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Abstract

Many physiological pathways are involved in appetite, food intake, and the maintenance of energy 

homeostasis. In particular, neuropeptides within the central nervous system have been 

demonstrated to be critical signaling molecules for modulating appetite. Both anorexigenic 

(appetite-decreasing) and orexigenic (appetite-stimulating) neuropeptides have been described. 

The biological effects of these neuropeptides can be observed following central administration in 

animal models. This review will focus on single nucleotide polymorphisms (SNPs) in six 

orexigenic neuropeptides: agouti-related protein (AGRP), galanin, melanin concentrating hormone 

(MCH), neuropeptide Y (NPY), orexin A, and orexin B. Following a brief summary of the 

neuropeptides and their orexigenic activities, reports associating SNPs within the orexigenic 

neuropeptides to energy homeostasis, food intake, obesity, and BMI in humans will be reviewed. 

Additionally, the NIH tool Variation Viewer was utilized to identify missense SNPs within the 

mature, biologically active neuropeptide sequences. For SNPs found through Variation Viewer, a 

concise discussion on relevant pharmacological structure-activity relationship (SAR) studies for 

select SNPs is included. This review is meant to update reported orexigenic neuropeptides SNPs 

and to demonstrate the potential utility of genomic sequence databases for finding SNPs that may 

result in altered receptor signaling for neuropeptide pathways associated with appetite.
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Introduction

With an estimated 36.5% of US adults being obese from 2011–2014,1 and 39% of the global 

adult population being overweight and 13% obese,2 obesity and accompanying co-

morbidities continue to be a problem. While monogenetic origins of obesity exist, including 

polymorphisms in the leptin receptor3 and melanocortin-4 receptor,4–5 the interactions of 

many different genetic, behavioral, and environmental factors all contribute to the 

dysregulation of energy homeostasis that can result in obesity, as previously reviewed.6 The 

heritability of BMI has been estimated to be 0.77 from twin studies,7 and adoption studies 

have suggested that body weight class (thin, median, overweight, obese) of an adoptee is 

correlated to the BMI of the biological parent and not the adoptive parent,8 indicating 

genetics are important in the risk of developing obesity. Investigating biological circuits 

associated with appetite may therefore be important in understanding the etiology of obesity 

and identifying novel targets for development of therapeutics to help modulate body weight.

Numerous physiological pathways, involving peripheral and central signals, have been 

implicated in the maintenance of energy homeostasis. Within the central nervous system, 

peptides have been demonstrated to be important signaling molecules that can increase or 

decrease appetite (orexigenic or anorexigenic peptides, respectively). While peptides 

involved in energy homeostasis may be synthesized in the periphery and act centrally 

(including leptin),9 this review will focus on neuropeptides, defining neuropeptides as “small 

proteinaceous substances produced and released by neurons through the regulated secretory 

route and acting on neural substrates.”10

Specifically, orexigenic neuropeptides will be examined that have been associated with an 

increase in food consumption in animal models when the exogenous neuropeptide is 

centrally administered. The orexigenic neuropeptides included in this review are agouti-

related protein (AGRP), galanin, melanin concentrating hormone (MCH), neuropeptide Y, 

orexin A, and orexin B. The pharmacological activity and orexigenic activities of these 

neuropeptides in animal models will be summarized. Due to the observed orexigenic effects, 

dysregulation of these neuropeptides and their signaling may be hypothesized to result in 
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altered food consumption. Decreased signaling may lower hunger (resulting in leanness) 

while increased signaling may stimulate appetite (resulting in weight gain and obesity). 

Mutations or polymorphisms within the orexigenic genes that modulate the expression level, 

receptor affinity, or functional activity of the neuropeptides may alter the resulting biological 

signaling and observed phenotype.

This review will highlight single nucleotide polymorphisms (SNPs; a change or mutation in 

one DNA base pair within a gene sequence) associated with the orexigenic neuropeptides 

that have been postulated to result in altered energy homeostasis, including inherited 

leanness and obesity. These SNPs were identified by genotyping individuals and identifying 

SNPs within target genes that are present or enriched in an experimental cohort (an obese 

subset, for example) but not the control population, as an updated reference to prior reviews.
11–12 The location of the SNPs within the gene structure (promoter, signal sequence, intron, 

exon) are identified.

