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Ultrafast time-resolved X-ray scattering, made possible by free-
electron laser sources, provides a wealth of information about
electronic and nuclear dynamical processes in molecules. The tech-
nique provides stroboscopic snapshots of the time-dependent
electronic charge density traditionally used in structure determi-
nation and reflects the interplay of elastic and inelastic processes,
nonadiabatic dynamics, and electronic populations and coher-
ences. The various contributions to ultrafast off-resonant diffrac-
tion from populations and coherences of molecules in crystals, in
the gas phase, or from single molecules are surveyed for core-
resonant and off-resonant diffraction. Single-molecule ∝∝∝ N scaling
and two-molecule ∝∝∝ N2 scaling contributions, where N is the num-
ber of active molecules, are compared. Simulations are presented
for the excited-state nonadiabatic dynamics of the electron har-
pooning at the avoided crossing in NaF. We show how a class
of multiple diffraction signals from a single molecule can reveal
charge-density fluctuations through multidimensional correlation
functions of the charge density.

x-ray diffraction | nonadiabatic dynamics | ultrafast dynamics |
photochemistry

The term diffraction denotes the interference of waves elas-
tically scattered from different positions in space (1). Since

the phase difference between waves originating from different
spatial locations encodes the sample geometry, the diffraction of
waves can be used to infer the spatial pattern of the arrange-
ment of scatterers. This technique has long been used with
off-resonant X-rays to reveal the atomic structure of crystalline
solids, where the long-range order amplifies the diffraction signal
for certain values of the momentum transfer scattering vec-
tor q, known as the Bragg peaks. The location pattern of the
Bragg peaks then reveals the long-range crystal structure, while
their intensity pattern reflects the unit-cell structure through
the classical diffraction signal S(q)∝ |σ(q)|2, where σ(q) is the
ground-state charge density and q = ks− kp is the scattering
momentum change between the incident kp and scattered ks

wavevectors. An important caveat to this technique is that the
phase of the q-space charge density is lost due to the squaring.
This well-known “phase problem” complicates the retrieval of
the real-space charge density σ(r) by a Fourier transform of σ(q).
Several methods, such as oversampling, have been developed
to overcome this difficulty (2–4). Diffraction is also commonly
used in noncrystalline samples to reveal, e.g., the distribution
of interparticle distances in fluids. Increasingly bright X-ray
free-electron laser (FEL) light sources hold the promise of pro-
ducing detectable time-resolved diffraction patterns even from
single molecules, revealing the complete real-space structure of
the molecular charge density without the need for often time-
consuming crystallization (5–8). At present, diffraction from
nanocrystals have been achieved (9, 10), but not from single
molecules. Recently demonstrated time-resolved spectroscopy
on single molecular ions suggests the possibility for single ion
time-resolved diffraction (8).

Coherent X-ray light sources capable of producing bright,
ultrafast pulses have been developed [e.g., the Stanford Linear
Coherent Light Source produces pulses with 1012− 1013 photons
over an energy range of 280–20,000 eV with durations as short
as ∼ 10 fs, and a further upgrade, LCLSII, is underway (11)].
Similar hard X-ray facilities are available at the European XFEL
(Hamburg), SwissFEL (Switzerland), the Korean PAL-XFEL,
and the Japanese SACLA. Numerous exciting opportunities are
opened up by this technology, including reconstructing real-
space molecular movies via time-resolved diffraction as well as
time-domain and broadband X-ray Raman experiments (8, 12–
16). The development of FELs (17–20) as well as tabletop light
sources, such as high-harmonic generation for soft X-rays and
laser-driven plasma sources for hard X-rays (21–24), has permit-
ted the generation of bright ultrashort X-ray pulses (25–27). This
has opened up the possibility of carrying out time-dependent,
pump-probe diffraction in which a system is first pumped to an
excited state by a visible or UV pulse and is then probed via the
diffraction of a second X-ray pulse at varying time delays, allow-
ing the reconstruction of “molecular movies” that visualize the
evolving electron density (12–15, 28, 29).

In this work, we provide a unified quantum electrodynami-
cal (QED) description of time-resolved diffraction signals from
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gas-phase samples (or single molecules) and from systems that
have longer-range structural order such as crystals and liquids.
We show that the two types of signals are dominated by dif-
ferent terms and thus have a fundamentally different character.
It is tempting to describe the time-resolved signals by simply
replacing σ(q) in the above classical diffraction equation with
the time-dependent charge density to obtain S(q, t)∝ |σ(q, t)|2.
However, as we will show, this equation holds for diffraction
from crystals but does not apply to single-molecule diffraction or
to diffraction in the gas phase (Eq. 4 and refs. 30 and 31). More-
over, while picosecond diffraction (32, 33) is well established
and can be interpreted by using kinetic models for the evolv-
ing charge density, femtosecond diffraction with FEL sources
involves electronic coherences that must be treated with care.
Although we will speak throughout of X-ray diffraction, all
results are equally applicable to the diffraction of femtosecond
electron pulses. This is an emerging technology that can also
probe the electronic charge density of material samples (27,
34, 35). We further discuss X-ray scattering resonant with core
atomic transitions, which reveals correlations of core and valence
electrons, and comment on multidimensional diffraction involv-
ing photon coincidence detection where higher-order intensity
correlation functions of light are detected (13, 36).

X-Ray Scattering and the Electronic Charge Density
Infrared or visible light spectroscopies may be adequately
described by invoking the dipole approximation in which the
field-matter interaction energy is given by the dot product of
the external field and a material quantity, the transition dipole.
This is the first in a series of higher-order contributions to
the field-matter coupling known as the multipolar expansion
(37). Retaining only the lowest (dipolar) term is well-justified
as long as the radiation field amplitudes do not vary appre-
ciably over the relevant material length scales. This condition
may not hold in the hard X-ray regime, and a more general
treatment is required. Rather than patching up the dipolar
approximation with higher-order multipoles, it is simpler to
recast the problem in the framework of the minimal-coupling
Hamiltonian wherein the exact coupling of matter to the radi-
ation field is obtained by the substitution p̂→ p̂− eÂ where p̂
is the electronic momentum and Â is the electromagnetic vec-
tor potential. The multipolar expansion is then avoided from the
outset. This substitution yields the minimal coupling field-matter
interaction Hamiltonian which will be used throughout the
article (37)

