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Abstract:

MicroRNAs (miRNAs) are involved in the post-transcriptional regulation of protein abundance and thus have
a great impact on the resulting phenotype. It is, therefore, no wonder that they have been implicated in many
diseases ranging from virus infections to cancer. This impact on the phenotype leads to a great interest in es-
tablishing the miRNAs of an organism. Experimental methods are complicated which led to the development
of computational methods for pre-miRNA detection. Such methods generally employ machine learning to es-
tablish models for the discrimination between miRNAs and other sequences. Positive training data for model
establishment, for the most part, stems from miRBase, the miRNA registry. The quality of the entries in miRBase
has been questioned, though. This unknown quality led to the development of filtering strategies in attempts
to produce high quality positive datasets which can lead to a scarcity of positive data. To analyze the quality of
filtered data we developed a machine learning model and found it is well able to establish data quality based
on intrinsic measures. Additionally, we analyzed which features describing pre-miRNAs could discriminate
between low and high quality data. Both models are applicable to data from miRBase and can be used for
establishing high quality positive data. This will facilitate the development of better miRNA detection tools
which will make the prediction of miRNAs in disease states more accurate. Finally, we applied both models to
all miRBase data and provide the list of high quality hairpins.
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1 Introduction

Disease phenotypes largely depend on the expression of genes and on their translation into proteins. MicroR-
NAs (miRNAs) are short endogenous RNA sequences which are involved in the post-transcriptional modula-
tion of protein abundance [1]. Thereby they have been implicated in many diseases ranging from virus-based
ones to cancer [2]. Many miRNAs have been established experimentally since their first detection [3]. Such miR-
NAs are stored in databases like miRTarBase [4] and miRBase [5]. Experimental detection of miRNAs is convo-
luted [6] and establishing an effect on the protein level makes the process even more complicated. Therefore,
computational methods which detect miRNAs directly from genomic or transcriptomic sequences have been
widely applied [7]. Most of the methods for pre-miRNA detection are based in machine learning [7] and thereby
need suitable examples for training an effective model. It is known that true negative data is not available [8]
and that the confidence in machine learning models based on two-class classification, therefore, is limited [7],
[8].

On the other hand, the quality of positive data which usually stems from miRBase has also been questioned
[9], [10]. For example, Bartel and colleagues rejected one third of all mammalian miRNAs in miRBase and
suggested 20 % new ones [9]. Wang and Liu developed a computational pipeline to filter miRBase entries based
on RNA-seq data [10]. They reported a number of inconsistencies in respect to the 3" and 5" ends of the mature
miRNA and the occurrence of miRNA* in Drosophila melanogaster (61 % accurate, 9.5 % miRNA*, 25 % 3’
variants, and 4.5 % 5’ variants) and Caenorhabditis elegans (86.2 % accurate, 4.8 % miRNA*, 7.8 % 3’ variants, and
1.2 % 5’ variants). Chen and colleagues proposed to use structure and expression to scrutinize miRBase entries.
In respect to structure they analyzed the location of the mature miRNAs within its pre-miRNA. Overall, they
rejected large percentages of the plant miRNAs in miRBase [11]. Tarver et al. [12] found, using strict criteria
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(based on Okamura et al. [13], Axtell et al. [13], Kozomara and Griffiths-Jones [14], and Tsutsumi et al. [15], that
none of the protist miRNAs similar to plant miRNAs were acceptable under their constraints. Donoghue and
colleagues also investigated plant miRNAs [16]. They applied modified criteria by Ambros et al. [17] for the
evaluation of about 7000 miRBase entries and found 30 % to be questionable. Peterson and colleagues reported
that only 30 % of human entries in miRBase are well supported by using strict criteria [18]. They also point out
that the aim of miRBase is not to scrutinize miRNAs, but to register them; which led them to create MirGeneDB
which houses filtered (robust) entries from miRBase. Jones-Rhodes cautions that many entries in miRBase could
be siRNAs instead of miRNAs [19], which helps explain why they appear in miRBase since their function is
similar.