In addition to the reported neuropeptide SNPs in published association studies, this review 

will identify SNPs deposited into the NCBI database for the neuropeptide sequences and 

observed using the Variation Viewer tool. For this review, the database was accessed in 

March 2018. The continued submissions of new genomic data will generate additional SNPs 

not present in this review, making this publication a snapshot of deposited SNPs up to March 

2018. For this section, only SNPs located within the mature neuropeptide sequences are 

included to limit SNPs to the biologically active amino acid sequence. Additionally, only 

missense polymorphisms (polymorphisms that alter the amino acid sequence of the mature 

neuropeptide) are included. These limitations are used so the deposited SNPs could be 

described in the context of prior structure-activity relationship (SAR) studies correlating the 

structure of the neuropeptides with pharmacological effects. Such observations highlight 

only a small part of the known SAR of the neuropeptides. Accordingly, a comprehensive 

review for each neuropeptide’s known pharmacology is not included in this review, but key 

reports are provided as an introduction to SAR studies for deposited SNPs that may 

potentially alter receptor binding and function. While polymorphisms in several of the 

orexigenic neuropeptide receptors have been linked to altered energy homeostasis in 

humans, including the melanocortin-3 and melanortin-4 receptors (as previously 

reviewed)13–14 this review will focus on SNPs located in the orexigenic neuropeptides. 

Additionally, although several anorexigenic neuropeptide polymorphisms have been 

associated with altered receptor pharmacology (including α-MSH and β-MSH),15–18 this 

review will only highlight orexigenic SNPs.

Orexigenic Neuropeptides

Agouti-Related Protein

First reported in 1997, human agouti-related protein (hAGRP) is transcribed as a 132 amino 

acid protein.19–21 One of two currently known endogenous antagonists to G-protein coupled 

receptors (GPCRs), AGRP has been shown to possess nanomolar antagonist potency at the 

melanocortin-3 receptor and melanocortin-4 receptors (MC3R and MC4R),19–20 and possess 

inverse agonist activity at the MC4R.22–23 Transgenic mice overexpressing AGRP weighed 

significantly more than wild-type littermates,20, 24 and intracerebroventricular (ICV) 
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administration of recombinant AGRP induced a dose-dependent food intake increase in rats,
25 demonstrating an orexigenic effect for AGRP. Further work hypothesized that the C-

terminal domain of AGRP [AGRP(83-132); Figure 1] is the active form in vivo following 

processing by proprotein convertase 1.26 Central administration of the C-terminal domain of 

AGRP via ICV26–29 or intrathecal30 (IT) administration has been demonstrated to increase 

food intake in rodents. A dose-dependent increase in food intake is observed when the C-

terminal domain of AGRP is administered in MC3R knockout (KO) or MC4R KO mice, 

suggesting pharmacology of both receptors is important for modulating the feeding 

response.27 While excess AGRP results in increased feeding, AGRP knockout mice maintain 

similar weight and feeding behaviors to wildtype mice,31 although an age-dependent leaner 

phenotype beginning at 6 months has been observed.32 A key Arg-Phe-Phe tripeptide 

sequence has been identified as critical for binding to the MC3R and MC4R.33 Solution 

NMR structures of the C-terminal domain of AGRP or a truncated “mini-AGRP” suggest 

this tripeptide sequence is located on an exposed beta-hairpin loop.34–36 The charge of 

exogenously administered AGRP has been correlated to the feeding response in mice, with 

more basic (positively) charged residues outside the melanocortin binding motif resulting in 

increased food intake and higher changes in body mass.37 This correlation between charge 

and activity has been hypothesized to be due to AGRP non-specifically binding to negatively 

charged heparan sulfate proteoglycans (including syndecan-3), helping to concentrate AGRP 

at the cell surface near the MC3R/MC4R.38

Single nucleotide polymorphisms in the promoter, introns, and exons of AGRP have been 

investigated for potential linkage to body weight and obesity. As previously reviewed in 

2008, polymorphisms in the promoter of AGRP (rs5030981, rs8047574. and rs34018897) 

were associated with reduced risk for obesity and type 2 diabetes (rs5030981 and 

rs8047574) and a potential predisposition for decreased resting metabolic rate/increased fat 

mass (rs34018897).11 Another study of rs5030981 also reported a lower BMI in females and 

lower rates of type 2 diabetes in males of West African descent.39 For a polymorphism in the 

second intron of AGRP (rs11575892) found from screening 95 patients with severe obesity, 

heterozygotes at this position possessed significantly higher BMI compared to controls 

