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Abstract

Robot-Assisted Therapy (RT) is an innovative approach to neurological rehabilitation that

uses intensive, repetitive, interactive, and individualized practice. This systematic review

aimed to investigate the effectiveness of RT on the body function and structure of people

with upper limb impairments (PROSPERO registration: CRD42017054982). A search strat-

egy conducted on seven databases identified randomized controlled studies. Methodologi-

cal quality was assessed using the PEDro scale. When possible, the data were pooled, the

strength of evidence was assessed using the GRADE system, and the effect sizes were

assessed using Cohen coefficient. Subgroup analyses investigated the impact on the esti-

mated effects of the following parameters: methodological quality; portion of the assessed

upper limb; duration of stroke; and intervention dose and duration. Thirty-eight studies

involving 1174 participants were included. Pooled estimates revealed small effects of RT on

motor control and medium effects on strength compared with other intervention (OI) at a

short-term follow-up. Standardized differences in means were as follows: 0.3 (95% CI 0.1 to

0.4) and 0.5 (95% CI 0.2 to 0.8). Effects at other time points and on other investigated out-

comes related to body function and structure were not found (p>0.05). The strength of the

current evidence was usually low quality. Subgroup analyses suggested that the methodo-

logical quality, and duration and dose of RT may influence the estimated effects. In conclu-

sion, RT has small effects on motor control and medium effects on strength in people with

limited upper limb function. Poor methodological quality, and lower treatment dose and

duration may impact negatively the estimated effects.
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Introduction

Upper limb motor impairments following a neurological disorder are common and may lead

to function limitations, dependence and poor quality of life among the affected people[1].

There are many rehabilitation programs aiming to promote the function, independence and

social reintegration of these affected people[2]. These programs include constraint-induced

movement therapy, electromyographic biofeedback, mental practice with motor imagery,

repetitive task training, functional electrical stimulation and Robot-Assisted Therapy (RT)

[3,4,5].

RT is an innovative approach to neurological rehabilitation that involves intensive, repeti-

tive, interactive, and individualized practice[6]. The use of RT for upper limb disorders dates

to the 1990s. Since then, a number of robotic devices have become commercially available to

clinics and hospitals worldwide[7].

Previous reviews have suggested that RT improves upper limb motor control and muscle

strength[8,9,10,11,12]. However, these studies drew limited conclusions about the effectiveness

of RT on the body function and structure of people with upper limb impairments. It was not

possible to specify comparisons; the use of RT alone or combined with other interventions was

compared with minimal or other interventions. Other limitations included few investigated

outcomes related to body function and structure in individuals with stroke, absence of proto-

col registration and assessment of the strength of evidence[11], language restriction for the

included studies, and absence of medium- and long-term effects[12].

It also remains unknown whether the estimated effects of RT are impacted by the portion

of the assessed upper limb (i.e., proximal shoulder-elbow level or distal hand-wrist level)[9,10],

treatment dose and/or duration[11,12], or the methodological quality of the studies. Therefore,

the aim of this systematic review was to investigate the effectiveness of RT on outcomes related

to body function and structure of people with upper limb impairments at short-, medium- and

long-term follow-ups. The potential impacts of the portion of the assessed upper limb, dura-

tion of stroke, treatment dose and/or duration, and methodological quality were also

investigated.

Methods

Search strategy and inclusion criteria

The protocol of this review was prospectively registered at PROSPERO (CRD42017054982).

The search for relevant studies was conducted in PEDro (Physiotherapy Evidence Database),

EMBASE (Excerpta Medica Database), Medline (Medical Literature Analysis and Retrieval

System Online), CINAHL (Cumulative Index to Nursing and Allied Health Literature),

Cochrane (Cochrane Collaboration), AMED (Allied and Complementary Medicine Database)

and Compendex (Compendex Engineering Index) without language or date restrictions. In

addition, a hand search was conducted in reference lists of previous reviews in this area. The

search terms were related to “Robot-Assisted Therapy” (robotics, orthotic devices, bionic

device, exoskeleton, robotic aided therapy, therapy computer-assisted, robot-assisted, robot-

ics-assisted, self-help devices, robotic device, dynamic orthotic device, robot-mediated ther-

apy, robot-supported, computer-assisted instruction, computer aided, computer-aided design,

computer assisted, artificial limb, rehabilitation robotics, human-robot interaction, robot-

aided rehabilitation, robotic rehabilitation, orthosis, taping, splinting, assistive technology

devices, assistive device therapy), “upper limb” (upper extremity, arm, arm injuries, hand,

hand injuries, shoulder, shoulder injuries, elbow, axilla elbow, forearm injuries, forearm, fin-

ger, finger injuries, wrist injuries, wrist) and “randomized controlled trial” (random allocation,
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double blind method, single blind method, placebo, random, controlled clinical trial, clinical

trial, comparative study, evaluation study, follow-up study, prospective study, crossover stud-

ies). See S1 Appendix in the Addenda for the detailed search strategy.

This review included prospective randomized or quasi-randomized controlled studies

including inpatients and outpatients from any primary, secondary or tertiary care setting and

community. Studies were eligible if they included participants of both sexes, regardless of age,

with limited upper limb function caused by stroke. The intervention of interest was RT, which

was defined as the application of any electronic, computerized control system connected to

mechanical devices designed to perform human functions. Studies were eligible if RT was

compared with minimal intervention or other intervention (OI). We defined minimal inter-

vention as when the control group received no intervention, received sham or placebo inter-

vention, or was on a waiting list. We considered any other active intervention that was not

robotic therapy, such as conventional therapy and physical therapy. Studies investigating addi-

tional effects of RT were also included. The outcomes of interest in this review were those

related to body function and structure, according to the International Classification of Func-

tioning, Disability and Health[13]. We considered body function as the physiological functions

of body systems, including psychological function and body structure, i.e., anatomical parts of

the body, such as organs, limbs and their components[14].

Selection of studies

After removing duplicate studies, the relevant retrieved titles and abstracts were selected. Then,

we assessed the potential full texts, and studies fulfilling the eligibility criteria were included.

Methodological quality assessment

We assessed the methodological quality of the included studies using the 0 to 10 PEDro scale,

with higher scores indicating greater methodological quality. Disagreements were resolved by

consensus. When available, we used scores already on the PEDro database (http://www.pedro.

org.au/).

Data extraction

We extracted data on the following characteristics of the included studies: number of partici-

pants; mean age; percentage of female; cause of the upper limb disorder and its duration; eval-

uated joints; type of RT; comparison groups; frequency and total duration of intervention; and

outcome measures.

The included studies investigated many different outcomes related to body function and

structure. For the feasibility of this review, we arbitrarily decided to include the following five

most investigated outcomes in the literature: motor control; strength; spasticity; range of

motion; and pain. When a given study evaluated these outcomes with more than one instru-

ment, we considered the most consistent instrument among the included studies. When a

given study investigated two different RT groups[15–27], we considered both groups, consis-

tent with previous reviews in this area[12, 28]. We extracted data for the complete upper limb,

and we separately considered the proximal (i.e., elbow and shoulder) and distal (i.e., wrist and

hand) portions of the assessed upper limb, as suggested by previous reviews[9,10]. When more

than one measurement was available for the proximal and/or distal upper limb, we considered

the elbow and wrist due to their greater consistency among the included studies and clinical

implications[29].

