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Observed phenotypic variation in living organisms is shaped by
genomes, environment, and their interactions. Flowering time under
natural conditions can showcase the diverse outcome of the gene–
environment interplay. However, identifying hidden patterns and spe-
cific factors underlying phenotypic plasticity under natural field con-
ditions remains challenging. With a genetic population showing
dynamic changes in flowering time, here we show that the integrated
analyses of genomic responses to diverse environments is powerful to
reveal the underlying genetic architecture. Specifically, the effect con-
tinuum of individual genes (Ma1,Ma6, FT, and ELF3) was found to vary
in size and in direction along an environmental gradient that was
quantified by photothermal time, a combination of two environmen-
tal factors (photoperiod and temperature). Gene–gene interaction
was also contributing to the observed phenotypic plasticity. With
the identified environmental index to quantitatively connect envi-
ronments, a systematic genome-wide performance prediction frame-
work was established through either genotype-specific reaction-
norm parameters or genome-wide marker-effect continua. These
parallel genome-wide approaches were demonstrated for in-season
and on-target performance prediction by simultaneously exploiting
genomics, environment profiling, and performance information. Im-
proved understanding of mechanisms for phenotypic plasticity en-
ables a concerted exploration that turns challenge into opportunity.

phenotypic plasticity | genotype-by-environment interaction |
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Differential response of genotypes to environments is com-
mon for complex traits and diseases (1). Despite existing

analytic frameworks and technological advances in genomics and
environmental monitoring, many longstanding biology questions
could not be answered without accurately quantifying the relative
contribution of genes and environment and identifying specific
underlying factors. An improved understanding of genotype-by-
environment interaction (G × E) would enhance our ability to
predict disease risk and plant performance (2–6).
Using genetic stocks in model species under controlled and

contrasting conditions, previous studies suggested that differential
sensitivity of genes is the predominant genetic architecture un-
derlying G × E (4). This mechanistic hypothesis needs to be tested
for the plasticity patterns observed under natural field conditions.
Studies have shown that plants can detect and assess environ-
mental cues to anticipate future growth conditions and make
developmental transitions (5). Indeed, identifying clear examples
of such factors would enrich our understanding of G × E at the
gene, genome, environment, and their interaction levels (4, 7).
Reaction norm describes the phenotype profile of a genotype

across environments, and phenotypic plasticity measures the var-
iation among these phenotypic values (8, 9). If a quantitative index
is generated for the environments, G × E can be modeled as
different performance curves of genotypes (i.e., reaction norms)
along this index. However, it is challenging to identify critical
environmental determinants to establish a quantitative index that
is both biologically meaningful and prognostic for natural field
conditions. Moreover, input values for a performance-free index
need to be directly obtainable from the environmental factors
before in-season forecasting can be made for a new environment.

To understand G × E, we initiated a focused study in 2010 on
sorghum, a model crop species (10). Flowering time is a typical
subject in G × E research (11–13) and has significant bearing on
evolution and adaptation of plants to different environments (14,
15). Following our initial observation of the altered flowering
times for two sorghum inbreds in summer and winter nurseries,
extensive phenotyping and genetic analysis were conducted with
a mapping population. Expanding the testing to two additional
summer nurseries at a higher latitude site and a summer planting
at the winter nursery site generated additional interesting ob-
servations. Here we show that the changing effects of individual
loci (e.g., Ma1, Ma6, FT, and ELF3) in different environments
lead to G × E interaction, which is further modified by gene-by-
gene interaction. Photothermal time within a growth period is a
major environmental determinant for flowering time and can be
used as an environmental index. By exploiting information at the
whole-genome level and across environments indexed with photo-
thermal time values, we demonstrated that two parallel approaches
can make robust performance predictions for untested individuals in
untested environments.