(30.97 versus 27.92, respectively).40 In this same study, a SNP within the translated region 

of AGRP (rs5030980, Ala67Thr) was not associated with BMI.40 As previously reviewed, 

this polymorphism (rs5030980) has previously been associated with anorexia nervosa, 

inherited leanness, and resistance to late on-set obesity.11 When examining a genetic variants 

of obesity candidate genes in a European American population, the rs5030980 SNP was 

found to be modestly associated with BMI.41 Another report in a Dutch population 

suggested that the Thr allele of rs5030980 was associated with an increased BMI in males, 

but not females.42 Thus, this allele has been linked to decreased BMI, no association with 

body weight, and increased BMI, depending on the population examined. Analysis of the 

rs5030980 polymorphism in an in vitro expression system did not clarify these observations, 

as there were no differences between the Ala and Thr polymorphisms for AGRP cellular 

distribution or processing, antagonism of α-MSH-mediated stimulation of the MC4R, or 

induction of rat food intake.43

While no SNPs located within the in vivo active form of AGRP [AGRP(83-132), Figure 1] 

have been associated with altered metabolism in humans, some SNPs deposited in the NIH 
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database may be important for functional activity. Within the C-terminal domain of AGRP, 

there are 10 Cys forming 5 disulfide bonds, resulting in a highly structured peptide as 

determined by NMR.34–36 For SNPs found within the NIH Variation Viewer, 5 Arg to Cys 

polymorphisms have been reported [Arg85 (rs765334298), Arg86 (rs964545025), Arg111 

(rs1012110755), Arg120 (rs769073853), and Arg131 (rs201485380); Figure 1]. Four Cys 

residues that form the disulfide bonds in the native protein also possess SNPs [Cys108 

(rs1287345613), Cys117 (rs767874407), Cys119 (rs1392000625), and Cys129 

(rs1271631561)]. These polymorphisms introduce or eliminate a Cys residue, potentially 

disrupting the native disulfide bonds and altering the secondary structure which may 

decrease affinity or functional activity. There are also 8 positions that possess 

polymorphisms that decrease the net positive charge of AGRP at physiological pH [Arg85 

(rs765337298), Arg86 (rs964545025 & rs759822430), Arg89 (rs773694020), His91 

(rs772682095 & rs956734327), Arg111 (rs1012110755), Arg120 (rs769073853), Gly123 

(rs1191172042), and Arg131 (rs201485380)], and 7 positions where polymorphisms 

increase the net positive charge [Gly96 (rs768146316), Gln97 (rs1473841047), Gln98 

(rs1238154717), Thr107 (755684740), Tyr118 (rs762405425), Cys119 (1392000625) and 

Met126 (rs750837166)], indicating polymorphisms that might alter AGRP association with 

heparan sulfate proteoglycans and affect food intake.37–38 There are an additional seven 

polymorphisms within the hypothesized beta-hairpin active loop of AGRP [Arg111Cys/Gly 

(rs1012110755), Arg111His (rs199927717), Phe112Tyr (rs200972106), Ala115Val 

(rs773319622), Ala115Thr (rs1321944438) and Phe116Leu (1414719119)], of which four 

(Arg111 and Phe112 polymorphisms) are located within the purported tripeptide Arg-Phe-

Phe active sequence of AGRP. The equivalent substitution to the Phe116Leu polymorphism 

was assayed in an octapeptide AGRP macrocycle scaffold, and was found to decrease 

potency 15-fold relative to the native Phe,44 suggesting polymorphisms in this purported 

loop may decrease potency relative to the native sequence.

Galanin

The galanin neuropeptide was first identified from a porcine intestinal extract in 1983.45 

Named for the N-terminal glycine and C-terminal alanine, the 123 residue preprogalanin is 

processed into the 30 amino acid galanin neuropeptide in humans (Figure 2).46 Unlike other 

species, the C-terminal of galanin in humans is not carboxyamidated.46 As previously 

reviewed, human galanin possesses sub-nanomolar affinity at the galanin-1 receptor 

(GalR1), sub-nanomolar to nanomolar affinity at the galanin-2 receptor (GalR2), and tens of 

nanomolar affinity at the galanin-3 receptor (Gal3R).47 Administration of galanin into the 

paraventricular nucleus in male Sprague Dawley rats resulted in a dose dependent increase 

in food intake over saline control at 30 and 60 min, with the maximal effect at 1 nmol 

galanin, demonstrating the orexigenic activity of the galanin neuropeptide.48 While 

wildtype, galanin KO, and galanin overexpressing mice maintain similar levels of food 

intake on a standard diet,49–50 differences are observed when a high-fat diet is utilized. 

