornalization of covariates also enables us not to calculate GGres�st. By

replacing the variables G.sG.t and p by their residuals, the Equation (1)

becomes

cor GGres�st;presð Þ ¼
X

iGGresistpres0i
n� 1ð Þr GGres�tsð Þ

On the one hand, since
P

C0 ivpres0i ¼ 0 and mean pres0ð Þ ¼ 0, the

numerator becomes:

X
iGGresistpres0i

¼
X

i GisGit�G�sG�t �
X

vr G�sG�tð Þcor G�sG�t;C�vð ÞC0iv
� �

pres0i

¼
X

i
GisGitpres0i�G�sG�t

X
i
pres0i�

X
vr G�sG�tð Þcor G�sG�t;C�vð Þ

�
X

i
C0 ivpres0i

¼
X

i
GisGitpres0i

On the other hand, since var xþyð Þ¼ var xð Þþvar yð Þþ2cov x;yð Þ,
cov(x, yþz)¼cov(x, y)þcov(x, z), var C0 �vð Þ¼1 and covw6¼z

C0 �w;C
0
�zð Þ¼0 (orthonormalized), we obtain the equation for the

denominator:

var GGres�tsð Þ

¼ var GisGit �G�sG�t �
X

vr G�sG�tð Þcor G�sG�t;C�vð ÞC0 �v
� �

¼ var GisGit �G�sG�t
� �

þ var
X

vr G�sG�tð Þcor G�sG�t;C�vð ÞC0 �v
� �

� 2cov GisGit �G�sG�t ;
X

vr G�sG�tð Þcor G�sG�t;C�vð ÞC0 �v
� �

¼ var G�sG�t �G�sG�t
� �

þ
X

vvar r G�sG�tð Þcor G�sG�t;C�vð ÞC0 �vð Þ

þ 2
X

w>zcovðrðG�sG�tÞcorðG�sG�t;C�wÞC0 �w;rðG�sG�tÞ

� corðG�sG�t;C�zÞC0 �zÞ

� 2cov GisGit �G�sG�t ;
X

vr G�sG�tð Þcor G�sG�t;C�vð ÞC0 �v
� �

¼ var G�sG�tð Þ þ var G�sG�tð Þvar C0 �vð Þ
X

vcor G�sG�t;C
0
�vð Þ2

� 2r G�sG�tð Þ
X

vcor G�sG�t;C
0
�vð Þcov G�sG�t;C

0
�vð Þ

¼ var G�sG�tð Þ þ var G�sG�tð Þ
X

vcor G�sG�t;C
0
�vð Þ2

� 2r G�sG�tð Þ
X

vcor G�sG�t;C
0
�vð Þ cor G�sG�t;C

0
�vð Þr G�sG�tð Þ

¼ var G�sG�tð Þ 1�
X

vcor G�sG�t;C
0
�vð Þ2

� �

Taken collectively, we obtain that

cor GGres�st; presð Þ ¼
X

iGisGitpres0i

n� 1ð Þr G�sG�tð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

X
vcor G�sG�t;C

0
�vð Þ2

q
(12)

The above equation suggests that we do not need to calculate re-

siduals for interaction terms, i.e. Equation (11).

Similar to Equations (2)–(4), we can derive Equations (13)–(15):

cor GGres�st;Gres�sð Þ ¼
X

iGisGitGres0is

n� 1ð Þr G�sG�tð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

X
vcor G�sG�t;C

0
�vð Þ2

q
(13)

cor Gres�s; presð Þ ¼
X

iG
0
ispres0i

n� 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

X
vcor G�s;C

0
�vð Þ2

q (14)

cor Gres�s;Gres�tð Þ ¼
X

iGres0isGres0it
n� 1

(15)

Next, replace Equations (1)–(4) by Equations (12)–(15) in Equations

(5)–(8), then we can obtain pcor GGres�st;presjGres�s;ð Gres�tÞ, which

is equivalent to pcor G�sG�t; pjG�s;G�t;Cð Þ, i.e. the partial correlation

between SNP–SNP interaction and phenotype conditional on SNP

additive effects and covariates. It has the consistent P-value with b3 in

the multiple regression model 3 (Supplementary Fig. S1).