The following outcome data were included: sample size, mean and standard deviation (SD)

for each group were extracted at the short-, medium- and long-term follow-ups:� 3 months
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after baseline for short-term; > 3 months but< 12 months after baseline for medium-term;

and� 12 months after baseline for long-term. When multiple time points were available

within the same follow-up period, the time point closer to the end of the intervention was used

for short-term follow-up, that closer to 6 months was used for medium-term follow-up and

that closer to 12 months was used for long-term follow-up. SDs were not available in certain

included studies, and in those cases, the SDs were imputed from the 95% confidence interval

(CI), standard error (SE), p value, interquartile range and average from other included studies

with similar sources of participants. See S2 Appendix in the Addenda for the detailed extracted

data.

Data analysis

Data for each outcome were pooled when there was sufficient homogeneity among studies.

Homogeneity among studies was assessed using I2 statistics. Low heterogeneity was defined as

if I2� 50%, and moderate to high heterogeneity was defined as I2 > 50%[30]. Pooled effects

were estimated using standardized mean differences (SMDs) with 95% confidence intervals

(CI). A fixed-effects model was used to conduct the meta-analysis when I2� 50%, and a ran-

dom-effects model was used to conduct the meta-analysis when I2 > 50%. To judge the clinical

relevance of RT, the effect size was assessed using Cohen’s d coefficient according to the fol-

lowing parameters:

0.2 as small effect, 0.5 as medium effect, and 0.8 as large effect [31]. A funnel plot was used

to investigated publication bias when at least 10 studies were pooled[30]. The meta-analysis

was performed using the software Comprehensive Meta-Analysis, version 3.3.070.

The GRADE (Grading of Recommendations Assessment, Development and Evaluation)

system was used to summarize the overall quality of evidence for each outcome[32]. We rated

evidence from the high-quality level and downgraded it one point if one of the following pre-

specified criteria was present: low methodological quality (average PEDro score< 6); inconsis-

tency of estimates among pooled studies (I2 > 50%) or when its assessment was not possible

(no pooling); indirectness of participants (over 50% of the studies did not describe inclusion

criteria); and imprecision (pooling < 300 participants for each outcome)[33].

Subgroup analyses were used to investigated the impact of the following on estimated

effects: 1) poor methodological quality (i.e., removing studies with score of five or less out of

ten on PEDro scale); 2) investigated portion (proximal and distal portions of the upper limb);

3) duration of stroke (duration of the current episode� 6 months and> 6 months); and 4)

treatment dose and duration. For dose, analyses investigated whether the effects of studies pro-

viding the same amount of intervention differed from those providing different amounts of

intervention for RT and control groups. For duration, analyses investigated whether the effects

of studies providing > 20 sessions differed from those providing� 20 sessions. The impact of

dose and duration was also investigated using total volume (i.e., number of sessions x time per

session in hours), dichotomized into studies with total volume > 20 hours of intervention and

those ones with� 20 hours. We arbitrarily decided on these cut-offs because they were the

most frequently used cut-offs in the included studies. Subgroup analyses were conducted to

compare RT and OI at the short-term follow-up because this was the most investigated follow-

up.

Results

Flow of studies through the review

The searches retrieved 22910 references. After removing duplicates, 19275 titles and abstracts

were screened. Of these, 19135 were excluded, and 140 potential full texts were assessed. The
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PLOS ONE | https://doi.org/10.1371/journal.pone.0200330 July 12, 2018 4 / 21

https://doi.org/10.1371/journal.pone.0200330


hand search did not retrieve additional studies. Finally, 38 original studies were included[15–

27,34–57]. Fig 1 presents the flow of studies through the review.

Characteristics of studies

The characteristics of the included studies are presented in Table 1. All included studies were

prospective randomized controlled studies published in English between 1997 and 2015. The

38 original studies enrolled 1174 participants of both sexes, with a mean age ranging from 51.2

to 57.8 years. The cause of the upper limb disorder was stroke, with 24 of the 38 studies includ-

ing people with chronic episodes of this health condition.

The duration of RT ranged from 2[25] to 20[57] weeks, and the frequency per week varied

from 2[16,18] to 6[57] days. The time spent per session of intervention ranged from 0.2[40] to

2[57] hours. The total volume of intervention per week (i.e., number of sessions per week x

duration of each session) ranged from 1[54] to 12[57] hours. The total number of sessions ran-

ged from 12[16,25,45] to 120[57], with most studies ranging from 20 to 24. The total duration

of the intervention ranged from 6[45] to 240[57] hours. On average, RT sessions occurred

three times per week with a total duration of treatment of 8 weeks. For some studies, primarily

those comparing RT to minimal intervention, detailed information on the dose and duration

of the intervention was not available[35,36,48,54,56].

Thirty-five studies evaluated motor control using three different instruments. Of these 35

studies, 33 (94.2%)[15,16,18–27,35–38,40–41,44–59] used the Fugl Meyer (FM), two studies

(5.7%)[34,42] used the Chedoke McMaster Stroke Assessment (CMSA). Fourteen studies[15–

Fig 1. Flow chart of studies through the review. �Papers may have been excluded for failing to meet more than one

inclusion criteria. Abbreviations: RCT = randomized controlled trials; QRCT = quasi-randomized controlled trials.

https://doi.org/10.1371/journal.pone.0200330.g001
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Table 1. Characteristics of the included studies (n = 38).

Study Health Condition Source Participants Intervention Duration and

frequency

Outcome measures Robotic Device

Abdullah et al.

(2011)

Individuals with

unilateral stroke,

aged between 16–

90 years, 2 to 8

weeks post

stroke.

Recruited at Chedoke

Stroke Rehabilitation

Unit at Hamilton

Health Sciences in

Ontario.

n = 19

Age (yr) = N/A

(SD = N/A)

Gender = 8M /

11F

Exp RT = robotic

therapy (n = 8)

OI = conventional

therapy (n = 11)

Exp RT = 45 min/

session; 3/wk x 8-11wk

OI = 45 min/session; 3/

wk

x 8–11 wk

Motor control: Chedoke

McMaster Stroke Assessment

of the arm and hand range

1–7

Pain: Chedoke McMaster

Stroke Assessment Pain

Inventory Scale range 1–7

Follow-up = post-treatment

Robotic System

Aisen et al.

(1997)

Individuals with

a single stroke, 3

weeks post

stroke.