Following introduction of a high fat diet (45% fat), wildtype mice consumed more and 

gained more body weight than galanin KO mice.50 In mice maintained on a standard diet 

and induced to drink 15% ethanol, galanin overexpressing mice consumed more following 

the introduction of a high fat diet compared to wildtype mice, with a greater increase noted 

in female mice.51 These data may suggest that galanin has a role in dietary fat intake. While 
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several preprogalanin SNPs have been identified, currently no SNPs have been definitely 

correlated with altered BMI or obesity in humans.52–53

While no galanin SNPs are associated with the dysregulation of energy homeostasis, select 

SNPs reported in the Variation Viewer database may affect the binding affinity or functional 

activation of galanin with the galanin receptors. Work with porcine galanin suggested the N-

terminal domain of galanin has similar affinity and functional activity compared to the full 

length peptide.54–58 The C-terminal domain may help prevent the degradation of galanin 

since the N-terminal fragment Gal(1-16) (numbering based upon the N-terminal Gly residue 

set to 1) possesses a shorter half-life compared to the full length porcine galanin.59–60 Thus, 

critical residues for ligand-receptor function may be located in the N-terminal domain 16 

residues of galanin, of which 12 positions possess a SNP in humans [Gly1 (rs1380829651), 

Trp2 (rs1208503949), Thr3 (rs201520007), Leu4 (rs528520052), Asn5 (rs772658511), Ser6 

(rs746516038), Ala7 (rs770751421 and rs1057517661), Gly8 (rs1323568387), Gly12 

(rs530344730 and rs1460598118), Pro 13 (rs1251622772 and rs1421258394), Ala15 

(rs374472664 and rs1402134762), and Val16 (rs541536020), Figure 2]. The first 15 residues 

of human and porcine galanin are identical, with a conservative substitution at position 16 

(Val in humans and Ile in pigs). Interestingly, the Val16Ile is a human polymorphism 

(rs541536020), indicating pharmacological characterization of the porcine galanin may be 

representative of this human SNP. An Ala positional scan on the N-terminal Gal(1-16) 

fragment of the porcine galanin demonstrated that Ala substitution at the Trp2, Asn5, Tyr9, 

Leu10, Leu11, and Gly 12 positions decreased the ability to displace radiolabel 125I-Gal 

>100-fold in membrane binding studies from homogenized rat hypothalami, with complete 

loss of affinity for the Trp2Ala substitution at concentrations up to 100 μM.61 Three of these 

positions possess SNPs in the human galanin peptide, Trp2Leu (rs1208503949), Asn5Lys 

(rs772658511) and Gly12Asp/Ala (rs530344730), and may represent SNPs that modulate 

the affinity of human galanin for the galanin receptors.

Melanin Concentrating Hormone

The melanin concentrating hormone (MCH) was first isolated in 1983 from salmon as a 

peptide hypothesized to be cyclized through a disulfide bond,62 and subsequently from rat 

hypothalami.63 In humans, the 19 residue MCH is processed from a 165 residue 

preprohormone (Figure 3),64 and has nanomolar affinity for two receptors, the melanin 

concentrating hormone receptor 1 (MCHR1) and melanin concentrating hormone receptor 2 

(MCHR2), as previously reviewed.65 Many studies have indicated that ICV administration 

of MCH increases food intake in rodents.66–68 Unlike other neuropeptides reviewed herein, 

MCH KO mice have an altered metabolic phenotype. Compared to wildtype mice, both male 

and female MCH KO mice are hypophagic (lower food intake) and possess a lower body 

weight, as originally reported by Shimada et al.69 For MCH over-expressing transgenic 

mice, differential weight gain compared to wildtype mice was dependent on the genetic 

background of the mouse and gene copy number. Homozygous transgenic mice and a high 

fat diet were required to result in increased weight for mice on of a FVB genetic 

background, while heterozygotes on standard chow demonstrated a 10% increase in body 

weight for mice from a C57BL/6J background.70 All these data support an orexigenic role 

for the MCH neuropeptide. While to date no studies have associated MCH SNPs with 
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altered weight gain or BMI in a human general population, one SNP (rs7973796) outside the 

active fragment has been associated with increased BMI in schizophrenic patients taking 

olanzapine,71 a finding that was also presented at the 4th Biennial Schizophrenia 

International Research Conference.72

Despite the lack of MCH SNP association to altered energy homeostasis in humans, SNPs 

within the active MCH neuropeptide may affect receptor affinity and the ligand-receptor 

interface. The Cys7Tyr/Phe polymorphism (rs761128374; numbering based upon the N-

terminal Asp residue set to 1) results in loss of the disulfide bond. Previous work on 

replacing the two Cys with Ala73 or Ser74 resulted in ligands lacking agonist potency at 

10,000 and 1,000 nM, respectively, indicating the cyclizing disulfide bond is critical for 

agonist activity and loss of the disulfide bond might be expected to decrease agonist potency. 