To summarize the main idea of MatrixEpistasis model 3, it

regresses the covariates against all the related variables including the

phenotype, main effects and interaction effects [(Equations (9)–

(11)]. Then in the rest of the calculations, in each regression model

for a pair of SNPs, the original data will not be subjected to another

least-square estimation. Instead, a simple multiplication (the inner

product) will estimate the partial correlations. That is why the pre-

sented method is ultrafast.

2.1 Matrix operation
The above equation can be divided into terms

Pn
i¼1 GisGitG

0
it,Pn

i¼1 GisGitp
0
i,
Pn

i¼1 GisGitC
0
iv,
Pn

i¼1 G0isG
0
it,
Pn

i¼1 Gisp
0
i,
Pn

i¼1 Gis

C0iv and r G�sG�tð Þ, all of which can be expressed in terms of four

types of matrix operations.

Product:

XnxmYnxm ¼ XYnxmjXYst ¼ XstYstf g

Inner product:

XT
nxm � Ynxm ¼ XYmxmjXYst ¼

Xn

i¼1
XisYit

n o

(e.g.
Pn

i¼1 G0isG
0
it,
Pn

i¼1 Gisp
0
i and

Pn
i¼1 GisC

0
iv)

Combination of product and inner product (Fig. 1a):

XT
nxm � XnxmYnxmð Þ ¼ XXYmxmjXXYst ¼

Xn

i¼1
XisXitYit

n o

(e.g.
Pn

i¼1 GisGitG
0
it,
Pn

i¼1 GisGitp
0
i and

Pn
i¼1 GisGitC

0
iv)

Variance matrix (Fig. 1b):

rðG�sG�tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðG�sG�tÞ2� � ½EðG�sG�tÞ�2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

nxm

� �T �G2
nxm=n� GT

nxm �Gnxm=n
� �2

q
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2.2 Hypothesis test
For the linear regression model, the common test statistics, t, F, R2

and LR, are equivalent and can be expressed as functions in terms of

the sample correlation (Pearson correlation or partial correlation) r.

We chose the t-statistic as the test statistic for the linear regression

model and threshold it in search for significant SNP–SNP

interactions.

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
n� 2
p rffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p

The degree freedoms are (m-2) for model 1, (m-4) for model 2 and

(m-l-4) for model 3, where m and l are the numbers of samples and

covariates, respectively.

3 Results

3.1 The inferred epistasis from different models is

largely inconsistent
The full regression model LR1 (Table 1), taking into account all

additive effects, interactive effects and covariates has been con-

sidered as standard to model epistasis for quantitative traits with

covariates adjusted. To lower computational complexity, various

reduced models (Table 1), however, are also used to approximate

the full model LR1 (Arkin et al., 2014; Crawford et al., 2016;