These studies and our previous work [20] used a number of criteria to decide whether a miRBase entry is
robust. The complementarity between the two mature sequences (animals first 16 of 22, plants < 4 mismatches)
is often used as a criterion but the number of required matches varies. Evidence of expression for both mature
sequences is generally required with a lower expected abundance of the miRNA*. The reads that are mappable
to the pre-miRNA should further show low heterogeneity and display precise alignment on the 5 side (precise
cleavage). On the 3’ side some studies require a 2 nucleotide overhang between the two mature miRNAs. These
rules entail already that both mature miRNAs are within a pre-miRNA and located on the stem. A few studies
have additionally required the miRNAs not to match to other non-coding RNAs and/or not to have multiple
matches throughout the genome. The latter two criteria are questionable since a miRNA may exist in multiple
copies in a genome [21] and because miRNAs can come from any transcription unit [22].

Here we analyzed data from miRBase and MirGeneDB [18] and established how they can be scrutinized
to achieve a high confidence filtered positive dataset. To this end, we created a machine learning model us-
ing 1000-fold Monte Carlo cross validation with human data from miRBase as positive examples and pseudo
hairpins for negative examples. We then applied the model to analyze all pre-miRNAs from MirGeneDB and
miRBase. The interesting feature of our model is that with increasing quality of the data the positive prediction
rate increases. Therefore, the model appears to be independent of possible false-positive data used in its estab-
lishment. We assessed different features to filter positive data from miRBase and used our model to assess how
well the data was filtered. This leads to a list of features which are useful to separate the wheat from the chaff.
Additionally, the trained model can be used directly to remove such examples that are not named miRNA from
the positive data given a threshold (we successfully used the lower quartile from the MirGeneDB distribution
as a threshold). Using either method of filtering positive data will lead to more accurate pre-miRNA detection
models. Finally, we provide the list of filtered pre-miRNAs to avoid the need to recalculate the data.

2 Methods

2.1 Datasets

All 28,645 hairpins listed in miRBase release 21 were used for calculating features needed for performing pre-
dictions using izMiR (http://www.nature.com/protocolexchange/protocols/4919). Except for atr-MIR8591
(http:/ /www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0027479) which could not be analyzed using our
system, all other hairpins were processed. Regarding atr-MIR8591 it needs to be mentioned that this partic-
ular entry in miRBase has a hairpin length of 2354 nt, thereby, being the entry with the largest amount of nu-
cleotides (average for miRBase: 83.59 nt). This is by no means a typical miRNA and, therefore, we do not believe
that our approach is at fault. Since this is an extreme example (the only one of almost 30,000 and considering
that the other two large hairpins with more than 1000 nucleotides (sly-MIR9475 (1451 nt) and atr-MIR8598
(1411 nt); 27 hairpins > 500 nt in miRBase) were analyzed with no problems, atr-MIR8591 can be safely ignored
in our opinion. More information about the features and how to calculate them is available on our web site:
http:/ /jlab.iyte.edu.tr/software/mirna. The same procedure was applied to all 1434 hairpins from the four
species available in MirGeneDB v1.1 (http:/ /mirgenedb.org). The pseudo [23] dataset (8492 entries) was used
to simulate negative data although there is no quality guarantee for such data [8].

2.2 Pre-miRNA Detection

miRBase and MirGeneDB datasets with calculated features were further processed using izMiR which was de-
veloped using the data analytics platform KNIME [24]. Our platform izMiR provides several models and for
this study we chose Averagepr (average of decision tree prediction scores based on an ensemble of 13 indi-
vidual models) which was successful for most scenarios (http://www.nature.com/protocolexchange/proto-
cols/4919). Most notably, the accuracy of the Averagepr model, while trained using human data from miRBase
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and pseudo as negative data, mostly depends on the quality of test data [8]. Therefore, it can be used to analyze
different filtering strategies.

2.3 Quality Assessment of pre-miRNAs

In order to identify high confidence pre-miRNAs, we employed a number of strategies based only on data
available in miRBase and features that can be directly derived from that information.

1. miRBase entries were divided into two groups; one with RPM (reads per million) values less than or equal
to 100 and the other one with RPM values greater than 100 (more explanation provided in Section Section
3.1).