In an Ala positional scan of the hMCH peptide, substitution of Ala at the Arg6, Arg11, and 

Tyr13 positions decreased binding affinity >10-fold and functional activity >7-fold at both 

the MCH1R and MCH2R.73 These data suggest that the Arg6Ile (rs781675279), Arg11Lys 

(rs905199758), and Tyr13Asp (rs774549475) SNPs may negatively impact ligand-receptor 

interactions. In another report, a Lys residue was used to replace the Arg11, corresponding 

to the Arg11Lys peptide (SNP rs905199758). When characterized at the MCHR1, the 

Arg11Lys peptide possessed decreased binding affinity (IC50 = 197 versus 1.5 nM) and 

functional potency (EC50 = 5100 versus 12 nM), and only stimulated the receptor to 67% 

maximal signal compared to the native sequence.75 In a minimized cyclic scaffold, (H-Arg-

c[Cys-Met-Lue-Gly-Xxx-Val-Thr-Arg-Pro-Cys]-Trp-OH, where Xxx corresponds to Arg11 

in the native sequence), the equivalent Arg to Lys substitution did not possess activity up to 

micromolar concentrations.74 These data are pharmacological characterization of an 

endogenous MCH SNP (rs905199758) and demonstrate >100-fold decreased affinity and 

functional activity, suggesting decreased agonist affinity and potency for this SNP.

Neuropeptide Y

The 36-residue neuropeptide Y (NPY) was first identified and sequenced in 1982 from 

porcine brain tissue.76–77 Translated as a 97 residue prepropeptide,78 cells expressing 

proprotein convertase 1, proprotein convertase 2, or both efficiently produce NPY from pro-

NPY following removal of the signal sequence (the mature sequence can be found in Figure 

4).79 The C-terminal of NPY is carboxyamidated, and NPY(1-36) may be further processed 

by aminopeptidase P80–81 and dipeptidyl peptidase IV80 into NPY(2-36) and NPY(3-36), 

respectively. There are four neuropeptide Y receptors in humans (Y1R, Y2R, Y4R and 

Y5R), with NPY being a hypothesized endogenous ligand at the Y1R, Y2R, and Y5R, as 

previously reviewed.82 Central administration of NPY increased cumulative food intake and 

decreased time latency to feeding response in rats, as first demonstrated in 1984.83–84 In 

CD-1 mice, central administration of NPY(1-36), NPY(2-36), and NPY(3-36) increased 

food consumption, while NPY(13-36) did not stimulate higher intake compared to vehicle.85 

Analogous to AGRP KO and galanin KO mice, NPY KO mice possess similar food intake 

and body weight to wild-type mice.86 Normal body weight is also maintained in NPY/

AGRP double KO mice.31 The body weight of transgenic mice overexpressing NPY was 

also similar to the weight of wildtype mice on a standard diet,87–89 although NPY-

overexpressing mice consuming a high sucrose diet weighed more than wildtype controls.89

Ericson and Haskell-Luevano Page 7

ACS Chem Neurosci. Author manuscript; available in PMC 2019 June 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Correlational studies have examined potential SNPs in the promoter, introns, signal 

sequence, translated polypeptide chain, and 5′ untranslated region in the NPY gene since a 

2003 review.12 Within the promoter region of NPY, the rs17149106 SNP was associated 

with an increased prevalence of obesity in American health care professionals.90 Another 

NPY promoter SNP, rs16147, has a mixed association. A positive association with obesity 

was found in Malaysian91 and Spanish92 youth along with a higher BMI from infants to 

adulthood in a German population,93 but did not increase the prevalence in obesity in an 

American health care population90 nor significantly alter BMI in a German cohort.94 Two 