Hemani et al., 2011). Specially, LR2 considers neither additive effect

nor covariates; LR3 considers additive effect but not covariates; and

LR4-6 incompletely adjusts covariates by regressing away covariates

from additive effects (LR4), trait (LR5) and both (LR6), respect-

ively. These models are frequently used, but their difference in

power is poorly understood. Here, we compared these models by

applying them to simulated data from a real yeast genotype and

quantitative trait dataset. First, a quantitative trait, Maltose, was

used, and 200 SNPs, which significantly contribute to the trait by

interacting with other SNPs, were randomly selected. Next, to simu-

late covariates with both additive and interactive effects, we used

principal component analysis to extract the top five principal com-

ponents from 200 SNPs and the top five principal components from

the residuals of 20 100 (200 � 199/2þ100) pairwise SNP inter-

actions with additive effects of two SNPs regressed away. Finally,

different models were applied to the simulated dataset. The upper

triangle in Figure 2 demonstrates the dramatic difference between

models. The models LR2-3, which do not adjust covariates, dramat-

ically overestimate the epistasis effect as compared to LR1, suggest-

ing that the estimation of epistasis might be largely biased by the

failure to consider covariates. In contrast, when compared to LR1,

the reduced models LR4-6, which incompletely deal with covariates,

significantly underestimate the epistasis effect, suggesting that in-

complete adjustment of covariates largely reduces the power to

detect epistasis. Moreover, LR3 shows better power than LR2, re-

vealing the benefits of considering the additive effects of two SNPs.

This comparison also shows the striking inconsistencies between in-

complete models themselves. Furthermore, to ensure that the type-I

error is under control, we run the simulation to estimate the empir-

ical P-values. We shuffled the phenotype data to build a simulated

phenotype and recalculated the epistasis P-values. The permutation

was repeated so as to construct a background P-value distribution of

no real signals, and next, assessed the frequency of obtaining the

genuine signal. Figure 2 (lower triangle) shows that the comparison

between different regression models using the empirical approaches

is consistent with that using the original P-values. Taken together,

our comparisons indicated that complete adjustment of covariates

not only removes the bias from confounding factors but also im-

proves the power when studying epistasis, providing a general guide-

line for the selection of epistasis models.

3.2 Excellent time efficiency of MatrixEpistasis for

epistasis scan with covariate adjustment
Although we demonstrated the critical role of covariate adjustment

when studying epistasis, it dramatically increases the computational

burden for the epistasis search. To address this, we proposed a novel

ultrafast method using matrix operations, MatrixEpistasis (detail in

Section 2), that exhaustively scans all pairwise genetic interactions.

Its excellent time-efficiency is achieved by the following innovations:

(i) it ranks the regression coefficients of the epistasis model using

partial correlations, which are not subjected to least-square estima-

tion; (ii) it expresses the calculation of all partial correlations in

terms of large matrix inner products (notably, no matrix inverse),

avoiding separately calculating each epistasis model; (iii) out of all

regression coefficients (including two additive terms, one interaction

term and multiple covariate terms), MatrixEpistasis only calculates

LR5 

LR1 

LR4 

LR3 

LR2 

LR6 

-log10 P-value 

-lo
g1

0 
P-

va
lu

e 
Fig. 2. The comparison between different epistasis models using simulation

dataset. The x and y axes represent –log10 P-value of the interaction term

from a pair of models. The red dot is the QQplot and the blue shadow is a

smoothed density representation of the scatterplot between two models. The

upper triangle represents the QQplot of original P-values, and the lower tri-

angle represents the QQplot of empirical P-values

Table 1. The list of regression models used to model gene–gene

interaction for quantitative traits

Models Equations

LR1 p ¼ aþ b1G�s þ b2G�t þ b3G�sG�t þ
X

vcvC:v þ e
LR2 p ¼ bG�sG�t þ e
LR3 p ¼ b0 þ b1G�s þ b2G�t þ b3G�sG�t þ e
LR4 p ¼ aþ b1Gres�s þ b2Gres�t þ b3Gres�sGres�t þ e
LR5 pres ¼ aþ b1G�s þ b2G�t þ b3G�sG�t þ e
LR6 pres ¼ aþ b1Gres�s þ b2Gres�t þ b3Gres�sGres�t þ e

where Gres�t ¼ G�t � �G�t �
X

vcvC:v

and pres ¼ p� �p �
X

vcvC:v
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the test statistic for the interaction term, largely alleviating

the computational complexity; (iv) the resulting test statistics

from MatrixEpistasis are comparable, so that MatrixEpistasis can

calculate P-values only for those exceeding the required significance

level, therefore discarding a large number of incomplete Beta or

Gamma functions.