Ĥint =−
∫

dr
(

ĵ(r)− 1

2
σ̂(r)Â(r)

)
· Â(r), [1]

where we work in atomic units and ĵ(r) and σ̂(r) are the elemen-
tary field-free current operator and the charge-density operator,
respectively (defined in terms of Fermionic field operators in SI
Appendix, Eqs. S13 and S14). Scattering occurs when a vacuum
mode of the electromagnetic field is populated due to the mat-
ter interaction with the incoming light field. Calculating the total
number of photons produced in a given signal mode ks to second
order in Ĥint (for derivation, see SI Appendix) gives

S(ks) =
α3ωs

4π2

∫
dtdt ′e iωs (t−t′) [2]

×
[
ε(λs )(k̂s) · 〈Ĵ(−ks , t

′)Ĵ(ks , t)〉 · ε(λs )∗(k̂s)
]
,

where α= 1/c is the fine-structure constant, ωs , ks and ε(λs )(k̂s)
are the frequency, wavevector, and polarization vector of the
scattered light, and Ĵ(r) = ĵ(r)− σ̂(r)Â(r) is the gauge-invariant
electromagnetic current in the presence of the vector potential

(SI Appendix, Eq. S23). The expectation value 〈. . . 〉 is taken over
all nuclear and electronic degrees of freedom.

Hereafter, we focus on the off-resonant regime, where the
X-ray photon is tuned away from core transitions while the exten-
sion to resonant scattering will be presented in Summary and
Future Outlook. We thus substitute the definition of Ĵ into Eq.
2 and only retain the σ̂ terms, yielding

S(q) =
α3ωs

4π2

∣∣∣ε(λs )(k̂s) · ε(λp)∗(k̂p)
∣∣∣2 [3]

×
∫

dt |Ap(t)|2〈σ̂(−q, t)σ̂(q, t)〉,

where Ap(t) is the temporal envelope of the vector potential
of the incoming X-ray pulse; we have assumed an ultrashort
pulse so that t = t ′ (in Eq. 2, this can be formalized by tak-
ing the Wigner spectrogram of the X-ray A-field to be broad
and flat). Writing Eq. 3 in terms of the electric field Ep(ωp) =

−iωpAp(ωp), results in the prefactor α3(ωs/ωp)2|ε(λs )(k̂s) ·
ε(λp)∗(k̂p)|2, which differs from the Thomson differential scat-
tering cross-section only (Eq. 3) in the power of the α and ωs/ωp

factors, the difference being due to the modeling of the pho-
ton absorption at the detector and the classical treatment of the
incoming field (see discussion after SI Appendix, Eq. S33 in SI
Appendix). We henceforth omit this prefactor for brevity.

Although formally exact when expressed in terms of the total
sample electron-density operator σ̂, our final expression is more
practical when recast in terms of electron densities of individ-
ual molecules σ̂α. For a sample composed of identical molecules
located at positions rα, we have σ̂Total(r) =

∑
α σ̂(r− rα). The

charge-density operators in Eq. 3 then generate a double sum
over molecules α and β, which can be separated into one-
molecule (α=β) and two-molecule (α 6=β) terms denoted S1

and S2, respectively:

S1(q,T ) =N

∫
dt |Ep(t −T )|2〈σ̂(−q, t)σ̂(q, t)〉 [4]

S2(q,T ) =F (q)

∫
dt |Ep(t −T )|2|〈σ̂(q, t)〉|2. [5]

Here, N is the number of active molecules, and we have explic-
itly indicated the dependence on the central time T of the
X-ray pulse envelope Ep(t −T ). We have further introduced the
structure factor

F (q) =
∑
α

∑
β 6=α

e−iq·(rα−rβ), [6]

which encodes the long-range, intermolecular structure of the
sample. We note that, aside from the F (q) factor and the
convolution with the X-ray temporal pulse envelope E(t −T ),
the two-molecule signal (Eq. 5) matches the intuitive form of
the classical time-resolved diffraction signal discussed in the
introduction, while the single-molecule contribution (Eq. 4)
does not.

In crystals, F (q) is sharply peaked at the Bragg points qBragg
which are directly related to reciprocal lattice vectors. At these
Bragg peaks, the terms in the double summation coherently add
up in phase and the signal scales as N 2, i.e., quadratically in the
molecule number. Away from the Bragg peaks, these terms have
essentially a random relative phase, and the signal is negligible.
The positions of these Bragg peaks can then be used to obtain
the crystal structure, while the q-space charge density can be
sampled at the Bragg peaks or near the central maximum, the lat-
ter requiring that the molecules are sufficiently close compared
with the probing wavelength. The effect of structural disorder
in a crystal (e.g., due to phonons) is to attenuate the Bragg
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I J K L

Fig. 1. Loop diagrams for two-molecule (Eq. 5) X-ray scattering processes with the amplitude-squared form explicitly indicated. The shaded area represents
an arbitrary excitation that prepares the system in a superposition state of |g〉 and |e〉 (further explained in SI Appendix, Fig. S1). We denote modes of the
X-ray probe pulse with p and p′, whereas s, s′ represent relevant scattering modes [kp(′) has frequency ωp(′) and ks(′) has frequency ωs(′) ]. Elastic scattering
processes come with σ̂gg or σ̂ee and are denoted by black field arrows. Inelastic processes in which the molecule gains (Stokes) or loses (anti-Stokes) energy
to the field come with σ̂ge or σ̂eg depending whether the action is on the ket or bra and are denoted with red and blue field arrows to indicate the field’s
spectral shift due to the particular diagram. Note: In diagram J, the energy order of states e, e′ is not set. We have depicted the elastic case for specificity.
Diagrams I–L identify the corresponding terms in Eq. 11.

scattering (which originates from the average structure) and pro-
duce a diffuse scattering that, while still reaching its maximum
value at the Bragg peaks, is present throughout broad regions
of reciprocal space (38). Particular models of the disorder, such
as the Debye–Waller (SI Appendix), can be used to interpolate
between ordered and disordered samples.