SNPs in intron 1 (rs16478) and intron 2 (rs16135) of the NPY gene transcript were not 

associated with obesity while a SNP in intron 3 (rs16131) was positively associated with 

obesity in a Spanish youth population.92 Within the translated polypeptide chain, the 

rs16139 SNP results in a Leu to Pro substitution in the signaling sequence.95 This 

polymorphism has been associated with a higher BMI in a male Dutch cohort,42 in a non-

obese Swedish population,96 and in a female type-1 diabetic Finnish population,97 and an 

increased prevalence of obesity in a survey of US male health professionals90 and in an 

Iranian cohort with metabolic syndrome.98 However, other studies reported the rs16139 

polymorphism to not be associated with weight gain in Finnish youth,99 does not 

reproducibly associate with BMI in several populations,100 and is not associated with 

obesity in an South Indian cohort.101 A 2015 meta-analysis of 6 case-controlled studies of 

the rs16139 SNP indicated that the Leu to Pro polymorphism is associated with an increased 

risk of obesity.91 Two silent mutations (rs9785023 and rs5574), one of which located within 

the active form of NPY (rs9785023) have been investigated, although neither SNP was 

associated with obesity.90–91, 100–101 One SNP found in the NPY transcript, outside of the 

active NPY neuropeptide (rs931762615; Val to Asp), was reported in an obese patient and 

her obese father, and was not found in a control population.102 One additional SNP at the 5′ 
untranslated domain of the NPY transcript was also not associated with obesity in a South 

Indian population.101

Numerous missense mutations have been recorded in the human NPY active polypeptide 

sequence in the NCBI database for Variation Viewer (Figure 4). One polymorphism, 

Met17Leu (rs368302969, numbering based upon the N-terminal Tyr set to 1) would generate 

a peptide with the identical sequence to the initially reported porcine NPY.76 The porcine 

NPY has been utilized in alanine and D-amino acid positional scans,103–107 which have 

indicated that the C-terminal portion of NPY is critical for ligand binding and functional 

activity. A porcine NPY(1-36) peptide with the Tyr36Phe substitution (corresponding to the 

rs1369007793 SNP with an additional Met17Leu substitution) decreased affinity at the 

hY1R and hY2R 13- and 5-fold, respectively (a Tyr36His substitution decreased affinity 

>2,300- and >220-fold).103 In another porcine analog, the Pro8Ala (corresponding to SNP 

rs999271326) decreased affinity 160- and 9-fold to SK-N-MC and SMS-KAN cells 

(presumed to express the hY1R and hY2R), and decreased efficacy 54-fold relative to NPY 

in a rat jejunum bioassay.103, 105 While the Tyr36Phe and Pro8Ala are representative of 

human SNPs, these porcine NPY sequences possessed an additional Met17Leu substitution, 

a double polymorphic result that may not be representative in humans. Additionally, in the 

human NPY sequence the Pro5Ala substitution (rs1253206041) decreased affinity 1,100- 

and 300-fold to SK-N-MC and SMS-KAN cells and possessed 16-fold decreased potency in 
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the rat jejunum assay compared to NPY(1-36), while the Pro13Ala substitution 

(rs1167638996) decreased affinity 375-fold to SK-N-MC cells, possessed equipotent affinity 

to SMS-KAN cells, and 17-fold decreased potency in the rat jejunum assay compared to 

NPY(1-36).103, 105 Also utilizing the human NPY(1-36) sequence, the Tyr20Phe substitution 

(corresponding to SNP rs753592250) was previously characterized to examine the effects of 

removing the hydroxyl group from aromatic ring in the human NPY.108 The Tyr20Phe 

peptide significantly decreased affinity in rat CNS membranes (IC50 = 10.1 nM versus 3.8 

nM for hNPY) and potency in a rat van deferens bioassay (EC50 = 234 nM versus 44.3 nM 

for hNPY).108 These data represent NPY SNPs that have been pharmacologically 

characterized to possess decreased affinity and/or functional activity, which may be relevant 

in altering NPY signaling for food consumption.