To demonstrate the computational efficiency of MatrixEpistasis,

we compared it with other tools. Since few tools were proposed to

adjust covariates for epistasis of quantitative traits, we compared

with two: Combined Analysis of Pleiotropy and Epistasis (CAPE)

(Tyler et al., 2013) and Contrived Acronym of Software for SNP

Interactions (CASSI) (Howey), both of which can detect epistasis for

quantitative trait and also adjust covariates. We did not compare

with tools that use sub-sampling or hardware to promote computa-

tional efficiency. First, we compared the power between those three

methods: MatrixEpistasis, CASSI and CAPE. Not only did we calcu-

late the original P-values of epistasis, but we also estimate the empir-

ical P-values to adjust the type I error. Supplementary Figure S2

showed that all of three methods have the same power with and

without covariates adjusted. This is because CASSI and CAPE also

use the interaction regression model with covariates fully adjusted.

Next, to compare the running time, we applied these methods to a

simulated dataset comprised of 10 000 SNPs, 1000 samples and 1

quantitative trait. All methods were tested without parallel compu-

tation on a Linux server with 1.8 GHz cores and 256 GB memory.

As shown in Table 2, when considering no covariates, CAPE took

�4.2 days, CASSI took 2.3 h, whereas MatrixEpistasis took only

56 s. This suggests that MatrixEpistasis already builds an excellent

foundation for the further covariate adjustment. Next, we compared

the running time of different methods with covariate adjustment.

When 10 covariates were included, MatrixEpistasis took only 97 s,

while CAPE and CASSI took 7.5 and 1.3 days, respectively.

Furthermore, we progressively increased covariates and found that

the running time of MatrixEpistasis scaled well with the number of

covariates: each increase of 10 covariates resulted in a �30 s increase

in running time. With 40 covariates, MatrixEpistasis took only

202 s, while CAPE and CASSI took much longer time (22.7 and

19 days, respectively) and the running time of these tools did not

scale linearly with the number of covariates.

In addition to the number of covariates, we also tested how

MatrixEpistasis scaled with the number of samples. Different num-

ber of samples (1000, 2000, 3000 and 4000) were simulated and

tested. As shown in Table 2, MatrixEpistasis also scaled well with

the number of samples, and took only 94 s for 4000 samples. To

compare the running time, we tested these methods using only one

core, whereas MatrixEpistasis is very easy to conduct in parallel.

Users can simply split the genotype data into chunks and run differ-

ent chunks in parallel to further improve the time efficiency.

The genotype is often large, which requires large memory to run

MatrixEpistasis. Motivated by this, we also investigated how much

memory the MatrixEpistasis demands. The simulation analyses

were performed on different numbers of SNPs (5000, 10 000 and

15 000), samples (1000, 2000, 3000 and 4000) and covariates

(0, 10, 20, 30 and 40). The bsub was used to submit jobs to Load

Sharing Facility (LSF) and estimate the memory used (Table 3). As

expected, the required memory increases with the elevated number

of SNPs, however, increasing the samples and covariates almost do

not influence the memory. It suggests that the number of SNPs is the

critical factor for the memory. To avoid excessive memory demand,

users are suggested to split the data matrices in chunks up to 10 000

SNPs and run the pairwise chunks separately.

3.3 Covariates adjustment reveals different epistasis

interactions in yeast
Using MatrixEpistasis, we can efficiently interrogate large cohorts