Recruited at Burke

Rehabilitation Hospital

in New York.

n = 20

Age (yr) = N/A

(SD = N/A)

Gender = 11M /

9F

Exp RT = robotic

therapy + conventional

therapy (n = 10)

MI = sham robotic

therapy + conventional

therapy (n = 10)

Exp RT = 60 min/

session; 5/wk

MI = had weekly to

biweekly contact with

the robotic device

Motor control: Fugl-Meyer

range 0–66

Strength: Motor power

shoulder and elbow (in the

biceps, triceps, and anterior

and lateral deltoid muscles)

range 0–20

Follow-up = post-treatment

MIT- MANUS

Ang et al.

(2014)

Individuals with

stroke for at least

4 months, aged

between 21–80

years.

Recruited at Tan Tock

Seng Hospital in

Singapore.

n = 21

Age (yr) = 54.2

(SD = 12.4)

Gender = 14M /

7F

Exp RT = robotic

therapy (n = 8)

OI = standard arm

therapy (n = 7)

Exp RT = 90 min/

session; 3/wk x 6 wk

OI = 90 min/session; 3/

wk x 6 wk

Motor control: Fugl-Meyer

range 0–66

Follow-up = post-treatment

and 6, 8 weeks

Haptic Knob (HK)

Brokaw et al.

(2014)

Individuals with

stroke for at least

6 months.

Recruited through the

MedStar National

Rehabilitation Hospital

stroke database.

n = 10

Age (yr) = 57

(SD = 11.7)

Gender = N/A

Exp RT = robotic

therapy (n = 7)

OI = conventional

therapy

(n = 5)

Exp RT = 12 h x 4 wk

OI = 12 h x 4 wk

Motor control: Fugl-Meyer

range 0–66

Follow-up = post-treatment

ARMin III and

HandSOME device

Burgar et al.

(2000)

Individuals with

chronic stroke at

least 6 months.

Recruited and the

informed consent was

obtained in compliance

with Veterans Affairs

and Stanford

University.

n = 21

Age (yr) = N/A

(SD = N/A)

Gender = 14M /

7F

Exp RT = robotic

therapy

(n = 11)

OI = conventional

therapy

(n = 10)

Exp RT = 60 min/

session; 3/wk x 8 wk

OI = 60 min/session; 3/

wk x 8 wk

Motor control: Fugl-Meyer

total range 0–66

shoulder/elbow range 0–42

wrist/hand range 0–24

Follow-up = post-treatment

Mirror Image

Movement Enabler

(MIME)

Burgar et al.

(2011)

Individuals with

acute stroke

Recruited through the

Veterans Affairs (VA)

Medical Center

(Texas), the VA

Greater Los Angeles

Healthcare System

(California) and the

VA Palo Alto Health

Care System

(California).

n = 54

Age (yr) = N/A

(SD = N/A)

Gender = N/A

Exp RT = high dose

robotic therapy (n = 17)

Exp RT = low dose

robotic therapy (n = 19)

OI = conventional

therapy

(n = 18)

Exp RT = 1 h/session x

30 sessions; 3 wk

Exp RT = 1 h/session x

15 sessions; 3 wk

OI = 1 h/session x

15 sessions; 3 wk

Motor control: Fugl-Meyer

total range 0–66

shoulder/elbow range 0–42

Strength: Motor Power range

0–70

Spasticity: Modified

Ashworth Scale range 0–5

Follow-up = post-treatment

and 24 weeks

Mirror Image

Movement Enabler

(MIME)

Byl et al. (2013) Individuals with

unilateral stroke

for at least 6

months, aged

between 25–75

years.

Recruited at University

of California in San

Francisco.

n = 15

Age (yr) = N/A

(SD = N/A)

Gender = 13M /

2F

Exp RT = unilateral

robotic therapy (n = 5)

Exp RT = bilateral

robotic therapy (n = 5)

OI = task specific

repetitive training

(n = 5)

Exp RT = 90 min/

session; 2/wk x 6 wk

Exp RT = 90 min/

session; 2/wk x 6 wk

OI = 90 min/session; 2/

wk x 6 wk

Motor control: Fugl-Meyer

range 0–66

Spasticity: Modified

Ashworth Scale range 0–25

Strength: manual muscle

testing elbow range 0–5

Pain: Visual Analogue Scale

range 0–10

ROM: total passive range of

motion, as the sum of

shoulder flexion, abduction,

internal rotation and external

rotation, elbow flexion and

extension and wrist extension

and flexion. Range 0–810˚.

Separate passive range of

motion elbow flexion 0–140˚.

Follow-up = post-treatment

UL-EXO7

Conroy et al.

(2011)

Adults with

chronic stroke

Community-dwelling

adults were recruited.

n = 62

Age (yr) = 57.8

(SD = 10.7)

Gender = N/A

Exp RT = robotic

therapy planar (n = 20)

Exp = robotic therapy

planar with vertical

(n = 18)

OI = intensive

conventional arm

exercise (n = 19)

Exp RT = 60 min/

session; 3/wk x 6 wk

Exp RT = 60 min/

session; 3/wk x 6 wk

OI = 60 min/session; 3/

wk x 6 wk

Motor control: Fugl-Meyer

range 0–66

Follow-up = post-treatment

and 12 weeks

MIT-MANUS

(Continued)
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Table 1. (Continued)

Study Health Condition Source Participants Intervention Duration and

frequency

Outcome measures Robotic Device

Daly et al.

(2005)

Individuals with

stroke for at least

12 months.

Recruited through the

Louis Stokes Cleveland

Department of

Veterans Affairs

Medical Center.

n = 12

Age (yr) = N/A

(SD = N/A)

Gender = 9M /

3F

Exp RT = robotic

therapy + motor

learning (n = 6)

OI = functional

neuromuscular

stimulation + motor

learning (n = 6)

Exp RT = robotic

therapy (90 min)

+ motor learning (210

min); 5/wk x 12 wk

OI = functional

neuromuscular

stimulation (90 min)

+ motor learning (210

min); 5/wk x 12 wk

Motor control: Fugl-Meyer

range 0–66

Follow-up = post-treatment

and 24 weeks

InMotion2

(Interactive

Motion

Technologies, Inc,

Cambridge,

Massachusetts)

De Araújo et al.

(2011)

Individuals with

a single unilateral

stroke for at least

3 months, aged

�18 years and

exhibited

hemiparesis of

the right side.

Recruited at University

of Pernambuco.

n = 12

Age (yr) = N/A

(SD = N/A)

Gender: 10M /

2F

Exp RT = robotic

therapy (n = 6)

OI = physical therapy

(n = 6)

Exp RT = 50 min/

session; 3/wk x 8 wk

OI = 50 min/session; 3/

wk x 8 wk

Motor control: Fugl-Meyer

total range 0–66

shoulder/elbow range 0–36

wrist/hand range 0–24

Spasticity: Modified

Ashworth Scale elbow range

0–5 and wrist/hand range

0–5

Follow-up = post-treatment

Electromechanical

device (Exoskeleton

and static orthosis

and Glove)

Fasoli et al.

(2004)

Individuals with

acute stroke,

aged between 27–

83 years.