Patterns Underlying the Apparently Complex G × E
We evaluated flowering time of a genetic mapping population
derived from two inbreds across seven field environments (Fig.
1A and SI Appendix, Fig. S1 and Table S1). Flowering time
expressed as growing degree days (GDD) showed both rank
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Integrated analysis of genotype by environment can reveal the
pattern and mechanistic interplay underlying the observed phe-
notype dynamics. A critical question needs to be answered to
enhance our ability to conduct genomic and environmental anal-
ysis of varied phenotypic plasticity observed in natural field con-
ditions: How to uncover patterns at different levels to facilitate
complex trait dissection and performance prediction. In this study,
we first uncovered the pattern of genotype response to different
environments. We then uncovered the pattern generated by the
combination of environmental factors and the pattern of genetic
effects at the individual gene level across environments. Finally,
we demonstrated that trait dissection to individual genes and
genome-wide performance prediction can be conducted through
a joint genomic regression analysis framework.
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change and scale change between two parental inbreds and
among recombinant inbred lines (RILs). Without an overall
modeling framework, trait correlation and prediction accuracy
were low between environments with different conditions (SI
Appendix, Fig. S2). Prediction accuracy was calculated as the
correlation between observed values and predicted values gen-
erated from a model. Significant interaction observed in this
study, however, presented an opportunity for detailed dissection
of G × E because trait measurement within individual environ-
ments was highly repeatable (SI Appendix, Fig. S2 and Table S1).
G × E accounted for 20% of phenotypic variance (SI Appendix,
Table S2) and can be further partitioned into heterogeneity of
genotypic variance (56%) and lack of genotypic correlation
(44%) (SI Appendix, Tables S3 and S4).
To unravel the apparently complex G × E, we first examined

different ways to group environments using photoperiod, tem-
perature, and the observed flowering time of the population (SI
Appendix, Figs. S3 and S4). Observed flowering time is the out-
come of different genetic and environmental factors, and it sep-
arated the seven environments into three groups. Having IA14
(with lower than usual temperature in early season) grouped with
PR11 and PR12 suggested that a certain compensation between
photoperiod and temperature affected plant development (4, 5,
13). The clustering of PR14S (summer planting with higher tem-
perature and longer day length than PR11 and PR12) and
IA13 also suggested this interplay. In contrast, groupings using
either photoperiod or temperature profile alone did not help
explain the observed performance data. When the observed
flowering time was used to group genotypes, two major clusters
of RILs were revealed: one with relatively high plasticity across
environments and the other with low plasticity (SI Appendix,
Fig. S5).
Informed by the above analyses, we updated the ordering of

the seven environments (Fig. 1B) according to population mean
at each environment (i.e., environmental mean) (Fig. 1C). This
new ordering retained a single cross-over between the reaction
norms of the two parents and much reduced cross-overs among
progenies. Using the numerical values of the population means
(Fig. 1D) enabled us to implement a joint regression analysis,
where observed phenotypes for individuals are modeled as re-
sponse curves across the environmental gradient quantified by
the population means of all individuals. This well-established
procedure (3, 16–18) is widely used to assess the stability (ver-
sus plasticity) of cultivars.

However, two new critical components are required before
transforming this traditional approach into a broadly applicable
framework to study G × E: (i) genomic models to relate indi-
viduals with and without performance data and (ii) environ-
mental indexes, not only mathematically derivable but also
biologically meaningful, to connect tested environments with
new environments. Solutions to the first component already ex-
ist: Genomic prediction has been widely implemented in genetic
studies (19, 20). In our specific case, genome-wide SNPs
obtained through genotyping-by-sequencing are available for
genomic prediction. Identifying the environmental gradient that
enables quantifying a new environment without performance
data, a long-standing challenge (7), must be resolved.

Environmental Index Defined by Photothermal Time
To identify an environmental index generated from external
factors, we examined photothermal time, which was also in-
dicated by our earlier analyses of clustering and ordering of the
seven environments. Photothermal time is a product between
GDD (temperature) and hours of daylight time (photoperiod).
In previous research, photothermal time was examined for the
timing of developmental stages (21–25) or modified for indi-
vidual genotypes (12). Unlike earlier research, here we wanted to
specifically identify a time window within which the photo-
thermal time values can be used to replace the population means
observed at different environments (Fig. 2).
We conducted the search to identify the window within which

the set of average photothermal time values at these environ-
ments are best correlated with the population means of flowering
time (Fig. 2). We checked different starting days and different
window sizes and found that average photothermal time values
from 18 to 43 days after planting had the highest correlation with
flowering time means of the population in these environments
(r = 0.996, P = 2 × 10−9). Photothermal time explained 99.3% of
the variation in average flowering time in different environ-
ments, higher than temperature (69.4%) or photoperiod alone
(30.5%) (SI Appendix, Table S5). Additional subsampling anal-
ysis supported this finding (SI Appendix, Fig. S6). As a compar-
ison, we conducted similar window searches for photoperiod and
temperature alone to confirm the advantage of using photo-
thermal time (SI Appendix, Fig. S7). To further verify that this
photothermal time parameter is biologically meaningful, we
projected developmental stages for the population as a whole in
individual environments. Indeed, this identified window covered
the critical phase of photoperiod and temperature sensing and