to explore the difference of epistasis between models with and with-

out covariate adjustment. Here, we use a real yeast genotype and

phenotype dataset (Bloom et al., 2013). This is a large cohort of

cross between two yeast strains, which comprises 11 623 SNPs,

1008 segregants and 46 quantitative traits, aiming to explore the

source of missing heritability. Researchers have used this data to

show that genetic interaction can account for traits varying from

near zero to approximately 50%, significantly advancing our under-

standing of the role of gene–gene interactions in the missing herit-

ability. However, certain traits are highly correlated with each other

(Supplementary Fig. S3), raising the possibility that epistasis inter-

action may contribute to one trait by impacting another trait. In

order to capture only the direct impact of epistasis, we studied epis-

tasis on one trait with all the other traits as covariates. First, we use

MatrixEpistasis model 2 (no covariate adjustment) to do exhaustive

epistasis searches for all 46 quantitative traits (on average,

78 s). Consistent with the previous work (Bloom et al., 2013),

MatrixEpistasis found epistasis for multiple traits (Fig. 3a), to some

extent validating the effectiveness of our method. We detected

Table 2. Comparison of running time on 10 000 SNPs

Methods Samples Covariates Running time

CAPE 1000 0 4.2 days

CAPE 1000 10 7.5 days

CAPE 1000 20 10.3 days

CAPE 1000 30 16.6 days

CAPE 1000 40 22.7 days

CASSI 1000 0 2.3 h

CASSI 1000 10 1.3 days

CASSI 1000 20 8 days

CASSI 1000 30 10.8 days

CASSI 1000 40 19 days

MatrixEpi model 1 1000 0 11 s

MatrixEpi model 2 1000 0 28 s

MatrixEpi model 3 1000 0 56 s

MatrixEpi model 3 1000 10 97 s

MatrixEpi model 3 1000 20 134 s

MatrixEpi model 3 1000 30 166 s

MatrixEpi model 3 1000 40 202 s

MatrixEpi model 3 2000 0 70 s

MatrixEpi model 3 3000 0 82 s

MatrixEpi model 3 4000 0 94 s

Table 3. The computer memory used for running MatrixEpistasis

model 3

SNPs Samples Covariates Average

memory (GB)

Maximum

memory (GB)

5000 1000 0 1.0 3.4

10 000 1000 0 3.9 11.7

15 000 1000 0 9.1 29.2

10 000 1000 10 5.5 13.5

10 000 1000 20 5.7 13.5

10 000 1000 30 5.8 13.5

10 000 1000 40 5.8 13.5

10 000 2000 0 4.0 13.3

10 000 3000 0 4.2 13.5

10 000 4000 0 4.6 13.5
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147 genetic interactions for formamide, 1611 for indoleacetic

acid, 3798 for magnesium sulfate, 7893 for maltose, 28 for

4-hydroxybenzaldehyde and 377 for YPD: 37 C (Bonferroni cor-

rected P<0.01). Notably, to more comprehensively capture epista-

sis, we kept all SNPs in our analysis without linkage distinguishable

(LD) pruning, so the number of detected genetic interactions may be

larger than that reported in the previous work. Next, in order to

study the direct impact of an epistatic interaction on one trait,

we run MatrixEpistasis model 3 (with covariate adjustment) to in-

vestigate epistasis for each trait with all the other traits as covariates

(on average, 289 s). As shown in Figure 3b, we also found epistatic

interactions for multiple traits, but very interestingly, they are quite

different from those without covariate adjustment. For formamide,

indoleacetic acid and YPD: 37 C, we found less epistasis with covari-

ate adjustment (0, 9 and 204) than those without covariate adjust-

ment (147, 1611 and 377). In contrast, for galactose, magnesium

sulfate, maltose, 4-hydroxybenzaldehyde and YPD, we found more

significant epistasis with covariate adjustment (1386, 5035, 8628,

1369 and 26), compared to those without covariate adjustment

(0, 3798, 7893, 28, 0). These facts confirm the difference between

models with and without covariate adjustment, reinforcing its im-

portant role during epistasis analysis.