Recruited at Burke

Rehabilitation

Hospital.

n = 56

Age (yr) = N/A

(SD = N/A)

Gender = 30M /

26F

Exp RT = robotic

therapy + conventional

rehabilitation (n = 30)

MI = assisted or

assisted active

movement (exposure

robotic therapy)

+ conventional

rehabilitation (n = 26)

Exp RT = 60 min/

session; 5/wk

MI = 12 min/session; 5/

wk

Motor control:

Fugl-Meyer range 0–66

Motor Status Score

shoulder/elbow range 0–40

wrist/hand range 0–42

Strength:

Medical Research Council

Motor Power shoulder

flexion and abduction and

elbow flexion and extension

range 0–20

Follow-up = discharge

MIT-MANUS

Hesse et al.

(2005)

Individuals with

subacute stroke

within the past 4

to 8 weeks.

Recruited from two

rehabilitation centers.

n = 44

Age (yr) = N/A

(SD = N/A)

Gender = 20M /

24F

Exp RT = robotic

therapy

(n = 22)

OI = electrical

stimulation

(n = 22)

Exp RT = 20 min/

session; 5/wk x 6 wk

OI = 20 min/session; 5/

wk x 6 wk

Motor control: Fugl Meyer

total range 0–66

shoulder/elbow range 0–42

wrist/hand range 0–24

Strength: Medical Research

Council range 0–45

proximal range 0–15

distal range 0–30

Spasticity: Modified

Ashworth Scale total range

0–25

proximal range 0–10

distal range 0–15

Follow-up = post-treatment

and 18 weeks

Bi-manu-track

Housman et al.

(2009)

Adults with a

single stroke at

least 6 months,

with moderate/

severe

hemiparesis.

Recruited through the

RIC Sensory Motor

Performance Program

in Chicago.

n = 31

Age (yr) = N/A

(SD = N/A)

Gender = 18M /

10F

Exp RT = robotic

therapy + occupational

therapist (n = 17)

OI = conventional

therapy + occupational

therapist (n = 17)

Exp RT = 60 min/

session; 3/wk x 8–9 wk

OI = 60 min/session; 3/

wk x 8–9 wk

Motor control: Fugl-Meyer

range 0–66

ROM: was calculated as the

mean distance between a

marker placed on the

subject’s wrist and 5 targets,

following 5 reach attempts to

each target.

Strength: Grip strength with

the Jamar dynamometer

range 0–200

Follow-up = post-treatment

and 24 weeks

Therapy Wilmington

Robotic Exoskeleton

(T-WREX)

(Continued)
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Table 1. (Continued)

Study Health Condition Source Participants Intervention Duration and

frequency

Outcome measures Robotic Device

Hsieh et al.

(2011)

Individuals with

chronic stroke

for at least 6

months.

Recruited from the

Departments of

Physical Medicine and

Rehabilitation of 3

medical centers in

Taiwan.

N = 18

Age (yr) = N/A

(SD = N/A)

Gender = 13M /

5F

Exp RT = robotic

therapy high intensity

(n = 6)

Exp = robotic therapy

lower intensity

(n = 6)

OI = conventional

therapy (n = 6)

Exp RT = 90–105 min/

session; 5/wk x 4 wk

Exp RT = 90–105 min/

session; 5/wk x 4 wk

(half the number of

repetitions)

OI = 90–105 min/

session; 5/wk x 4 wk

Motor control: Fugl-Meyer

range 0–66

Strength: Medical Research

Council range 0–5 shoulder

flexors/abductors, elbow

flexors/

extensors, wrist flexors/

extensors, and flexors/

extensors of the

metacarpophalangeal joints,

the average MRC score was

calculated

Follow-up = post-treatment

Bi-manu-track

Kahn et al.

(2006)

Individuals with

chronic stroke

for at least 1 year.

Recruited from

outpatient population

at the Rehabilitation

Institute of Chicago

and from a participant

database.

n = 19

Age (yr) = N/A

(SD = N/A)

Gender = 11M /

8F

Exp RT add = robotic

therapy + conventional

therapy (n = 10)

OI = Free reaching

(n = 9)

Exp RT add = 45 min/

session; 3/wk x 8wk

OI = 45 min/session; 3/

wk x 8wk

Motor control: Chedoke

McMaster Stroke Assessment

arm section range 1–7

Follow-up = post-treatment

and 24 weeks

The Assisted

Rehabilitation and

Measurement Guide,

ARM Guide

Klamroth-

Marganska et al.

(2014)

Individuals with

chronic stroke,

for at least 6

months, aged

�18 years.

Recruited from four

clinical centers in

Switzerland.

n = 73

Age (yr) = N/A

(SD = N/A)

Gender = 46M /

27F

Exp RT = robotic

therapy

(n = 38)

OI = conventional

therapy (n = 35)

Exp RT = 45 min/

session; 3/wk x 8wk

OI = 45 min/session; 3/

wk x 8wk

Motor control: Fugl-Meyer

range 0–66

Spasticity: Modified

Ashworth Scale range 0–5.

Mean values from nine single

joint movements: flexion and

extension of the elbow, wrist,

finger, thumb and flexion of

the shoulder.

Strength: grip strength with a

handheld dynamometer

Jamar

range 0–200

Follow-up = post-treatment,

16 and 34 weeks

ARMin

Liao et al.

(2011)

Individuals with

chronic stroke

for at least 6

months.

Recruited from

Departments of

Physical Medicine and

Rehabilitation of three

medical centers in

Taiwan.

n = 20

Age (yr) = N/A

(SD = N/A)

Gender = 13M /

7F

Exp RT add = robotic

therapy + training in

functional activities

+ conventional therapy

(n = 10)

OI = conventional

therapy + training in

functional activities

(n = 10)

Exp RT add = 90–105

min/session; 5/wk x

4wk

OI = 90–105 min/

session; 5/wk x 4wk

Motor control: Fugl-Meyer

range 0–66

Follow-up = post-treatment

Bi-Manu-Track

Lin et al.

(2015)

Individuals with

chronic stroke, at

least 6 months.

Recruited at Taipei

Veterans General

Hospital in Taiwan.

n = 33

Age (yr) = 55.1

(SD = 10.5)

Gender = 28M /

5F

Exp RT = robotic

therapy (n = 16)

OI = conventional

therapy (n = 17)

Exp RT = 30min/

session; 3/wk x

4wkOI = 30min/

session; 3/wk x 4wk

Motor control: Fugl-Meyer

total range 0–66

shoulder/elbow range 0–42

wrist/hand range 0–24

Follow-up = post-treatment

Bilateral isometric

handgrip force

training Ya-May

Company

Lo et al.

(2010)

Individuals with

chronic stroke

for at least 6

months, who

were 18 years of

age or older.

Recruited from four

participating Veterans

Affairs medical centers.

n = 127

Age (yr) = N/A

(SD = N/A)

Gender = 122M

/ 5F

Exp RT = robotic

therapy (n = 49)

OI = usual care

different time and

frequency

(n = 28)

Exp RT = 60 min/

session; 3/wk x 12wk

OI = 60 min/session; 3/

wk x 12wk

Motor control: Fugl-Meyer

range 0–66

Spasticity: Modified

Ashworth Scale range 0–5

Pain: Visual Analogue Scale

range 0–10

Follow-up = 6, 12, 24 and 36

weeks

MIT-MANUS

Lum et al.