2. Simple k-means clustering (k =3, WEKA 3.7 in KNIME) was used to create a model based on the human
dataset in miRBase using about 900 features which was then applied to cluster all miRBase entries. k was
selected as 3, since we suspected that there should be at least 3 groups in miRBase in respect to quality.
The first group should represents true miRNAs with strong experimental support, the second group likely
consists of entries that might be true miRNAs but have some questionable properties, and the last group
will be entries that have very small chance of being a real miRNAs.

3. Simple k-means clustering (k=3, WEKA 3.7 in KNIME) was used to create a model based on the Mir-
GeneDB dataset and the obtained model was applied to cluster all entries in MirGeneDB.

4. Identical hairpin sequences between miRBase and MirGeneDB were extracted and these miRBase hairpins

were compared with the rest of its entries. This essentially is applying the same strategy as MirGeneDB
[18].

5. A species specific comparison was performed by using mouse data in miRBase by analyzing high confidence
mmu entries versus the remaining mmu hairpins.

6. Extending 5), miRBase high confidence (405 hairpins), miRBase low confidence (788 hairpins), and Mir-
GeneDB (395 hairpins) mouse miRNAs were compared.

7. Performance of miRBase and MirGeneDB entries were analyzed in a species specific manner.

8. Similarity between miRBase and MirGeneDB hairpin sequences were investigated by using normalized
Levenshtein distance (normalized to the length of the longer sequence).

2.4 Filtering miRBase

The Averagepr izMiR model was employed to analyze all miRBase entries and hairpins with a model score
above 0.862 (lower quartile of MirGeneDB, Figure 1). Hairpins with a score above the threshold were accepted
as confident pre-miRNAs.
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Figure 1: The model score distributions of all species in MirGeneDB individually and combined and their miRBase coun-
terparts (miRBase indicated with *). From left to right, the number of pre-mirNAs supporting the distributions are: 1434,
4160, 229, 740, 395, 1193, 523, 1881, 287, and 346.
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A machine learning model was established with high confident hairpins from miRBase as positive data and
low confident ones as negative data based on selected structural and thermodynamic features (Table 1). The
model was applied to all miRBase entries and all hairpins passing the prediction threshold (0.5) were accepted
as high confident pre-miRNAs.

Table 1: Features and their corresponding information gain scores enabling the separation between high confident and
low confident miRBase entries.

Feature IG Feature IG Feature I1G
mirbase_hpl 0.130 sl 0.106  %A++%G/sl 0.101
mwmF/hpl 0.116  clsp 0.105  %G++%A/sl 0.101
hpl 0.116  clep 0.105 %C++%U/hpl 0.101
%G++%U /hpl 0.109 #A++#C 0.104 %U++%C/hpl 0.101
%U++%G/hpl 0.109 #C++#A 0.104 ns/hpl 0.100
mwmkF/sl 0.109 Tm/sl 0.103  saln 0.099
%G++%U /sl 0.107  %A++%G/hpl 0.102  nl/hpl 0.098
%U++%G /sl 0.107  %G++%A/hpl 0.102 #A++#G 0.098
Tm/hpl 0.106 #C++#U 0.102 #G++#A 0.098
#mdn 0.106 #U++#C 0.102  %C++%U /sl 0.098

For more information about the features please refer to Supplementary Table 2 and http:/ /jlab.iyte.edu.tr/software/mirna/featureList.
Bolded features are based on structure and thermodynamics while the rest is sequence-based. IG, Information gain.

A list with all entries from miRBase and the rating of the two models was created and is available as Sup-
plementary Table 1.