Orexin A and Orexin B

The orexin (hypocretin) system was reported by two independent groups in 1998.109–110 

One group noted the orexigenic (increased food intake) response upon ICV administration of 

the endogenous ligands, labeling the neuropeptides and receptor family the orexins.110 The 

other group reported expression of the endogenous peptide preprohormone exclusively in the 

hypothalamus and shared amino acid sequence identity with the secretin hormone, naming 

the discovered receptor system the hypocretins.109 While both names have been used 

interchangeably, one nomenclature recommendation has been to name the gene and mRNA 

products as hypocretins while the precursor peptide, process peptides, and protein receptor 

products as orexins,111 a scheme that will be following in the present review. The 131-

residue human preproorexin precursor peptide is processed into two endogenous orexin 

agonists, the 33-residue orexin A and 28-residue orexin B (Figures 5 and 6).112 The C-

terminal of both orexin A and orexin B have been hypothesized to be carboxyamidated, 

while the N-terminal Gln of orexin A has been purported to be cyclized into a pyroglutamyl 

residue.110, 112 Orexin A also possesses 4 Cys residues that form two disulfide bonds, the 

topology of which was determined to be Cys6-Cys12 and Cys7-Cys14 by synthesizing the 

different possible disulfide pairings.110 Orexin A and orexin B are the endogenous agonists 

for two receptors, the orexin-1 receptor (OX1R) and the orexin-2 receptor (OX2R).110 

Orexin A was reported to possess similar affinity for the OX1R and OX2R (20 nM and 38 

nM), while orexin B was approximately 10-fold selective for the OX2R over the OX1R (36 

nM and 420 nM).110 The ligands possessed a similar functional response (orexin A 

equipotent at the OX1R and OX2R; orexin B 10-fold more potent at the OX2R over the 

OX1R) compared to the affinity data when utilizing an assay to measure intracellular Ca2+ 

concentrations.110, 113

One of the original papers describing the orexins noted that icv administration of orexin A or 

orexin B dose-dependently increased food consumption in rats when administered in the 

early light phase.110 Increased food intake for orexin A administered in the early light phase 

has been replicated in rats,114–115 although the response following icv administration of 

orexin B have been reported to both increase114 and have no effect115 on food intake. Orexin 

KO mice do not possess significantly altered body weight compared to wildtype controls,116 

although they possess a phenotype similar to human narcolepsy.117 Genetic ablation in mice 

of neurons producing the preproorexin peptide also produce a narcolepsy-like phenotype,118 
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which is accompanied by a late-onset obesity dependent on the background of the mice.
116, 118 These mice develop obesity despite being hypophagic, and were reported to have 

decreased spontaneous motor activity.118 Overexpression of the orexins prevents obesity in 

mice fed a high-fat diet compared to a low-fat diet, where male and female mice 

overexpressing the preproorexin transcript possess similar body weights to low-fat fed 

wildtype mice, up to 30 weeks.119 While SNPs have been reported for the preproorexin 

peptide, currently no SNPs have been directly linked to human obesity.120

Within Variation Viewer, SNPs are present in nearly half of the amino acids of orexin A (15 

of 36 residues, Figure 5). A systematic truncation study of orexin A indicated that the N-

terminal 5 amino acids may be removed with approximately 10-fold decreased potency at 

both the OX1R and OX2R,121 suggesting the Pro4Ala, Asp5Asn, and Asp5Glu 

(rs1373951353, rs754595506 and rs754232977, respectively; numbering with the N-

terminal pyro-Gln residue set to 1) SNPs may have minimal effect on the pharmacological 

activity of the neuropeptide. An Ala positional scan of the C-terminal domain of orexin A 

[orexin A(15-33)] indicated that among other residues, Ala substitution at the Leu20, Gly29, 

Ile30, Thr32 and Leu33 positions decreased the agonist response at the OX1R, with partial 

to no receptor activation at 10 μM concentrations (37%, 15%, inactive, 39%, and 18%, 

respectfully).122 Similar results were reported with a different orexin A fragment [orexin 

A(17-33)], with <50% receptor activation using 10 μM concentrations at both the OX1R and 

OX2R when Gly29, Ile30, Thr32, and Leu33 were substituted with Ala.123 These positions 

correspond to human SNPs [Leu20Arg (rs1478595312), Gly29Ser (rs767907538), Ile30Ser 

(rs1292852639), Thr32Arg(1415661572), and Leu33Met (rs763215233)] which may 

negatively impact orexin A potency. A Gly24Cys SNP (rs1202994832) introduces an 

unpaired Cys that can disrupt the native disulfide bonding pattern, potentially disrupting the 

overall fold of orexin A that may affect affinity and functional activity.

Within the Variation Viewer database, 19 of 28 amino acids of orexin B possess SNPs. 

Truncation of the N-terminal 5 residues from human orexin B [orexin B(6-28), numbering 

with the N-terminal Arg residue set to 1] was shown to be equipotent compared to the full 

length orexin B peptide at both the OX1R and OX2R,121 suggesting that polymorphisms at 

the Arg1, Gly3, Pro4, and Pro5 positions may be tolerated (corresponding to SNPs 

rs1466937991, rs777822783, rs778354341, rs754648418, rs753435149, and rs1206882322). 