In the case of liquids, F (q) shows rings at the nearest- and
next-nearest-neighbor distances, etc., but decays to zero for
larger values for the lack of long-range structure. In the com-
pletely disordered case of a gas, the molecular distribution is
uniform in space and F (q) vanishes except at the central max-
imum (q = 0). This can be seen by taking the limit of large
disorder (SI Appendix, Debye–Waller Factor) or by taking the
continuum limit of Eq. 6 and integrating over all space, assum-
ing a homogenous distribution of molecules to obtain a delta
function δ(q).

When the terms in the structure factor F (q) add coherently,
such as at the qBragg, the resulting N 2-scaling overwhelms the
N -scaling of the single-molecule signal S1, and the diffraction
pattern is well approximated by S2 (Eq. 5). In contrast, the signal
between the Bragg peaks or from a sample lacking long-range
order, such as a gas, is dominated by the single-molecule sig-
nal (Eq. 4) since F (q)) is negligible in these regimes. Similarly,
diffraction of an intense FEL pulse by a single molecule is also
given by Eq. 4 (28, 31, 39).

The time dependence of the charge-density operators in Eqs.
4 and 5 can be simplified by expansion in system eigenstates.
Such expansions are given in SI Appendix, but these full elec-
tronic+vibrational eigenstates are too expensive to calculate
for any but the simplest systems. In the following section, we
will instead expand the time-dependent wavefunction in adia-
batic electronic eigenstates and keep the nuclear configuration
in a real-space wave packet representation (rather than using
vibronic eigenstates).

Time-Resolved Diffraction Movies of Nonadiabatic Dynamics
Conical intersections (CoIns) can be found in nearly every
polyatomic molecule and dominate the outcome of many photo-
chemical reactions (40). CoIns provide fast, sub-100-fs nonradia-
tive decay channels that are defined by a strong coupling between
nuclear and electronic degrees of freedom. Their direct spectro-
scopic detection has not yet been demonstrated experimentally.
However, we argue that the strong mixing of the nuclear and
electronic degrees of freedom creates an electronic coherence
that generates clear spectroscopic signatures (41).

In the following, we will investigate the effect of electronic
coherences on the diffraction pattern in ordered as well as
unordered samples. In ultrafast, time-resolved optical pump/X-
ray probe diffraction experiments, the system is pumped into an
excited state, and the subsequent coupled electronic and nuclear

A B C D

E F G H

Fig. 2. Loop diagrams for single-molecule (Eq. 4) X-ray scattering processes. The shaded area represents an arbitrary excitation that prepares the system
in a superposition of |g〉 and |e〉 states (further explained in SI Appendix, Fig. S1). The checkered box represents a field-free propagation period T that
separates the state preparation from the X-ray probing process. We denote modes of the X-ray probe pulse with p and p′, whereas s, s′ represent relevant
scattering modes (kp(′) has frequency ωp(′) and ks(′) has frequency ωs(′) ). Elastic scattering processes come with σ̂gg or σ̂ee and are denoted by black field
arrows. Inelastic processes in which the molecule gains (Stokes) or loses (anti-Stokes) energy to the field come with σ̂ge or σ̂eg depending whether the action
is on the ket or bra and are denoted with red and blue field arrows to indicate the field’s spectral shift due to the particular diagram. Note: In C, F, and G,
the energy order of states e, e′, e′′ is not set. We have depicted the elastic cases for specificity. Diagrams A–H identify the corresponding terms in Eq. 13.
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dynamics is probed after a variable time-delay T . This is depicted
diagrammatically in Figs. 1 and 2 where a preparation process by
an arbitrary pulse sequence is represented by the shaded box (an
example of such a preparation is shown in SI Appendix, Fig. S1),
the following free-propagation period is represented by a check-
ered box, and arrows represent the interactions with the X-ray
probe. The indices i , j , or k refer to the general case represent-
ing an arbitrary number of states, and R refers to and arbitrary
number nuclear degrees of freedom. The time-dependent wave
function is then expanded as

|Ψ(q, R, t)〉=
∑
i

ci(t) |χi(R, t)〉|ϕi(q, R)〉, [7]

where ci(t) is the electronic state amplitude and |χi(t)〉 is the
time-dependent normalized nuclear wave packet on the elec-
tronic state ϕi(q, R) (note that we abbreviate |φi〉 by |i〉 in the
following). The time evolution of Ψ is governed by the molecular
Hamiltonian in the basis of adiabatic electronic states:

Hij (R) = δij
(
T̂ + V̂i(R)

)
+ (1− δij )K̂ij (R), [8]

where T̂ is the kinetic energy operator of the nuclei, V̂i is the
adiabatic potential energy surface of the i th electronic state, and
K̂ij is the nonadiabatic coupling between state i and j .

Electronic operators, such as the charge density, generally
depend on the nuclear configuration too, so that σ̂(q) = σ̂(q; R).
The charge density will therefore remain an operator due to this
dependence, even after taking matrix elements in the electronic
subspace. We thus denote

〈i |σ̂(q, R)|j 〉= σ̂ij (q; R), [9]

with the circumflex notating the operator-valued nature of the
charge density in the nuclear R space. Below, we will omit the
explicit R-dependence for conciseness.

Time-Dependent Diffraction from Ordered vs. Unordered or Single-
Molecule Samples. For a sample possessing long-range order, so
that the structure factor is nonvanishing, the signal is dominated
by the two-molecule scattering Eq. 5, which we now recast as

S2(q,T ) =F (q)

∫
dt |Ep(t −T )|2S̃2(q, t). [10]

Expanding S̃2(q, t) using Eq. 7 gives the time-resolved scattering
signal

S̃2(q, t) =

∣∣∣∣∑
ee′

ρgg(t)〈χg(t)|σ̂gg(q)|χg(t)〉︸ ︷︷ ︸
(i)

+ ρee′(t)〈χe′(t)|σ̂e′e(q)|χe(t)〉︸ ︷︷ ︸
(j)

+ 2<
[
ρeg(t)〈χg(t)|σ̂ge(q)|χe(t)〉

]︸ ︷︷ ︸
(k)+(l)

∣∣∣∣2, [11]

where we have labeled the terms so as to indicate the correspond-
ing diagrams in Fig. 2. While F (q) is ∼N 2 at the Bragg peaks
and vanishes elsewhere (or broadened by the Debye–Waller fac-
tor for finite disorder), the structure of themolecular charge
density is encoded in Eq. 11. Terms i and j in the amplitude
are, when squared, simply the elastic ground- and excited-state
scattering, respectively. Their coefficients are ρ2ii (i = e, g), the
square of the electronic population which is the joint probability
of finding two molecules in state |i〉.