3 Results

3.1 Individual Analyses in Respect to miRBase and MirGeneDB

Although there are many alternative databases claiming to provide better and higher quality miRNA data
like MirGeneDB [8] and miRTarBase [5] most of such repositories suffer from the limited number of organ-
isms included in their datasets and overall less amount of pre-miRNAs. Therefore, miRBase remains the stan-
dard source for positive data since it offers miRNA information for 223 species and contains almost 30,000
pre-miRNAs. However, for machine learning, it is essential to have high confident positive data. Considering
these issues it is essential to scrutinize the data obtained from miRBase to arrive at a high quality positive
dataset. It is furthermore convenient to use an intrinsic parameter to save computational efforts like aligning
large amounts of reads to pre-miRNAs. For example, RPM (reads per million) is a value provided for some
of the entries in miRBase. Applying this simple RPM measure, separating the datasets into lower (< 100) and
higher RPM (>100) support, leads to different distributions of the model prediction score distribution (Figure
2).
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Figure 2: Left box whisker plot shows the model prediction score distribution for 5449 miRBase hairpins randomly sam-
pled from 23,195 with a maximum RPM value of 100 (Minimum: 0.014, Lower whisker: 0.572, Lower quartile: 0.823, Me-
dian: 0.976, Upper quartile: 0.990, Upper Whisker: 0.992, Maximum: 0.992). The right part shows the distribution of the
model prediction scores for 5449 hairpins with RPM values greater than 100 (Minimum: 0.015, Lower whisker: 0.785,
Lower quartile: 0.909, Median: 0.986, Upper quartile: 0.991, Upper Whisker: 0.993, Maximum: 0.993).

Especially, the lower whisker and the lower quartile are affected by filtering using 100 RPMs also leading to
a lower interquartile range with 0.17 for low and 0.08 for high RPM support (Figure 2). For all other measures
of the distribution the one with higher RPM support has higher values. A highly similar distribution to the one
with lower RPM support was observed when using all entries instead of the random sample (not shown).

MirGeneDB was created to have a high confidence of hairpins filtered from miRBase. Cluster analysis is a
popular approach to group datasets based on the similarity of its elements [25]. Here we performed k-means
clustering (k = 3) for all miRBase entries and identified the MirGeneDB entries in the clusters, as well. Apply-
ing clustering led to three clusters with clearly different quality measures. This approach thereby allowed the
enrichment of confident positive data in one of the clusters (Figure 3).
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Figure 3: Clustering of miRBase hairpins. Out of 259 hairpins identical to MirGeneDB 145 of them located in Cluster 2,
24 of them are found in Cluster 1 and 90 are placed in Cluster 0. Overall Cluster 0 has 16,652 hairpins, Cluster 1 has 2801
hairpins, Cluster 2 has 9191 hairpins.

The average model prediction score for miRBase entries in cluster 2 is 0.957 and thereby is 0.198 and 0.135
points larger than for clusters 1 and 0, respectively. The distribution of model scores (Figure 4) leads to very
high scores in a narrow interquartile range (0.01) for cluster 2 (median: 0.989), followed by cluster 0 with a
similar maximum, but much larger inter quartile range (0.23) and lower median (0.915) (Figure 4). As the scores
indicate, median of prediction values for Cluster 2 is higher than upper quartiles of clusters 1 and 0.

1.0

o
(o]
1

o
(2]
1

(=]
~
1

Model prediction score
o
N

- s

Clusfer 2 Cluéter 0 Clus'ter 1

o
o
L



http://rivervalleytechnologies.com/products/

Automatically generated rough PDF by ProofCheck from River Valley Technologies Ltd

m—— Demirci and Allmer DEGRUYTER

Figure 4: Model score distribution for clusters 0-2 from Figure 3. Cluster 0: Minimum 0.012, Lower whisker 0.412,
Lower quartile 0.758, Median 0.915, Upper quartile 0.988, Upper Whisker 0.992, Maximum 0.992; Cluster 1: Minimum
0.015, Lower whisker 0.110, Lower quartile 0.628, Median 0.837, Upper quartile 0.973, Upper Whisker 0.993, Maximum
0.993; Cluster 2: Minimum 0.098, Lower whisker 0.965, Lower quartile 0.980, Median 0.989, Upper quartile 0.991, Upper
Whisker 0.992, Maximum 0.992.

Performing a similar clustering analysis for MirGeneDB entries also leads to clusters with different model
score distribution. Cluster 0 has a larger inter quartile range (0.218) compared to clusters 1 and 2 (0.080 and
0.075, respectively). The model score distributions are very similar for clusters 1 and 2 while cluster 0 shows
lower values for all measures.

