Skip to main content
. 2017 Dec 13;14(4):20170056. doi: 10.1515/jib-2017-0056

Table 3:

Performance values (RMSE and R2) obtained for the different machine learning models trained with CIELAB data.

CIELAB data
TCC Spectrophotometry
TCC HPLC
trans-β-carotene
RMSE R 2 RMSE R 2 RMSE R 2
Partial least squares (simpls) 6.990 0.6022 6.789 0.4142 4.731 0.2371
Support vector machines (el071) 7.015 0.5350 6.645 0.3840 4.829 0.1506
Partial least squares (widekernelpls) 7.125 0.6221 6.696 0.3960 4.551 0.2794
Random forest 6.647 0.5124 7.571 0.2938 5.148 0.1532
Elastic net 6.456 0.5785 6.534 0.4129 4.787 0.1840
Partial least squares (pis) 6.939 0.5916 6.622 0.3946 4.667 0.2446
Ridge regression (w/FS) 6.638 0.5628 6.653 0.3895 4.S02 0.2020
Ridge regression 6.417 0.5681 6.584 0.4213 4.886 0.1774
Support vector machines (kernlab) 7.294 0.5040 6.534 0.3662 4.878 0.2043
Partial least squares (kernelpls) 7.121 0.5827 6.756 0.4319 4.785 0.2278
Linear Regression 6.295 0.5933 6.749 0.4004 4.937 0.2424
K-Nearest neighbors 6.636 0.5336 7.278 0.2569 4.997 0.2036
Lasso 6.412 0.5503 6.669 0.4110 4.826 0.1539
Conditional inference random forest 8.162 0.4385 6.930 0.4085 4.667 0.2066
Conditional inference tree 9.388 0.3063 7.307 0.3842 4.934 0.1105
Decision trees 9.990 0.2679 7.641 0.3534 5.015 0.2880

The total carotenoid content (TCC) determined by spectrophotometry (Lambert-Beer formula), the TCC determined by HPLC and the total content of trans-β-carotene (the most abundant carotene in cassava roots) were used as response prediction variables. The parenthesis indicate the package specific method chosen for the simulation. For each prediction variable used the best performance values are represented in bold.