Terms i and j of Eq. 11 also generate cross-terms when the
amplitude is squared. These come as <(σggσ

∗
ee) and constitute

heterodyne interference between the ground- and excited-state
diffraction. For weak excitation, the ground-state signal serves
as a reference local oscillator for the excited-state signal. The
signal is proportional to the product of ground- and excited-
state populations ρggρee , or the joint probability of finding one
molecule each in the ground and excited states. Thus, it scales
favorably compared with the direct excited-state diffraction for
perturbatively prepared samples (ρ2ee� 1), a fact that has been
used in crystalline and powder samples to record the excited-
state charge density using the ground-state diffraction as a local
oscillator to boost the excited-state signal (13, 42). Moreover,
these cross-terms carry the relative phase information between
ground and excited states. Thus, with knowledge of the ground-
state charge density, the phase problem can be solved and σee(q)
can be inverted to obtain the excited-state charge distribution in
real space σee(r).

Finally, terms k and l in Eq. 11 arise from the combination
of inelastic scattering and electronic coherences. Depending on
the dynamics, the electronic coherences may rapidly decay, ren-
dering this third term negligible so that the scattering is given
only by the ground- and excited-state diffraction and their het-
erodyne interference. Moreover, the coherence ρeg(t) oscillates
at electronic frequencies, and thus, the inelastic scattering is also
negligible when the temporal envelope of the X-ray pulse is
too long to capture this oscillation. More generally, the inelas-
tic term as well as its cross-terms with the elastic scattering can
all contribute. The possibility of separating out these terms in
the diffraction pattern and what could be learned by doing so is
a largely unexplored territory that gradually becomes more rel-
evant as ultrabright X-ray pulses on the time scale of electronic
motion become available (43, 44).

We note that, even though our discussion has focused on elec-
tronic coherences, the same formalism applies to vibrational
coherences. Indeed, vibrational wave packets are unavoidably
created in the ground state via Raman processes during the
pumping (illustrated in SI Appendix, Fig. S1).

In the absence of long-range intermolecular order, the van-
ishing structure factor F (q) renders the two-molecule scattering
negligible, and the signal is dominated by the one-molecule
scattering. We can equivalently recast the time-resolved single-
molecule (or gas-phase) signal as

S1(q,T ) =N

∫
dt |Ep(t −T )|2S̃1(q,T ), [12]

where we similarly obtain S̃1(q, t) via Eq. 7

S̃1(q, t) =
∑

e,e′,e′′

{
ρgg〈χg(t)|σ̂†gg σ̂gg |χg(t)〉︸ ︷︷ ︸

(a)

+ ρgg〈χg(t)|σ̂†ge σ̂eg |χg(t)〉︸ ︷︷ ︸
(b)

+ ρee′〈χe′(t)|σ̂†e′e′′ σ̂e′′e |χe(t)〉︸ ︷︷ ︸
(c)

[13]

+ ρee′〈χe′(t)|σ̂†e′g σ̂ge |χe(t)〉︸ ︷︷ ︸
(d)

+2<
[
ρeg(t)〈χe(t)|σ̂†ee σ̂eg |χg(t)〉︸ ︷︷ ︸

(f)+(g)

+ ρeg(t)〈χe(t)|σ̂†eg σ̂gg |χg(t)〉︸ ︷︷ ︸
(e)+(h)

]}
,
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where the q-dependence is suppressed for brevity and we set
σ̂ij ≡ σ̂ij (q). Each term in Eq. 13 corresponds to a particular
diagram in Fig. 2. Terms a and b represent the elastic and inelas-
tic scattering contributions (Fig. 2 A and B) from the ground
state, while c and d are the equivalent terms for the excited
state (Fig. 2 C and D). Terms e, f, g, and h represent mixed
elastic–inelastic processes, which scatter off electronic coher-
ences. Each of these terms originates from two diagrams, which
are complex conjugates, and are grouped by the final state
(Fig. 2 E–H).

X-ray diffraction is ordinarily taken to be purely elastic, and
the possibility of the inelastic and mixed terms in Eq. 13 is rarely
considered (28, 30, 43, 45). In most experimental circumstances,
the majority of the molecular charge can be definitively assigned
to particular atoms. Only few electrons participate in chemi-
cal bonds. This inspires the commonly used independent atom
approximation for the molecular charge density

σ(q) =
∑
a

|fa(q)|e iq·Ra+iφa (q), [14]

where φa(q) is the phase of fa , the atomic form factor of the a-th
atom, and Ra is the position of the ath atom. Evaluating, e.g.,
〈χe(t)|σ̂†ee σ̂ee |χe(t)〉 with the density from Eq. 14 yields

I
(e)
mol + I

(e)
at =

∑
a

∑
b

|fa(q)||fb(q)|e i(φb(q)−φa (q)) [15]

×
∫

dR eiq·(Rb−Ra )χ∗e(R)χe(R).

where we have identified the diagonal (a = b) and off-diagonal
(a 6=b) terms in the double summation as the excited-state
atomic (I (e)

at ) and molecular (I (e)
mol ) contributions to the scat-

tering intensity. The former gives only q-dependence of the
atomic form factors, while the latter reveals the interatomic dis-
tances and hence the molecular structure. Discarding the atomic
contributions and taking the rotational average then gives (35,
46–48)

I
(e)
mol (q) =

∑
a

∑
b 6=a

|fa(q)||fb(q)| cos(φa(q)−φb(q)) [16]

×
∫

dR
sin(qRab)

qRab
P

(e)
ab (Rab),

where P
(e)
ab (R) = |χe(R)|2 is the probability distribution of the

nuclear separation Rab = |Ra −Rb | for a given electronic state.
Compared with Eq. 13, this expression neglects the electronic
coherences, since Pab only considers the nuclear wave packet in
a single electronic state. The vibrational coherences are, how-
ever, included in Pab through the nuclear wave function. Finally,
by using the atomic form factor fa , contributions from valence
electrons are generally neglected since the core electrons are
dominant in the signal due to their much higher number.