(2006)

Individuals with

a single subacute

stroke within the

past 1 to 5

months.

Not informed. n = 30

Age (yr) = N/A

(SD = N/A)

Gender = 20M /

10F

Exp RT = unilateral

robotic therapy (n = 9)

Exp = robotic therapy

bilateral (n = 5)

OI = conventional

therapy (n = 6)

Exp RT = 60 min/

session; 4wk

Exp RT = 60 min/

session; 4wk

OI = 60 min/session;

4wk

Motor control: Fugl-Meyer

shoulder/elbow range 0–42

wrist/hand range 0–24

Strength: Motor Power Scale

range 0–70

Spasticity: Modified

Ashworth Scale proximal

range 0–15 and distal range

0–30

Follow-up = post-treatment

and 24 weeks

Mirror Image

Movement Enabler

(MIME)

(Continued)
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Table 1. (Continued)

Study Health Condition Source Participants Intervention Duration and

frequency

Outcome measures Robotic Device

Masiero et al.

(2014)

Individuals with

a first, single

acute stroke

within 15 days,

aged �18 years.

Recruited from the

Stroke Unit in Italy.

n = 30

Age (yr) = N/A

(SD = N/A)

Gender = 20M /

10F

Exp RT add = robotic

therapy + conventional

therapy (n = 14)

OI = conventional

therapy (n = 16)

Exp RTadd = 120 min/

session; 5/wk x 5wk

OI = 120min/session;

5/wk x 5wk

Motor control: Fugl-Meyer

total range 0–66

shoulder/elbow range 0–42

wrist/hand range 0–24

Spasticity: Modified

Ashworth Scale range 0–5

Strength: Medical Research

Council biceps range 0–5

shoulder abduction, elbow

flexion, elbow extension,

wrist flexion, and extension.

Follow-up = post-treatment,

12 and 28 weeks.

NeReBot

McCabe et al.

(2015)

Individuals with

chronic stroke,

for at least 1 year,

aged between 21–

81 years.

Not informed. n = 35

Age (yr) = N/A

(SD = N/A)

Gender = 23M /

12F

Exp RT add = robotic

therapy + motor

learning (n = 12)

OI = motor learning

(n = 11)

Exp RT add = robotic

therapy (90 min)

+ motor learning (210

min); 5/wk x 12wk

OI = 300 min; 5/wk x

12wk

Motor control: Fugl-Meyer

total range 0–66

shoulder/elbow range 0–42

wrist/hand range 0–24

Follow-up = post-treatment

In Motion 2

shoulder-elbow

Robot

Page et al.

(2012)

Individuals with

chronic stroke,

for at least 12

months, aged

between 21–75

years.

Recruited using

approved

advertisements

distributed to local

stroke support groups

and outpatient

rehabilitation clinics.

n = 16

Age (yr) = N/A

(SD = N/A)

Gender = 11M /

5F

Exp RT add = robotic

therapy + repetitive task

specific practice (n = 8)

OI = repetitive task

specific practice (n = 8)

Exp RT add = 60 min/

session; 3/wk x 8wk

OI = 60 min/session; 3/

wk x 8wk

Motor control: Fugl-Meyer

range 0–66

Follow-up = 1 week post-

invertention

Myomo e100

Rabadi et al.

(2008)

Individuals with

acute stroke,

within 4 weeks of

admission.

Recruited from a stroke

unit in a Burke

Rehabilitation

Hospital.

n = 30

Age (yr) = N/A

(SD = N/A)

Gender = 19M /

11F

Exp RT

add = conventional

therapy + robotic

therapy (n = 10)

OI = occupational

therapy (n = 10)

Exp RT

add = conventional

therapy (180 min)

+ robotic therapy (40

min); 12 sessions; 5/wk

OI = 220 min; 12

sessions; 5/wk

Motor control: Fugl-Meyer

shoulder/elbow range 0–42

wrist/hand range 0–24

Strength: Motor power score

is obtained by assessing 14

movements at the scapular,

shoulder and elbow joints

range 0–70

Spasticity: Modified

Ashworth Scale across nine

groups of arm muscles range

0–45.

Pain: Pain Scale of Fugl-

Meyer range 0–24

Follow-up = post-treatment

MIT-MANUS

Ramos-

Murguialday

et al.

(2013)

Individuals with

chronic stroke,

for at least 10

months, aged

between 18–80

years.

Recruited from via

public information

(German stroke

associations,

rehabilitation centers,

hospitals) all over

Germany.

n = 30

Age (yr) = N/A

(SD = N/A)

Gender = 18M /

12F

Exp RT = robotic

therapy

+ physiotherapy

(n = 16)

MI = sham robotic

therapy

+ physiotherapy

(n = 14)

Exp RT = 5/wk x 4wk

MI = 5/wk x 4wk

Motor control: Fugl-Meyer

total range 0–54

shoulder/elbow range 0–30

wrist/hand range 0–24

Spasticity: Modified

Ashworth Scale range 0–56

Follow-up = post-treatment

Brain-Machine-

Interface

arm and hand

orthoses

ReoGo robotic arm

Reinkensmeyer

et al. (2012)

Adults with a

single stroke, for

at least 3 months.

Recruited through local

hospitals and stroke

support groups in

California.

n = 26

Age (yr) = N/A

(SD = N/A)

Gender = 17M /

9F

Exp RT add = robotic

therapy + conventional

therapy (n = 13)

OI = conventional

therapy (n = 13)

Exp RT add = 60 min/

session; 3/wk x 8wk

OI = 60 min/session; 3/

wk x 8wk

Motor control: Fugl-Meyer

range 0–66

Strength: Grip strength with

a Jamar Hand Dynamometer

range 0–200

Follow-up = post-treatment

and 12 weeks

Pneu-Wrex

(Continued)
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Table 1. (Continued)

Study Health Condition Source Participants Intervention Duration and

frequency

Outcome measures Robotic Device

Sale et al.

(2014)

Individuals with

a first acute

stroke, after

30 ± 7 days.

Recruited at San

Raffaele Pisana and

Auxilium Vitae

Rehabilitation Centre

in Italy.

n = 53

Age (yr) = N/A

(SD = N/A)

Gender = 31M /

22F

Exp RT = robotic

therapy

+ physiotherapy

(n = 26)

OI = conventional

therapy

+ physiotherapy

(n = 27)

Exp RT = robotic

therapy (45 min)

+ physiotherapy (180

min); 5/wk x 6wk

OI = conventional

therapy (45 min)

+ physiotherapy (180

min); 5/wk x 6wk

Motor control: Fugl-Meyer

range 0–66

Spasticity: Modified

Ashworth Scale elbow range

0–5

ROM: total passive range of

motion, as the sum of

shoulder and elbow

movements (shoulder

flexion/extension, abduction,

intra/extra rotation and

elbow extension) range

0–720

Strength: Motricity Index

(MI) as the sum of shoulder

and elbow movements

(shoulder flexion/extension,

abduction, intra/extra

rotation and elbow

extension) range 0–100.