A B

C D Fig. 1. Pattern finding in flowering time G × E of a
genetic mapping population. Progression from data
visualization of apparently complex G × E to pattern
discovery: (A) Seven natural field environments. (B)
Reaction norm based on a categorical order of pho-
toperiod of seven environments. (C) Reaction norm
based on a categorical order of population means
for individual environments. (D) Reaction norm
based on a numerical order of population means for
individual environments. Flowering time expressed
as GDD was analyzed. Each line connects the flow-
ering time values of individual RIL across environ-
ments.
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vegetative-to-reproductive transition (SI Appendix, Fig. S8) (26,
27). Identifying this window across diverse environments is highly
desirable because the actual developmental stage measurement
requires continuous and destructive sampling (i.e., examining the
shoot apical meristems for floral initiation) and can be pro-
hibitive for such a large number of genotypes. Importantly, the
range of this photothermal-time index obtained from the current
study covers most production environments typically encoun-
tered in major US sorghum growing areas.
We further demonstrated the general use of photothermal time

as an environmental index with the field data available for a set of
diverse sorghum accessions with monthly planting (SI Appendix,
Fig. S9) and the growth chamber experiment data from a wide
range of species, where photoperiod and temperature were the
focus of the original studies (SI Appendix, Fig. S10).
With the identified photothermal-time index, three processes

were enabled to conduct unified modeling and mechanistic in-
terpretation of G × E: (i) joint genomic regression analysis
(JGRA) through reaction-norm parameter estimation, (ii) JGRA
through genome-wide marker effect continuum estimation, and
(iii) genetic mapping and effect profiling of flowering time loci.

Genomic Predicted Reaction-Norm Parameters
The first modeling and performance prediction approach we
examined was through the reaction-norm parameters predicted
using genome-wide marker information. First, the flowering time
response of tested genotype across tested environments was
regressed on the photothermal-time index (Fig. 3). The re-
gression slope is an indicator of a genotype’s plasticity to dif-
ferent external influences (i.e., photoperiod and temperature
during the transition stage), and the intercept is an indicator of a
genotype’s average response to the group of environments ex-
amined. Next, the intercept and slope of untested genotypes
were obtained through a genomic prediction model established
with tested genotypes. Finally, the numerical input value of
photothermal time determined for a specific untested environ-
ment was plugged in to obtain the predicted flowering time.
Overall, we obtained accurate performance prediction for all

three scenarios (overall across environments r = 0.86∼0.95, or
R2 = 74∼90%). Prediction accuracy for tested genotypes in
untested environments was high (average individual environ-
ment r = 0.74), followed by untested genotypes in tested envi-
ronments (average r = 0.53) and untested genotypes in untested
environments (average r = 0.50), which is the most challenging
scenario. Achieving this level of prediction accuracy is very
encouraging, compared with predictions without an overall
framework and relying on averages across tested environments
(SI Appendix, Fig. S11). Model fitting with the complete data
verified that 49% ∼95% of the variation observed for flowering
time was captured with this approach (SI Appendix, Table S6).
To demonstrate this strategy, we conducted experiments by

growing out the population again in 2015 and 2016. With the
model derived from seven environments and photothermal time
values for two new environments, we obtained the predicted
flowering time values. Prediction accuracy was high in both cases

A

B C

D

Fig. 2. Photothermal time within a critical growth window as the envi-
ronmental index. (A) Schematic diagram of different growth stages in-
cluding those critical to the flowering time determination. (B) Exhaustive
search of the photothermal time window. (C) Correlation between population
mean and photothermal time of the selected window. (D) Reaction norms of all
individuals ordered numerically by the photothermal-time gradient.