As can be seen from Eqs. 12 and 10, the S1 and S2 scatter-
ing signals are fundamentally different for molecules that are
not in the electronic ground state in: (i) their scaling behavior
with respect to the particle number and (ii) the connection of the
diffraction pattern with charge-density matrix elements. (i) The
S2 signal vanishes in the gas phase and only S1 is observed. How-
ever, in crystalline samples, the S2 signal will be the dominant
one due to its N 2 scaling. In molecular clusters, a mixture of S1

and S2 can potentially be observed. (ii) The S1 signal is a linear
superposition of the expectation value over products of charge-
density operators 〈σ̂†σ〉. The S2 signal, in contrast, is given by the

square over the expectation values 〈σ̂〉2. Thus, heterodyne inter-
ference between electronic states can potentially be observed in
the S2 signal. However, this feature is completely absent in the
gas phase. Thus, special care has to be taken when interpreting
diffraction patterns of time-resolved diffraction experiments (29,
43, 49).

Monitoring the Nonadiabatic Avoided-Crossing Dynamics
in NaF
We illustrate the various contributions to the diffraction signal
for sodium fluoride. This molecule possesses a similar elec-
tronic structure to NaI, which was studied in the first femto-
chemistry experiments (50): an avoided crossing between the
ionic and covalent state (potential energy curves can be found
in SI Appendix). Although well known for facilitating popula-
tion transport between adiabatic electronic states, the passage
of nuclear wave packets through the region where electronic
states are degenerate or near-degenerate also generates elec-
tronic coherences. The resulting coherent oscillations can be
monitored with, e.g., photoelectron or Raman signals and reveal
the time-evolving electronic energy gap as well as information
on the differential topology of the electronic surfaces via the
decoherence time (51, 52). Here, we explore the consequences
of these dynamics for ultrafast time-resolved X-ray diffraction
in gas-phase NaF (44). Iodine is a strong X-ray scatterer, and
its large nuclear charge leads to a charge-density distribution
heavily dominated by its core electrons. While this is still the
case for molecular form factors of lighter element compounds,
they have a relatively more prominent contribution of valence
electrons compared with the core electrons, which is why we
chose NaF.

In the following, we present simulations and analysis of the
time-dependent diffraction patterns for the gas phase (S1(q,T ))
and for ordered samples (S2(q,T )). The two states relevant for
the dynamics are the ionic X 1Σ state (|g〉) and the covalent A1Σ
state (|e〉). The potential energy curves are similar to the ones of
NaI (50). The X 1Σ and the A1Σ state are coupled via a nonadia-
batic coupling matrix element which induces an avoided crossing
at 8 Å. The coupled nuclear+electronic dynamics is calculated
by solving the time-dependent Schrödinger equation on a grid
(for details, see SI Appendix).

The signal is finally obtained by evaluating Eq. 12 and insert-
ing the time-dependent wavefunctions and density operators
(σ̂†ik σ̂kj , as shown in SI Appendix, Fig. S4). The effective elec-
tronic coherence is obtained from the combined electronic-
nuclear wavefunction as the overlap of the nuclear wave packets,
which represents decoherence and the electronic density matrix
elements ρeg = c∗e cg

ρ̃eg(t) = ρeg〈χe(t)|χg(t)〉, [17]

The time evolution of the excited-state wave packet reveals the
decay and revival of the effective electronic coherence ρ̃eg .

The wave packet dynamics in the excited-state potential
(χe(R, t)) is depicted in Fig. 3A. The nuclear wave packet passes
through the avoided crossing between 200 and 240 fs and reaches
its outer turning point at ∼500 fs.

Fig. 3B shows the time-dependent excited-state population
alongside the magnitude of the electronic coherence. When the
wave packet passes through the avoided crossing for the first
time, ≈ 10% of the population is transferred to the ground
state, and a coherence ρeg is created. The large spike in coher-
ence after ≈ 900 fs stems from the wave packet returning to the
Franck–Condon region and thus maximizing 〈χe(t)|χg(t)〉 with
the retained ground-state wave packet.

While we have used a fully quantum description of nuclei
and electrons to calculate the molecular dynamics, this approach

6542 | www.pnas.org/cgi/doi/10.1073/pnas.1805335115 Bennett et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805335115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805335115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805335115/-/DCSupplemental
http://www.pnas.org/cgi/doi/10.1073/pnas.1805335115


IN
A

U
G

U
RA

L
A

RT
IC

LE
CH

EM
IS

TR
YFig. 3. Time evolution of the nuclear wave packet in the in the covalent

A1Σ state following excitation with a 10-fs pump-pulse (FWHM). (A) Prob-
ability density. (B) Excited-state population (A1Σ, black) and the magnitude
of the coherence |ρ̃eg| (blue). The initial coherence created by the pump
pulse (T < 50 fs) is not shown.

might not be feasible for polyatomic molecules with a large num-
ber of vibrational degrees of freedom. Semiclassical simulations
methods like ab initio multiple spawning (53) or surface hop-
ping (54, 55) can be used instead. However, special care has to
be taken to correctly include electronic coherences, which are
neglected in the surface-hopping protocol.

The Time-Resolved Single-Particle Diffraction Signal. The S1 dif-
fraction pattern (Eq. 12) shown in Fig. 4 is dominated by the
oscillating ground-state wave packet that was created by the 10-fs
UV pump pulse (SI Appendix, Fig. S1A).

Fig. 5 shows S1 separated in its constituting terms in real
space obtained via inverse Fourier transform of Eq. 13. The
elastic ground-state to ground-state contribution in Fig. 5A is in
close resemblance to the total S1 signal in Fig. 4 and shows a
wave packet that oscillates around the equilibrium bond length
of NaF. A comparison of Fig. 5C (σ2

ee) with the time evo-
lution of the nuclear wave function (Fig. 3A) makes it clear
that the features of the nuclear wave-packet motion can be
retrieved approximately from the elastic excited-state contribu-
tion (a detailed interpretation is given in SI Appendix). Fig. 5
E–H depicts the contribution of the electronic coherences (cor-
responding to diagrams in Fig. 2 E–H). At ≈225 fs and at ≈800
fs, as the wave packet enters the avoided crossing region, a coher-
ence is created (Fig. 3B): The pattern at 8 Å is at the position of
the avoided crossing. The contribution at 800 fs is caused by the
returning spatially elongated wave packet passing the avoided
crossing on its way back to the Franck–Condon region. The
recurrence event itself in the Franck–Condon is not well resolved
due to the rather large energy gap (≈4 eV) and is averaged out by
the 2.5-fs probe pulse. The coherence contribution is ≈ 3 orders
of magnitude weaker than the excited-state density (Fig. 4C).
The contribution stemming solely from the transition densities
(σ̂2

eg , terms b and d) is ≈ 4 orders of magnitude weaker (diagram
in Fig. 2 B and D and SI Appendix, Fig. S6). It carries no infor-
mation about the electronic coherence but is dominated by the
shape and magnitude of the transition density σ̂2

eg and is closely

related to the transition dipole moment (SI Appendix, Figs. S3
and S6).