Follow-up = post-treatment

MIT-MANUS

Sale et al.

(2014)

Individuals with

a first acute

stroke, for at least

30 ± 7 days, aged

between 18–80

years.

Not informed. n = 20

Age (yr) = N/A

(SD = N/A)

Gender = 14M /

6F

Exp RT = robotic

therapy

+ physiotherapy

(n = 11)

OI = conventional

therapy

+ physiotherapy (n = 9)

Exp RT = robotic

therapy (40 min)

+ physiotherapy (180

min); 4/wk x 4/wk

OI = conventional

therapy (40 min)

+ physiotherapy (180

min); 4/wk x 4/wk

Motor control: Fugl-Meyer

wrist/hand range 0–24

Strength: Medical Research

Council hand flexor and

extensor muscles range 0–5

Spasticity: Modified

Ashworth Scale range 0–5

Follow-up = post-treatment

and 12 weeks

Amadeo Robotic

System

Simkins et al.

(2013)

Individuals with

chronic stroke,

for at least 6

months, aged

between 23–69

years.

Recruited at University

of California.

n = 15

Age (yr) = N/A

(SD = N/A)

Gender = N/A

Exp RT = unilateral

robotic therapy (n = 5)

Exp = robotic therapy

bilateral (n = 5)

OI = repetitive task

practice (n = 5)

Exp RT = 90 min/

session; 2/wk x 12wk

Exp RT = 90 min/

session; 2/wk x 12wk

OI = 90 min/session; 2/

wk x 12wk

Motor control: Fugl-Meyer

range 0–66

ROM: elbow flexion 0–140˚

wrist flexion range 0–80˚

Strength: Manual muscle test

elbow and wrist range 0–5

Pain: Visual Analogue Scale

range 0–10

Follow-up = post-treatment

EXO-UL7

Susanto et al.

(2015)

Individuals with

chronic stroke,

within 6 to 24

months.

Not informed. n = 19

Age (yr) = N/A

(SD = N/A)

Gender = 14M /

5F

Exp RT = robotic

therapy + conventional

therapy (n = 9)

MI = non-assisted

robot + conventional

therapy (n = 10)

Exp RT = 60 min/

session; 4/wk x 5wk

MI = 60 min/session; 4/

wk x 5wk

Motor control: Fugl-Meyer

total range 0–66

shoulder/elbow range 0–36

wrist/hand range 0–24

Follow-up = post-treatment

and 24 weeks

The modified hand

exoskeleton robot

Timmermans

et al. (2014)

Individuals with

chronic stroke,

post-stroke

time � 8 months,

aged between 18–

85 years.

Recruited from

Adelante Rehabilitation

Centre (Hoensbroek,

NL).

n = 22

Age (yr) = N/A

(SD = N/A)

Gender = 16M /

6F

Exp RT add = robotic

therapy +

task-oriented training

method (n = 11)

OI = arm-hand training

program (n = 11)

Exp RT add = 30 min/

session; 4/wk x 8wk

OI = 30 min/session; 4/

wk x 8wk

Motor control: Fugl Meyer

range 0–66

Follow-up = post-treatment

and 24 weeks

Haptic Master

Volpe et al.

(1999)

Individuals with

acute stroke.

Recruited from

neurologic

rehabilitation service.

n = 12

Age (yr) = N/A

(SD = N/A)

Gender = 7M /

5F

Exp RT = robotic

therapy + conventional

therapy (n = 6)

MI = sham robotic

therapy + conventional

therapy (n = 6)

Exp RT = 60 min/

session; 5/wk

MI = 60 min/session; 5/

wk

Motor control: Fugl-Meyer

shoulder/elbow range 0–42

wrist/hand range 0–24

Strength: Motor power scale

shoulder/elbow (biceps,

triceps, and anterior and

lateral deltoid muscles) range

0–20.

Follow-up = 144 weeks after

discharge

MIT-MANUS

(Continued)
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17,20,25,26,38,40,43,46,48,50,51,55] evaluated spasticity using the Modified Ashworth Scale

(MAS). Twenty-one studies evaluated strength using six different instruments. Of these 21

studies, seven (33.3%)[15,21,39,40,46,51,58] used the Medical Research Council (MRC), three

(14.2%)[41,43,49] used the hand-held dynamometer, six (28.5%)[17,20,25,35,54,55] used the

Motor Power Scale (MP), two (9.5%) used the Manual Muscle Testing (MMT)[16,18] and the

Table 1. (Continued)

Study Health Condition Source Participants Intervention Duration and

frequency

Outcome measures Robotic Device

Volpe et al.

(2008)

Individuals with

chronic stroke

and who had

impaired arm

and hand

mobility for at

least 6 months.

Recruited form

outpatient clinic.

n = 21

Age (yr) = N/A

(SD = N/A)

Gender = 15M /

6F

Exp RT = robotic

therapy (n = 11)

OI = conventional

therapy (n = 10)

Exp RT = 60 min/

session; 3/wk x 6wk

OI = 60 min/session; 3/

wk x 6wk

Motor control: Fugl-Meyer

shoulder/elbow range 0–42

wrist/hand range 0–24

Strength: Motor Power Scale

shoulder and elbow range

0–70

Spasticity: Modified

Ashworth Scale passive

movements, across 9 muscle

groups range 0–5

Pain: Pain scale from the

Fugl-Meyer range 0–24

Follow-up = post-treatment

and 12 weeks

MIT-MANUS

Wu et al.

(2012)

Individuals with

unilateral

chronic stroke,

for at least 6

months.

Not informed. n = 42

Age (yr) = 54.4

(SD = 9.69)

Gender = 32M /

10F

Exp RT = robot-assisted

bilateral arm training

OI = conventional

therapy (n = 14)

Exp RT = 105 min/

session; 5/wk x 4wk

OI = 105 min/session;

5/wk x 4wk

Motor control: Fugl-Meyer

range 0–66

Follow-up = post-treatment

Bi-manu-track

Xu et al.

(2012)

Individuals with

6 months to 2

years after a

single mild to

moderate stroke,

aged 55 years and

above.

Recruited from

outpatients from

Zhongda Hospital

(affiliated with

Southeast University)

and Nanjing Tongren

Hospital.

n = 18

Age (yr) = N/A

(SD = N/A)

Gender = 11M /

7F

Exp RT = robotic

therapy (n = 9)

OI = conventional

therapy (n = 9)

Exp RT = 3/wk x 16wk

OI = 3/wk x 16wk

Strength: Maximum resistive

force with WAM control

program

Follow-up = post-treatment

Barrett WAMTM

Arm

Xu et al.

(2014)

Individuals with

chronic stroke,

aged 50 years and

over.