A B

C D

Fig. 3. JGRA for performance prediction with reaction-norm parameters. (A)
Fitted response curves of genotypes across environments. (B) Predicting tested
genotypes in untested environments. (C) Predicting untested genotypes in
tested environments. (D) Predicting untested genotypes in untested envi-
ronments. In B–D, both prediction accuracy at each individual environment (in
parentheses) and across all environments (r) are indicated; the diagonal line
indicates the exact match between observed and predicted values.
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(Fig. 4). These predictions are “in-season” because they can be
made once the environmental profile data are available to
compute photothermal time as the season progresses and “on-
target” because the predicted values are close to the observed
values, not only having similar ranks.

Genome-Wide Marker Effect Continuum Estimation
We examined an alternative approach using the genome-wide
marker effect continuum to predict flowering time (SI Appendix,
Fig. S12). First, genome-wide marker effects were obtained from
the individual-environment analysis using performance data
from tested genotypes across tested environments. Next, these
marker effects were regressed on the photothermal-time index to
obtain the fitted marker effects. Finally, with these fitted marker
effects, performance of untested genotypes in untested envi-
ronments was obtained by factoring in the genome-wide marker
profiles of the new genotypes and the specific environmental
index value of the new environment. Results obtained using this
approach were comparable (r = 0.86∼0.93, R2 = 74∼86%) to the
first approach (SI Appendix, Figs. S12 and S13).

Genetic Determinants of Flowering Time
To reveal the underlying mechanisms of G × E by focusing on
specific loci (4, 5), we conducted genetic mapping for individual
environments and across all environments. Several common
genetic loci were detected in the combined analysis, and others
were only found in certain environments (Fig. 5 and SI Appendix,
Fig. S14 and Table S7). Notably, the quantitative trait locus
(QTL) effect size and direction are environment-dependent.
Alleles increasing flowering time in one environment can in-
crease flowering time to a different level, decrease flowering
time, or have no effect in other environments. In other words,
the complex gene–environment interplay generated differential
sensitivity, antagonistic pleiotropy, conditional neutrality, or no
G × E for the additive effects (SI Appendix, Table S8). With the
JGRA framework, genetic effect fluctuation can be seen as a
dynamic manifestation of the intricate network of genetic

regulators responding to different levels of environmental cues.
The effect fluctuation can take different forms.
We next conducted additional sequencing and bioinformatics

analyses to examine genes and polymorphisms underlying these
QTL. Sequence analysis revealed that the most significant QTL
corresponds to the known Ma1 gene on chromosome 6 (PRR37,
Sobic.006G057866), encoding a pseudoresponse regulator protein
(28). A single adenine insertion in the third exon of Tx430 allele
was identified that led to a premature stop codon and non-
functional protein (prr37Feterrita) (29) (Fig. 5 and SI Appendix, Fig.
S15). The second-most significant QTL corresponds to Ma6 gene
on chromosome 6 (Ghd7, Sobic.006G004400), a floral repressor
regulated by the circadian clock and light signaling (30). The
P898012 allele had a large intron insertion, leading to a poten-
tially modified CCT domain and a weak allele (ghd7-2) (30), and
the Tx430 allele had a 5-bp (GTCGA) insertion in the first exon,
leading to a premature stop codon and nonfunctional protein
(ghd7-1) (Fig. 5 and SI Appendix, Fig. S15). No known flowering
gene was found for the QTL on chromosome 8 (qFL8.1). The
candidate gene underlying the QTL on chromosome 9 (qFL9.1) is
ELF3 (Sobic.009G257300). A 7.4-kb insertion of two copies of
Gypsy LTR was detected in the promoter region of Tx430 allele
but not in P898012 (SI Appendix, Fig. S15).

Epistatic Interaction
Complex gene regulatory networks control flowering time in
plants (15), and epistatic interactions have been detected in
previous research (31, 32). In sorghum, both Ma1 and Ma6 re-
press expression of the floral activator Ehd1, which activates FT
to produce florigen for floral induction (28, 30). The Ma3 gene
activates Ma1 and Ma6, but represses Ehd1 and FT (33). In this
study, a significant interaction was detected between the QTL har-
boringMa1 and the QTL harboring FT (qFL10.1, Sobic.010G045100)
in the combined analysis and five individual-environment analyses
(Fig. 5). Notably, the interaction was still significant in IA14 when
neither marginal effect was detected. Unlike the Tx430 allele,
the P898012 allele of the FT gene contained a PIF/Harbinger
transposon in the promoter region, potentially altering the
binding site of another regulator. This FT was one of the three
most plausible florigen-encoding genes in sorghum (34).
Flowering time prediction with the identified QTL effects

along the environmental index was also conducted, which serves
as a benchmark to both help interpret results from two genome-
wide approaches and to show the differences of these ap-
proaches (SI Appendix, Figs. S16 and S17).