The actinic pump pulse creates a wave motion not only in the
excited-state potential but also in the ground-state potential due
to a Raman process (SI Appendix, Fig. S1). A small fraction of
the population is moved from the ground to the excited state,
creating a “particle” excited state wave packet and a “hole” in
the ground state. The respective signals in reciprocal momentum
space and in real space given in Fig. 5A clearly show that the
pump-pulse creates an oscillating wave packet in the 1X state.

In conclusion, the simulated gas-phase diffraction signal of
NaF undergoing nonadiabatic avoided crossing dynamics in a
nonstationary state is dominated by ground- and excited-state
wave packet motions and shows some weak signatures of the
electronic coherence created at the avoided crossing. The inter-
atomic distance can be extracted directly from the diffraction
signal, and, as such, the shape of the nuclear wave packet can be
qualitatively retrieved without further phase reconstruction. For
diatomic molecules, this allows us to create a molecular movie.
The coherence contributions do not merely indicate that a coher-
ence has been created but also give a hint of where it has been
created. They are significantly weaker than elastic scattering pro-
cesses and appear as a rapid oscillation on top of the diffraction
pattern.

The actinic pump pulse also creates a nonstationary nuclear
wave packet in the electronic ground state. This must be taken
into account in the interpretation of diffraction patterns since the
Raman and the excited-state signals are of comparable magni-
tudes (SI Appendix, Fig. S1). Separating the ground- and excited-
state contributions has been a long-standing open challenge in
nonlinear spectroscopy (56).

Virtually all photophysical and photochemical processes in
polyatomic molecules with two or more vibrational coordinates
take place via CoIns (57). Observing them in diffraction exper-
iments is an interesting open question. Once the molecule
reaches a CoIn, a short-lived electronic coherence is created
which can in principle be spectroscopically detected (51, 58) by
soft X-rays. One example of a photochemical prototype reac-
tion, which is mediated by a CoIn and has been studied by X-ray
diffraction, is the ring-opening reaction in cyclohexadiene (59,
60). Potential signatures in time-resolved X-ray diffraction sig-
nals might also be useful to measure the Berry phase (61), which
has so far eluded detection in molecules.

The Time-Resolved Two-Particle Diffraction Signal. We now turn
to diffraction signals generated from samples possessing
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Fig. 4. Time-dependent gas-phase diffraction pattern S1(qz, T) (Eq. 13). The
signal intensity is normalized to 1, and the probe pulse length used is 2.5 fs
(FWHM of intensity).
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Fig. 5. Contributions to the real space signal S1(z, T) [inverse Fourier trans-
form of S1(qz, T)]. The labeling of the figure is identical with the labeling of
terms in Eq. 13.

intermolecular order such as crystals. We will display the
two-molecule contribution without the structure factor F (q):

S̄2(q,T ) =

∫
dt |Ep(t −T )|2S̃2(q, t), [18]

where S̃2(q, t) is defined in Eq. 11. The S2 signal stems from
interference between pairs of molecules within an ordered sam-
ple. As a result, the signal scales quadratically with the number
of molecules. The contribution from the electronic states are not
simply additive any longer but are obtained from the squared
magnitude of a scattering amplitude. In the following, we will
analyze the full diffraction pattern as well as its components
originating from the electronic states involved.

Fig. 6 shows the diffraction pattern excluding the Bragg peaks
as a function of the probe delay according to Eq. 18. The diffrac-
tion pattern is dominated by the electronic ground state and the
oscillating wave packet created by the Raman interaction with
the pump pulse (for details, see SI Appendix, Fig. S1).

Fig. 7 depicts the time evolution of the S2 diffraction pattern
(in real space) under the assumption that only the electronic
excited states have been populated by the pump pulse. It yields
the time-resolved NaF bond distance and an approximate recon-
struction of the nuclear wave packet (Fig. 7) and is in good
agreement with Fig. 3A.

Note that the diffraction intensity not only depends on the
population of the electronic state but also on the width of

the nuclear wave packet. Since the spread of the wave packet
increases with time, its intensity in the diffraction pattern
decreases significantly.

Fig. 8 depicts the evolution of the S2 diffraction pattern under
the assumption that only the term 2<

[
ρeg(t)〈χg(t)|σ̂ge(q)|χe(t)〉

]
(Fig. 1 K and L), including the electronic coherence and transi-
tion charge density, contributes to the signal. At 200 fs when the
molecule crosses the intersection for the first time, the diffraction
pattern contains a clear signature of the crossing. At∼800 fs, the
exited-state wave packet returns and passes the avoided cross-
ing for a second time. The wave packet is now more spread out,
resulting in a lower intensity (note that the pattern ∼800 fs is
multiplied by a factor 10 to be visible). Between 1.0 and 1.1 ps,
the wave packet returns to the Franck–Condon point. A strong
coherence is created by the remaining wave packet in the elec-
tronic ground state and the returning nuclear wave packet in the
excited state.

The inverse Fourier transform of Fig. 8A is shown in Fig. 8B.
It gives a clear indication of the interatomic separations at which
the electronic coherences are created: The features at ≈ 8 Å can
be attributed to passing through the avoided crossing. The fea-
ture at ≈2 Å corresponds to the aforementioned revival event
where the remaining ground-state wave packet overlaps with the
returning wave packet in the excited state.