Recruited from

Zhongda Hospital

affiliated Southeast

University and Nanjing

Tongren Hospital.

n = 45

Age (yr) = N/A

(SD = N/A)

Gender = 27M /

18F

Exp RT = robotic

therapy (n = 23)

OI = conventional

therapy (n = 22)

Exp RT = 120 min/

session; 6/wk x 20wk

OI = 120 min/session;

6/wk x 20wk

ROM: Passive range of

motion with the assistance of

WAM or therapist for elbow.

Strength: Maximum resistive

force

Follow-up = post-treatment

Barrett WAMTM

manipulator

Yang et al.

(2012)

Individuals with

unilateral

chronic stroke,

within 6 months

to 5 years, with

an average age of

51.29 years.

Not informed. n = 21

Age (yr) = 51.2

(SD = N/A)

Gender = 14M /

7F

Exp RT add = unilateral

robotic therapy

+ functional task

practice (n = 7)

Exp RT add = bilateral

robotic therapy

+ functional task

practice (n = 7)

OI = standard

rehabilitation

(90–105 min/session)

(n = 7)

Exp RT add = unilateral

robotic therapy (75–

180 min) + functional

task practice (15–20

min); 5/wk x 4wk

Exp RT add = bilateral

robotic therapy (75–

180 min) + functional

task practice (15-

20min); 5/wk x 4wk

OI = standard

rehabilitation

(90–105 min/session);

5/wk x 4wk

Motor control: Fugl-Meyer

total range 0–66

shoulder/elbow range 0–42

wrist/hand range 0–24

Strength: Medical Research

Councilproximal (shoulder

flexors, abductors, elbow

flexors and extensors and

distal (flexors and extensors

of wrist and fingers) range

0–5.

Spasticity: Modified

Ashworth Scale range 0–4

Follow-up = post-treatment

Bi-manu-track

Yoo et al.

(2013)

Individuals with

chronic stroke

who had no

visual or

cognitive

problems.

Not informed. n = 22

Age (yr) = N/A

(SD = N/A)

Gender = 13M /

9F

Exp RT add = robotic

therapy + conventional

therapy (n = 11)

OI = conventional

therapy (n = 11)

Exp RT add = robotic

therapy (30 min)

+ conventional therapy

(60 min); 3/wk x 6wk

OI = conventional

therapy (60 min/

session); 3/wk x 6wk

Strength: Medical Research

Council range 0–5

Follow-up = post-treatment

ReogoTM

n = sample size; SD = standard deviation; Exp = experimental group; Con = control group; N/A = not available; OI = other intervention; MI = minimal intervention;

RTP = repetitive task practice; RT = Robot assisted therapy; wk = week(s); yr = year(s); min = minutes; h = hours; ROM = range of motion.

https://doi.org/10.1371/journal.pone.0200330.t001
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WAM control program[56,57], and one study[51] used the Motricity Index (MI). To homoge-

nize the data, Newton and kilogram-force values were converted into pounds. We arbitrarily

decided to use pounds because this was the most consistent unit among the studies. Five stud-

ies evaluated range of motion using three different measures. Of these 5 studies, three studies

(60.0%)[16,18,50] assessed range of motion using goniometer, one study[57] used the WAM

control program, and one study[41] used the mean distance between a marker placed on the

participant’s wrist and five targets. Six studies evaluated pain using three different instruments.

Of these 6 studies, three studies (50%)[16,18,26] used the Visual Analogue Scale (VAS), two

studies (33.3%)[25,56] used the Pain Scale of Fugl-Meyer, and one study[34] used the Chedoke

McMaster Stroke Assessment Pain Inventory Scale.

Methodological quality of the included studies

The detailed methodological quality of the included studies is presented in S1 Table on the

Addenda. The mean methodological quality of the 38 studies was 6.0 on the 0 to 10 PEDro

scale. Most studies included the following: between-group comparisons (n = 37 studies,

97.3%); precision and variability estimates (n = 35 studies, 92%); group similarity at baseline

and assessor blinding (n = 32 studies, 84.1%); and outcome measures for at least 85% of partic-

ipants (n = 27 studies, 71%). Concealed allocation was presented in 12 studies (31.5%), and

intention-to-treat analysis was presented in 10 studies (26.3%). The primary methodological

quality issues were related to the blinding of participants and therapists, which was included in

only three (7.9%) and two (5.2%) studies, respectively.

Effects of robot-assisted therapy

Five studies compared RT with minimal intervention (i.e., sham RT[35,48,54], exposure RT

[39,52]), twenty three studies compared RT with OI, i.e., conventional therapy[17,19,20,21,24,

34,36,37,41,43,45,50,51,55–57], usual care[26], repetitive task practice[16,18], intensive con-

ventional arm exercise program[22], physical therapy[38], electrical stimulation[23,40], and

ten studies investigated the additional effects of RT over OI, i.e., RT added to conventional

therapy[25,42,44,49,58], standard therapy[46], motor learning[27], repetitive task-specific

practice[47], an arm-hand training program[53] and functional task practice[15]. All 38

included studies reported short-term effects, 15 studies (39.4%) reported medium-term effects

[17,20,22,23,26,40–43,46,49,51–53,55] and one study[54] reported long-term effects.

Robot-assisted therapy versus minimal intervention. Pooled estimates showed no

effects of RT on motor control at short-, medium- or long-term follow-ups and no effects on

spasticity at short-, medium- or long-term follow-ups compared with minimal intervention

(p> 0.05). Detailed analyses are presented in Figs 2 and 3. The strength of the evidence ranged

from low- to very low-quality.

Robot-assisted therapy versus other intervention. The pooled estimates showed small

effects of RT on motor control and medium effects on strength compared with OI at the short-

term follow-up. The SMDs were, respectively, 0.3 (95% CI 0.1 to 0.4); and 0.5 (95% CI 0.2 to

0.8). Detailed analyses are presented in Figs 2 and 4. There is high- and very low-quality evi-

dence showing that RT has effects on motor control and strength, respectively, compared to

OI at the short-term follow-up.

Pooled estimates showed no effects of RT on spasticity, range of motion and pain at short-

term follow-up, or on motor control, spasticity and strength at medium-term follow-up, when

compared with OI (p> 0.05). Detailed analyses are presented in Figs 2 to 4 and S1 and S2 Figs.

The strength of the evidence ranged from low- to very low-quality.

Robot therapy on body function and structure

PLOS ONE | https://doi.org/10.1371/journal.pone.0200330 July 12, 2018 12 / 21

https://doi.org/10.1371/journal.pone.0200330


Fig 2. Standardized mean difference (95% CI) comparing RT or additional effect of RT versus MI or OI for motor control

of people with limited upper limb function. RT = Robot-assisted therapy; RT add = additional effect of Robot-assisted

therapy; OI = other intervention; MI = minimal intervention.

https://doi.org/10.1371/journal.pone.0200330.g002
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Additional effects of robot-assisted therapy over other interventions. Pooled estimates

showed no additional effects of RT on motor control, spasticity and pain at short-term follow-

up, or on motor control and spasticity at the medium-term follow-up in stroke compared with

stand-alone OI (p> 0.05). Detailed analyses are presented in Figs 2 and 3 and S1 and S2 Figs.