4 Discussion

This paper first demonstrated the difference between epistasis mod-

els using a simulated dataset and confirmed it using a large real yeast

dataset, suggesting that the adjustment of covariates cannot only re-

move confounding effects but also improve the power for the epista-

sis detection. Furthermore, we proposed a novel method in terms of

large matrix operation, called MatrixEpistasis, which enables the

ultrafast exhaustive epistasis scan together with full covariate ad-

justment. It substantially improved the computational efficiency

(�104� faster than the others). To deeper understand the underlying

rationale, we will discuss, from a simple mathematical perspec-

tive, the difference between non-covariate-adjustment (LR2-3),

incomplete-covariate-adjustment (LR4-6) and complete-covariate-

adjustment epistasis regression models (LR1). Actually, the hy-

pothesis test statistics, which evaluate the significance of regression

coefficients for interaction terms in three regression models, can be

also ranked by Pearson correlation, semi-partial correlation and par-

tial correlation, respectively (Johnson and Wichern, 2014; Stevens,

2012; Whittaker, 2009). Thus, we can find clues about the model

differences via three such correlations. Figure 4 shows the iterative

formula and Venn-diagram of explained variance for three correl-

ations. On the one hand, as shown in the iterative formula, the par-

tial correlation (similar to full-covariate adjustment interaction

regression model, e.g. LR1) is the same with the semi-partial correl-

ation (similar to incomplete-covariate adjustment interaction regres-

sion model, e.g. LR4) except only one item in the denominator:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

YZ

q
(Fig. 4). Such an item is always less than one, rendering

the partial correlation between SNP-SNP interaction and phenotype

conditional on covariates always greater than the semi-partial cor-

relation between SNP-SNP interaction and phenotype. This explains

why the LR1 model often has greater power than LR4 model. On

the other hand, the explained variance (Fig. 4) indicated that the dif-

ference between Pearson correlation and partial correlation are the

items: mc and nb, i.e. the odds ratio between b/c and m/n determines

the difference. In another word, when fixing m and n (i.e. fixing

SNP–SNP interaction and phenotype), if covariates are more corre-

lated with phenotype than with the interaction term, then the de-

tected epistasis effect becomes more significant after adjusting

covariates than before and vice versa.

For our simulated data, the LR2 model underestimates the sig-

nificance compared to the LR3 model, because the additive effects

are more correlated with the traits than the interaction term, while

the LR3 model overestimates the significance compared to the LR1

model, because in addition to additive effect, the covariates in the

LR1 model are simulated to also have quadratic effects, which are
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Fig. 3. Manhattan plots of MatrixEpistasis model 2 without covariate adjust-

ment (top panel) and MatrixEpistasis model 3 with covariate adjustment (bot-

tom panel). The x axis represents 46 quantitative traits and the y-axis

represents –log10 P-value of the interaction term. The horizontal line shows

the genome-wide significance level (1.48e-10)
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Fig. 4. Different perspectives to explain the Pearson correlation, partial correl-

ation and semi-partial correlation
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more correlated with interaction term than the trait. Similarly, we

can also use the iterative formula and the explained variance to com-

pare other models. Thus, this analysis provides a theoretical way to

better understand the underlying rationale of difference by different

epistasis detection models. Furthermore, to address the computa-

tional challenge of covariate adjustment for epistasis, we proposed

the ultrafast method, MatrixEpistasis. Our tests show that

MatrixEpistasis is �104 times faster than the existing quantitative

epistasis software without relying on any speedup from special hard-

ware. Moreover, the running time of MatrixEpistasis only doubles

with every 20 covariates that are added to the model. Such perform-

ance is achieved by expressing the most computationally intensive

part of the algorithm in terms of large matrix operations. We believe

that MatrixEpistasis will serve as a foundational tool for studying

SNP–SNP or gene–gene epistasis. The tool MatrixEqtl (Shabalin,

2012), which also utilizes matrix operations for significant speed-

ups, has been widely used to study the association between genotype

and gene expression. We expect that MatrixEpistasis, as an orthog-

onal and complementary tool, will also lead to a rich set of applica-

tions and offer deeper understanding in epistasis, pleiotropy of

epistasis, pheWAS (Bush et al., 2016) and many other fields.
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