The S1 vs. S2 Signals. The single- and two-molecule contributions
have generally different features. While only the two-molecule
signal carries intermolecular information via the structure fac-
tor F (q), the one- and the two-molecule contributions contain
similar information at the intramolecular level. Both encode the
nuclear wave packet dynamics in each electronic state as well as
spatial information about the electronic coherences through the
transition charge densities. However, the S1 signal contains no
self-heterodyne interference, which is due to the different con-
tributions to S1 coming as a linear superposition of terms rather
a squared magnitude. In the absence of electronic coherence, this
implies that S1 contributions add at the intensity level, while S2

contributions add at the amplitude level. This also means that
terms including the electronic coherence as a prefactor origi-
nate from a convolution of the charge density with the transition
charge density σ̂ii σ̂ij in S1, rather than the transition charge
density itself (σ̂ij ) in S2.

Finally, we note that, since S2 overwhelms S1 for crystalline
samples and vanishes for gas-phase samples, the two signals are
measured experimentally on samples in different phases. The
molecular charge density need not be the same in these two
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Fig. 6. Two-molecule contribution for NaF according to Eq. 18: Momentum
transfer vs. probe delay with a temporal width of the probe pulse of 2.5 fs
(FWHM). The intensity of the pattern is normalized.
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Fig. 7. Real-space representation (inverse Fourier transform) of the S2 sig-
nal (only the excited-state component due to 〈χe|σee|χe〉, inverse Fourier
transform of SI Appendix, Fig. S8).

cases, and our comparison has not accounted for this possible
difference (i.e., we use the same molecular charge density to
calculate S2 and S1). Moreover, intermolecular coupling in the
condensed phase can lead to electron relocations (62, 63). These
interesting effects go beyond the scope of this work, but can be
treated with the same formalism by dropping the assumption that
all molecules have identical charge densities.

Summary and Future Outlook
In this work, we have presented a unified account of time-
resolved X-ray scattering starting with the minimal coupling
field-matter interaction Hamiltonian. We focused our attention
on pulses off-resonant from the core transitions, where the radia-
tive coupling is proportional to the electronic charge density.
In ordered samples, the scattering amplitudes of the various
molecules add coherently (Eq. 5), yielding the Bragg peak pat-
tern of the sample. Disorder causes a diffuse scattering due
to fluctuations from the average structure that exists between
the Bragg peaks as well, but that is also due to the coher-
ent addition of scattering amplitudes from different molecules
(Eq. 5). These two-molecule terms offer heterodyne detection
in time-resolved diffraction of excited-state charge densities. In
contrast, single-molecule scattering, which is all that remains in
a totally unordered sample such as a gas, contains no hetero-
dyne interference between molecular ground- and excited-state
electronic charge densities in contradiction to claims made in
ref. 29.

In stationary X-ray diffraction experiments, the phase of the
ground-state charge density in q-space is often determined by
oversampling (2–4). Once complete ground-state information is
known, the excited-state amplitude and phase can be obtained
in a heterodyne detection in samples with long-range order (13),
while oversampling can again be used in gas-phase samples after
subtracting off the ground-state charge density.

The present first-principles QED treatment further reveals the
role of inelastic and mixed elastic–inelastic terms that are con-
nected to the presence of electronic coherences and carry infor-
mation on the spatial distribution of the electrons involved in
valence molecular excitations. This includes ordinary diagonal as
well as off-diagonal transition charge densities. Although weaker
than elastic scattering, these terms may be observable with
sufficiently bright pulses of duration comparable to electronic
time scales.

We have demonstrated the various off-resonant scattering
terms with the example of NaF, which possesses an avoided
crossing between ionic X 1Σ and covalent A1Σ states at an ∼8 Å
atomic separation distance. The transition charge densities are

displayed, and their contribution to the time-resolved scatter-
ing signal is shown in Fig. 5. The inelastic and mixed terms are
weaker; they are appreciable only at times when the electronic
coherence is present or near the avoided crossing where the
transition densities peak, making them easier to separate from
the purely elastic terms. Comparison of the S1 and S2 signals
shows that S1 carries signatures of electronic coherences that are
orders-of-magnitude stronger than in the S2 signal.

For simplicity, we have so far assumed that the X-ray pulse is
tuned off-resonant from core transitions. The diffraction signal
then solely monitors the ground state and valence excitations.
Resonant pulses will probe core excitations as well, and such sig-
nals are dominated by the j ·A coupling to the radiation field.
Returning to Eq. 2 and retaining only terms proportional to j,
we obtain upon expanding to lowest order in an external probing
field Ap :

S(q,T ) =
∑
αβ

e iq(rα−rβ)

∫
dtdt ′e iωs (t−t′)

∫ t

−∞
dt1Ap(t1)

×
∫ t′

−∞
dt2A

∗
p(t2)〈jβ(kp , t2)jβ(−ks , t

′)jα(ks , t)jα(−kp , t1)〉.

[19]

Resonant scattering from a nonstationary state thus comes as a
four-point correlation function of j operators and can be used
to probe the time-dependent electronic currents in the system.
X-ray diffraction near material transitions, known as anomalous

A

B

Fig. 8. (A) Two-molecule contribution for NaF according to Eq. 18, consider-
ing only the interference term (part between 600 and 900 fs enhanced by a
factor of 10). Right shows the coherence caused by the revival event, which
brings the exicted-state wave packet back to the Franck–Condon region.
Signal intensities are given relative to total S2 signal. (B) Inverse Fourier
transform of this two-molecule contribution for NaF.
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diffraction, involves contributions from both σ(r)A2(r) and
j(r) ·A(r) couplings and has been used to aid in structure deter-
mination (64, 65). In this case, the scattering event is no longer
instantaneous, and the phase induced by the time propagation
(equivalently, the material transition with which the probe is
resonant) means that anomalous scattering carries phase infor-
mation that ordinary diffraction lacks, facilitating solution of
the phase problem to allow inversion of the diffraction pattern
(66, 67). Tuning the scattering wavelength can address particular
anomalous scatterers, simplifying the structure-determination
process (65). In SI Appendix, we give expressions for reso-
nant scattering from a nonstationary state prepared via a four-
wave-mixing process as an example of a resonant scattering
technique.