The strength of the evidence ranged from low- to very low-quality.

Subgroup analysis

We investigated the impact of methodological quality, portions of the assessed upper limb,

duration of stroke, and treatment dose and duration on the estimated short-term effects of RT

compared with OI (see detailed subgroup analyses in S3 Fig). Methodological quality, and

dose impacted the estimated effects for motor control. Poor methodological quality, and lower

treatment dose and duration may impact negatively the estimated effects.

Discussion

This review included 38 studies comparing the efficacy of RT with minimal intervention or

OI, and investigating additional effects of RT combined with OI on body function and struc-

ture in people with upper limb limitations caused by stroke. RT has small effects on motor

control and medium effects on muscle strength. Moreover, the methodological quality, portion

of the upper limb, treatment dose, duration and volume may impact the estimated effects. The

Fig 3. Standardized mean difference (95% CI) comparing RT or additional effect of RT versus OI or MI for

spasticity of people with limited upper limb function. RT = Robot-assisted therapy; RT add = additional effect of

Robot-assisted therapy; OI = other intervention; MI = minimal intervention.

https://doi.org/10.1371/journal.pone.0200330.g003
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current low-quality evidence suggests that estimated effects are likely to change with future

high-quality studies, and effects are not consistent among outcomes related to body function

and structure.

Our findings revealed that compared with OI, RT has statistically significant but small

effects on motor control and medium effects on strength. These short-term findings compar-

ing RT with OI are consistent with other reviews on stroke. Veerbeek et al.[12] showed a small

improvement on motor control and muscle strength and no effect on spasticity. Prange et al.

Fig 4. Standardized mean difference (95% CI) comparing RT versus OI for strength in people with limited upper limb function. RT = Robot-assisted therapy;

OI = other intervention.

https://doi.org/10.1371/journal.pone.0200330.g004
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[8] also found improvement on motor control at the short-term follow-up compared to con-

ventional rehabilitation.

Previous reviews[8,10] did not investigate the medium- and long-term effects. Despite this,

Norouzi-Gheidari et al.[10] suggested no effects on motor control at medium-term follow-up

when the same doses of RT and OI were used. Our results were consistent with those of the

previous study and suggest that upper limb motor control improvement occurs within the

short-term (� 3 months after stroke)[59]. Moreover, Prange et al.[8] found long-term effects

on motor control when RT was used compared to OI. Their findings were not consistent with

our results, and a possible explanation is that the previous review[8] included poor-quality

studies (i.e., non-randomized controlled studies). As suggested by Norouzi-Gheidari et al.[10],

future high-quality studies should confirm our findings because current evidence for the esti-

mated effect is very low and likely to change.

When comparing the efficacy of RT with minimal intervention at different time points,

despite trends favouring treatment, the current low-quality evidence showed no significant

effects. Susanto et al.[52] stated that there is an insignificant effect, but there are few studies,

and they have small samples.

The average methodological quality of the 39 included studies was 6 points on the 0 to 10

PEDro scale, ranging from 2 to 8 points. This quality was consistent with that reported by

Veerbeek et al.[12], with an average quality of 6.0 points. The primary methodological issues

were related to blinding, which is expected due to the difficulty of fulfilling these criteria in the

area of RT.

A subgroup analysis showed that the portions of the assessed upper limb influence the esti-

mated effects only for range of motion. These findings were not consistent with other studies

[9,10,12] and were similar to those reported by Mehrholz et al.[11]. Therefore, there is no con-

sensus on the impact of portions of the assessed upper limb, and current evidence is low but

likely to change with further high-quality studies that include larger samples. Subgroup analy-

sis also suggested a greater effect on motor control in chronic stroke, similar to most recent

review[28]. Subgroup analysis also suggested that when conventional therapy (CT) is used at

the same dose as robot-assisted therapy (RT), there is a significant effect on motor control,

unlike the findings reported by Kwakell[9]. Subgroup analysis also suggested an impact of the

number of sessions and treatment volume on some estimated effects. Greater number of ses-

sions seems to impact motor control, and greater treatment volume seems to impact motor

control. The effect of greater treatment dose was suggested by Lohse et al.[60]; however, time

as a dose representation is a rather crude estimate and provides no evidence of the actual

amount of movement or types of movement, nor does this representation take into account

periods of inactivity or rest[61]. In this regard, a previous review indicated that although there

is no consensus, the minimum dose should be at least 16 hours of training[62].

This review and the current literature have some potential limitations. First, there is only a

small number of randomized controlled studies that mainly investigate range of motion and

pain, and few studies comparing RT with minimal intervention at different time points. Sec-

ond, studies typically had small sample sizes. Third, subgroup analyses did not investigate

impact of types of RT devices, and dichotomization was a potential limitation to get full infor-

mation regarding the impact of the investigated factors.

Further high-quality randomized controlled studies with larger sample sizes are warranted

to elucidate more precise effects of RT on outcomes related to body function and structure,

especially the long-term effects. Studies comparing RT with minimal intervention should be

conducted, since the current evidence is very low-quality. These studies should report the

treatment dose and duration. Future studies should investigate whether RT is effective on
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psychological factors, and other outcomes related to the activity and participation domains in

the ICF. In addition, it is imperative to conduct studies on the cost-effectiveness of RT.

In conclusion, RT has small effects on motor control and medium effects on strength in

people with limited upper limb function caused by stroke. Poor methodological quality, and

lower treatment dose and duration may impact negatively the estimated effects. Clinicians

consider this approach because it has few or no side effects. In addition, there may be long-

term financial benefits to employing therapeutic robots. The current low-quality evidence sug-

gests that the estimated effects are likely to change with future high-quality studies and that the

effects are not consistent among outcomes related to body function and structure.

Supporting information

S1 Checklist. PRISMA checklist.

(DOC)

S1 Fig. Standardized mean difference (95% CI) comparing RT alone versus OI for range of

motion in people with limited upper limb function. RT = Robot-assisted therapy; OI = other

intervention.

(EPS)

S2 Fig. Standardized mean difference (95% CI) comparing RT or additional effect RT ver-

sus OI for pain of people with limited upper limb function. RT = Robot-assisted therapy;

RT add = additional effect of Robot-assisted therapy; OI = other intervention.

(EPS)

S3 Fig. Subgroup analysis investigating the impact of methodological quality, proximal

and distal portions of the upper limb, treatment dose, number of sessions, total volume

and duration of stroke on estimated effects of RT versus OI at short-term follow-up.

RT = Robot-assisted therapy; OI = other intervention; ROM = range of motion.

(EPS)

S4 Fig. Funnel plot of RT versus OI for short-term motor control.

(EPS)

S1 Table. Methodological quality of the included studies using the PEDro scale. Y = yes;

N = no.

(DOC)

S1 Appendix. Full search strategy conducted on October 16th 2015.

(DOC)

S2 Appendix. Extracted data.

(DOCX)

Author Contributions
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