An Ala positional scan of orexin B supports the truncation studies as substitution of the 

Arg1, Gly3, Pro4, and Pro5 positions with Ala had <10-fold effect on potency at both the 

OX1R and OX2R.124 Two of the SNPs in the Variation Viewer database are Ala 

substitutions [Pro4Ala (rs778354341) and Gly9Ala (rs558579797)] were characterized in 

the Ala positional scan of orexin B, decreasing potency <4-fold at both the OX1R and 

OX2R.124 These data would suggest that these polymorphisms do not negatively affect 

ligand potency. Similar to orexin A, the C-terminal domain of orexin B has been shown to be 

important for receptor potency. Removal of the Met28 [orexin B(1-27)] results in a peptide 

that does not possess agonist activity at either OX1R or OX2R at up to 1 μM concentrations,
121 while Ala substitution at positions 24–28 of orexin B decreases potency by >100-fold 

relative to the full length peptide at both OX1R and OX2R.124 These data suggest that the 

Leu26Pro (rs751706776), Thr27Ile (rs1180653330), Met28Val (rs1277187932), Met28Ile 

(rs1164006314), and Met28Thr (rs896739180) SNPs may negatively impact ligand potency, 
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though a Pro positional scan on a fragment of orexin B [orexin B(6-28)] suggested that Pro 

substitution at the Leu26 position was tolerated.121

Conclusions

This reviewed focused on human SNPs in six neuropeptides that have been shown to 

increase food intake in animal models. Two of the neuropeptides (AGRP and NPY) possess 

SNPs associated with altered energy homeostasis, including increased BMI and risk of 

developing obesity. Many additional SNPs have been deposited into the NIH database for 

the active sequences of AGRP and NPY, as well as the other orexigenic neuropeptides, as 

highlighted in Figures 1–6. Even more SNPs in the prepropeptides, introns, promoter 

regions, and corresponding receptors have been deposited, as well as nonsense and 

frameshift polymorphisms within the active neuropeptide sequences that were not included 

in this review. Since the majority of the deposited SNPs have not been pharmacologically 

characterized, the signaling effects of these SNPs are unknown. Additionally, because these 

SNPs have not been correlated with a phenotype, some caution in interpreting the SNPs is 

warranted. The accuracy of the deposited SNPs and prevalence in a population are questions 

that might limit the utility of these data. The majority of the SNPs may also not possess any 

altered pharmacology, and may not be associated with any phenotypic changes.

With the continued pursuit of personalized medicine and inexpensive sequencing 

technologies, more polymorphisms will be discovered and reported. Knowing the 

pharmacological activity of rare polymorphisms may aid the treatment of individuals. In 

2016, the MC4R synthetic agonist setmelanotide was used to sustain weight loss in two of 

the three known individuals globally with proopiomelanocortin deficiency (patients who do 

not express the endogenous agonist ligands for the melanocortin receptors).125 As additional 

SNPs in orexigenic peptides, anorexigenic peptides, and their receptor partners are 

discovered and pharmacologically assessed for altered signaling, it may be possible to 

envision similar treatments for individuals with aberrant signaling in pathways associated 

with appetite and energy homeostasis.
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Figure 1. 
The amino acid sequence of AGRP(83-132). Missense SNPs are indicated in red, with the rs 

accession number and reported variant amino acids. The disulfide connectivity is indicated 

by black bars.
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Figure 2. 
The amino acid sequence of galanin. Missense SNPs are indicated in purple, with the rs 

accession number and reported variant amino acids.
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Figure 3. 
The amino acid sequence of the melanin concentrating hormone (MCH). Missense SNPs are 

indicated in green, with the rs accession number and reported variant amino acids. The 

disulfide bond is indicated by the black bar.
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Figure 4. 
The amino acid sequence of neuropeptide Y (NPY). Missense SNPs are indicated in grey, 

with the rs accession number and reported variant amino acids.
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Figure 5. 
The amino acid sequence of orexin A. Missense SNPs are indicated in blue, with the rs 

accession number and reported variant amino acids. The disulfide bonds are indicated by 

black bars.
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Figure 6. 
The amino acid sequence of orexin B. Missense SNPs are indicated in orange, with the rs 

accession number and reported variant amino acids.
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