Genetic Dissection of Reaction-Norm Parameters
To further demonstrate the gene–environment interplay un-
derlying G × E, we conducted genetic mapping for the two
reaction-norm parameters, intercept and slope. As expected, five
QTL were detected, corresponding to the same set of genetic
loci including Ma1, Ma6, qFL8.1, ELF3, and FT (SI Appendix,
Fig. S18). Once again, a genome-wide epistasis search for both
intercept and slope detected significant interaction between the
two loci harboring Ma1 and FT (SI Appendix, Fig. S18). These
results showed that genetic determinants underlying the pat-
terned differential responses of individuals to environment
conditions can be uncovered using different angles of analysis.

Discussion
Integrated analysis of genes and environment can reveal the
mechanistic interplay underlying the observed phenotype dy-
namics (4–7). By investigating the reaction norms of a genetic
mapping population across a relatively diverse set of natural en-
vironments, we show that multiple concepts from different re-
search areas can be combined to design parallel approaches that
model, predict, and dissect G × E. Unifying the developmental
and biometric aspects of G × E (9, 35) is enabled by genomic
analyses. Examining known or candidate genes underlying the
identified loci allowed us to connect the genotype-level G × E
with gene × environment at the individual locus level, and

A

B C

Fig. 4. Empirical validation of performance prediction through reaction-
norm parameters. (A) Predicted flowering time of genotypes across envi-
ronments. (B) Prediction accuracy for Iowa 2015 (IA15). (C) Prediction accu-
racy for Iowa 2016 (IA16). The diagonal line in B and C indicates the exact
match between observed and predicted values.
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together with gene × gene interaction. Different patterns of ge-
netic effects and interaction pathways were illustrated in previous
research (4, 5). Our finding of a genetic effect continuum across
the environmental gradient helps interpret the underlying mech-
anism. Differential sensitivity, conditional neutrality, antagonistic
pleiotropy, and no genetic effect × environment interaction can be
viewed as emergent properties of the plant perceptron interacting
with diverse environmental and developmental cues.
Improved understanding of gene × environment interaction

could lead to better-informed decisions in personalized medicine
and optimized breeding (2, 5, 6). A comprehensive framework for
gene × environment interaction and gene × gene interaction can
be established even if different sets of individuals are assessed at
different environments. For plants, with a robust G × E modeling
framework, observations at winter nurseries may be leveraged to
enhance selection gain per unit time. Imbalanced yield trials
across environments can be projected onto a series of represen-
tative environmental panels for selection, and optimized testing
strategies for genotypes and environments can be designed.
We envision that this general approach of pattern search,

determinant discovery, and integrated modeling may be appli-
cable to investigating other complex traits. A single genetic
mapping population derived from two contrasting parental in-
breds was analyzed in the current study for flowering-time re-
sponse. Future studies with diverse genetic materials in multiple
species should be conducted. In this study, day length and tem-
perature were sufficient to generate the environmental index, a
critical enabling factor for integrated modeling and prediction.
Other environmental factors like precipitation, radiation, and
nitrogen application may emerge as critical in other scenarios
and we may be able to model nonlinear relationships among
them (5, 36). Comprehensive crop models (37–40) for more
complex G × E may require systematic quantification or ap-
proximation of growth stages. Fortunately, this can be achieved
using high-throughput phenotyping calibrated by traditional
physiological measurement protocols. Advanced genomic pre-
diction models are also being developed (41). Ultimately, view-
ing the complexity of G × E as an opportunity helps us build a
better understanding of biology and evolution.

Materials and Methods
Population and Phenotyping. The population with 237 RILs from a cross be-
tween Tx430 and P898012 (42) was evaluated at seven environments (SI
Appendix, Table S1 and Dataset S1). A randomized complete block design

with two replications was used in each environment. Flowering time was
recorded as the number of days after planting when half of the plants in a
plot were shedding pollen. Flowering time as GDD was then calculated with
daily maximum and minimum temperature using 50 °F as the base and
100 °F as the maximum. The combined analysis across seven environments
followed established procedures (7).