We further note that we have also not explicitly specified the
molecular preparation process (gray area in Fig. 2 diagrams)
and kept it general. A large variety of schemes for prepar-
ing the molecule in an excited-state population or coherence
are possible and have been analyzed, including nonperturbative
propagation in the presence of a strong field (44, 51) as well
as direct dipole coupling and resonant (64, 65) or off-resonant
Raman processes (68). These latter signals involve effective
polarizabilities expressed with the current densities given by:

αee′ =
∑
νν′

∑
c

∫
dr1dr2 jνec(r1)jν

′

ce′(r2)· [20]

×
∫

dω

2π

Aνres(r1,ω)Aν
′

res(r2,ω+ωee′)

ω−ωee′ + iΓc
.

where ν, ν′ are Cartesian coordinates. Such an effective polariz-
ability can also be constructed for the final scattering event if it,
too, is resonant. The dipole approximation applied to these res-
onant terms is the basis for the conventional treatment of X-ray
Raman processes. Here, we retain the minimal coupling picture
that avoids the dipole approximation and accounts for the spa-
tial variation of the material properties over the wavelength of
the X-ray field. By replacing some σ(q)) factors by α, we obtain
a class of mixed resonant/off-resonant scattering terms that come
proportional to multipoint correlation functions of the electronic
charge density and effective polarizability operators.

In another exciting future development, it should be possi-
ble to carry out multiple diffraction measurements on a single
molecule and detect the various diffracted photons in coin-
cidence. Several photon-scattering events can occur and be
detected, thus leading to multiple photon-counting signals (39,
69, 70) that are sensitive to multipoint correlation functions
of the charge-density operator that probe spontaneous charge-
density fluctuations. For example, for a two-photon counting
measurement, these signals are given by ref. 68

SPC−2D(k1,T1, k2,T2) = |ωIωIIA1(ωI )A2(ωII )|2 [21]

×
〈
σ̂†(q1,T1)σ̂†(q2,T1 +T2)σ̂(q2,T1 +T2)σ̂(q1,T1)

〉
.

ACKNOWLEDGMENTS. This work was supported by Chemical Sciences, Geo-
sciences, and Biosciences Division, Office of Basic Energy Sciences, Office of
Science, US Department of Energy (DOE) Award DE-FG02-04ER15571; and
National Science Foundation Grant CHE-1663822. M.K. was supported by the
Alexander-von-Humboldt Foundation through the Feodor-Lynen program.
K.B. was supported by the above-mentioned DOE grant.

1. Als-Nielsen J, McMorrow D (2011) Elements of Modern X-Ray Physics (Wiley,
Hoboken, NJ).

2. Miao J, Ishikawa T, Anderson EH, Hodgson KO (2003) Phase retrieval of diffrac-
tion patterns from noncrystalline samples using the oversampling method. Phys Rev
B67:174104-1–174104-6.

3. Robinson IK, Vartanyants IA, Williams G, Pfeifer M, Pitney J (2001) Reconstruction
of the shapes of gold nanocrystals using coherent X-ray diffraction. Phys Rev Lett
87:195505.

4. Miao J, Charalambous P, Kirz J, Sayre D (1999) Extending the methodology of X-
ray crystallography to allow imaging of micrometre-sized non-crystalline specimens.
Nature 400:342–344.

5. McPherson A (1999) Crystallization of Biological Macromolecules (Cold Spring Harbor
Lab Press, Cold Spring Harbor, NY).

6. Chapman HN (2009) X-ray imaging beyond the limits. Nat Mater 8:299–301.
7. Starodub D, et al. (2012) Single-particle structure determination by correlations of

snapshot X-ray diffraction patterns. Nat Commun 3:1276.
8. Kahra S, et al. (2012) A molecular conveyor belt by controlled delivery of single

molecules into ultrashort laser pulses. Nat Phys 8:238–242.
9. Chapman HN, et al. (2011) Femtosecond X-ray protein nanocrystallography. Nature

470:73–77.
10. Fromme P, Spence JC (2011) Femtosecond nanocrystallography using X-ray lasers for

membrane protein structure determination. Curr Opin Struct Biol 21:509–516.
11. SLAC National Accelerator Laboratory (2015) New Science Opportunities Enabled by

LCLS-II X-Ray Lasers (SLAC National Accelerator Laboratory, Menlo Park, CA), SLAC
Report SLAC-r-1053. Available at https://goo.gl/1heOeB. Accessed August 31, 2017.

12. Wulff M, et al. (2006) Recombination of photodissociated iodine: A time-resolved
X-ray-diffraction study. J Chem Phys 124:034501.

13. Woerner M, et al. (2010) Concerted electron and proton transfer in ionic crystals
mapped by femtosecond X-ray powder diffraction. J Chem Phys 133:064509.

14. Coppens P (2011) Molecular excited-state structure by time-resolved pump- probe X-
ray diffraction. What is new and what are the prospects for further progress? J Phys
Chem Lett 2:616–621.

15. Neutze R, Moffat K (2012) Time-resolved structural studies at synchrotrons and X-ray
free electron lasers: Opportunities and challenges. Curr Opin Struct Biol 22:651–659.

16. Mukamel S, Healion D, Zhang Y, Biggs JD (2013) Multidimensional attosecond res-
onant X-ray spectroscopy of molecules: Lessons from the optical regime. Annu Rev
Phys Chem 64:101–127.

17. Altarelli M, et al. (2006) The European X-ray free-electron laser (DESY XFEL Project
Group, Hamburg, Germany), Technical Design Report, DESY 97.

18. McNeil BWJ, Thompson NR (2010) X-ray free-electron lasers. Nat Photon 4:814–821.
19. Huang Z, Lindau I (2012) Free-electron lasers: SACLA hard-X-ray compact FEL. Nat

Photon 6:505–506.
20. Abela R, et al. (2017) Perspective: Opportunities for ultrafast science at SwissFEL.

Struct Dyn 4:061602.
21. Krausz F, Ivanov M (2009) Attosecond physics. Rev Mod Phys 81:163–234.

22. Popmintchev T, Chen MC, Arpin P, Murnane MM, Kapteyn HC (2010) The attosecond
nonlinear optics of bright coherent X-ray generation. Nat Photon 4:822–832.

23. Weisshaupt J, et al. (2014) High-brightness table-top hard X-ray source driven by sub-
100-femtosecond mid-infrared pulses. Nat Photon 8:927–930.

24. Elsaesser T, Woerner M (2014) Perspective: Structural dynamics in condensed matter
mapped by femtosecond X-ray diffraction. J Chem Phys 140:020901.
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