Environment Analysis and Search for an Environmental Index. Temperature
and day length data were retrieved from the National Oceanic and Atmo-
spheric Administration National Centers for Environmental Information
(https://www.ncdc.noaa.gov/) and the Astronomical Applications Department
of the US Naval Observatory (aa.usno.navy.mil/index.php).

Physiological knowledge is essential to identify the external environ-
mental factors to generate an environmental index (7). Photothermal time,
the product of temperature and day length, was used to project the timing
of developmental stages (21–25, 43). In our analysis, photothermal time was
obtained as the product of GDD (t) and hours of daylight time (h). To
identify a common window of days after planting to cover critical growth
and photoperiod sensing stages across multiple environments, we calculated
the photothermal time with different starting days (s) and different window

sizes (l): ð1=lÞP
s+l

s
ðt ×hÞ. Correlation coefficients were calculated between

these different sets of photothermal time values and the population means
in flowering time. In addition, leave-one-environment-out subsampling
analysis was conducted to verify that this window is consistently detected.

Genetic Mapping. Genotyping by sequencing generated 8,960 SNPs, and
genetic map was built with 1,462 SNPs (42). Sorghum genome v1.4 was used
for SNP calling and analysis. Composite interval mapping was conducted
with Windows QTL Cartographer 2.5. Inclusive composite interval mapping
was conducted with IciMapping 3.2 (44). QTL mapping and epistasis were
conducted for individual environments (single environment trial analysis,
SET) and across seven environments (multiple environmental trial analysis,
MET) (45, 46). In addition, single-marker genome scan and two-dimension
scan using 8,960 SNPs were conducted in R.

Functional Polymorphisms. Known genes and candidate genes underlying the
QTL were verified by checking the positions of significant SNPs, analyzing
sequence polymorphisms between two inbreds, and conducting a bio-
informatics search of databases. We searched potential flowering-time-
related candidate genes within QTL intervals based on reference genome
annotation. To identify DNA polymorphisms between two mapping parents,
15.8 Gb whole-genome Illumina paired-end reads of Tx430 (SRR2759161) and
59.8 Gb Illumina paired-end reads of P898012 (SRR4028763 and SRR4028764)
were retrieved from the National Center for Biotechnology Information Se-
quence Read Archive and aligned to sorghum reference genome (version 3.1) by
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BWA through the BWA-MEM algorithm (47). Uniquely aligned reads within QTL
intervals were then retrieved through Samtools (48). DNA polymorphisms be-
tween Tx430 and P898012 near candidate genes were visualized with IGV (49).

To verify the known and potential functional polymorphisms detected by
short read alignment, DNA segments were amplified with oligos designed by
Primer 3 (50). Amplicons of Tx430 and P898012 were further subjected for
agarose gel electrophoresis for large indel variations or Sanger sequencing
for SNP variations (SI Appendix, Fig. S15 and Dataset S2).

Genomic Prediction.We adopted the common pratice for model building and
validation. This process started with randomly splitting the genotypes into
tested and untested groups (50%:50%) and the environments into tested and
untested groups (6:1). Predictive models were built using tested genotypes in
tested environments. Predictions were then made for three senarios: tested gen-
otypes in untested envrionments, untested genotypes in tested environments, and
untested genotypes in untested environments. Prediction accuracy was assessed by
the correlation between observed values and predicted values. This process was
repeated 50 times to obtain the average and a single run was chosen for plotting.

JGRA. The overall modeling and prediction framework was conceived by
expanding the traditional joint regression analysis (16, 17) to include two

critical components: (i) a quantitative index defined by the photothermal
time and (ii) a genomic component to connect individuals with performance
data and those without but to be predicted.

For individualswithout performance data, their predictions canbeobtainedby
one of the two approaches: (i) JGRA through reaction-norm parameter esti-
mation or (ii) JGRA through genome-wide marker effect continuum estimation.
In all analyses, the photothermal-time index was centered at the overall mean
value to obtain the intercept for each genotype or each marker, but this overall
mean value was added back to the index for plotting and interpreting.

Additional information can be found in SI Appendix, SI Materials
and Methods.
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