3.2 Collective Analyses Involving miRBase and MirGeneDB

MirGeneDB only contains a fraction of the entries in miRBase (1434; 5 %), but they were extracted with the
intend to have a high confidence positive dataset [18]. We performed string matching between the MirGeneDB
entries and the miRBase entries and selected all matching ones in order to also account for duplicates in species
not represented in MirGeneDB. The model score distribution of the matches was then compared to the remain-
der of miRBase (Figure 5). Overall, 259 miRBase hairpins (234 unique sequences) have identical sequences to
278 MirGeneDB hairpins (312 exact matches in total). The quality of these 259 hairpins was compared to the
remaining 28,385 hairpins listed in miRBase (Figure 5).
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Figure 5: Performance of 259 mirbase hairpins exactly matching MirGeneDB entries (left): Minimum: 0.113, Lower
whisker: 0.804, Lower quartile: 0.907, Median: 0.977, Upper quartile: 0.988, Upper whisker: 0.992, Maximum: 0.993; and
rest of miRBase (right): Minimum: 0.012, Lower whisker: 0.596, Lower quartile: 0.833, Median: 0.979, Upper quartile:
0.990, Upper whisker: 0.993, Maximum: 0.993.

The model score distribution is higher for the matching sequences when compared to the remainder of
miRBase (Figure 5). Matches between MirGeneDB and miRBase have a lower upper quartile (0.988 vs. 0.990)
and a lower median (0.977 vs. 0.979). However, they have a much higher lower whisker, lower quartile, and
most notably a narrower interquartile range (0.081 vs. 0.157).

Following frequent reports of low quality data in miRBase, the platform reacted and now provides a high
confidence miRNA dataset in its latest release [26]. Similarly to above, we analyzed the high confidence mouse
dataset (miRBase HC) and compared it to the remaining low confidence mouse data in miRBase (miRBase LC),
and the MirGeneDB entries specific to mouse (Figure 6).
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Figure 6: Performance of mouse miRNAs in MiRBase High Confidence (MiRBase HC; 405 hairpins), MiRBase Low Con-
fidence (MiRBase LC; 788 hairpins), MirGeneDB (395 hairpins) and MiRBase Filtered (MiRBase F; 635 hairpins) filtered
using the Averagenr model (izMiR) with a model score threshold of 0.862.

The high confidence miRBase mouse dataset has a similar upper quartile to the MirGeneDB mouse dataset
(0.991 vs. 0.986), but a higher median (0.988 vs. 0.935), a higher lower quartile (0.914 vs. 0.839), and a smaller
interquartile range (0.077 vs. 0.147). The unfiltered mouse data in miRBase has much lower values for all mea-
sures of the distribution. The miRBase data filtered with our model according to a threshold of 0.862 according
to the lower quartile model score for MirGeneDB (Figure 1) naturally has a distribution with a minimum of
0.862. All other distribution measures are also better than for MiRBase HC.

MicroRNAs have been described for many species and miRBase hosts data for more than 200 of them. We
applied the izMiR Averagept model to all pre-miRNAs in miRBase and recorded the model score distribution
on a per species basis for all data in miRBase and for data filtered by RPM. In Figure 7 we report the median
score for these two cases and the unfiltered variant for species which have suitable RPM support for their
hairpins. While many species have very high median model scores for unfiltered data, the ones which have
low medians, are improved after filtering. For some species with high medians before filtering the median is
further improved after filtering. Conversely, data which is filtered out leads to lower median model scores. This
is reversed for csi (Citrus sinensis).
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Figure 7: The performance of all species listed in miRBase which have at least 1 hairpin with > 1 RPM. Median values
for hairpins having RPM values less than or equal to 100 (RPM < 100; blue), hairpins having RPM values larger than 100
(RPM > 100; blue) and all hairpins (nonfiltered; yellow) are compared.

Figure 7 is sorted by the median score after filtering, but there is no natural sorting of species following from
that. For example, aly is a plant species (Arabidopsis lyrata) and hsa stands for Homo sapiens and both are almost
adjacent to each other with very similar median model scores (0.985 and 0.980, respectively).

MirGeneDB has much less species recorded in its database and we performed the same analysis as above.
Model score distributions are quite similar for most species in MirGeneDB (Figure 1).

For reference, the model score distribution of the same species in miRBase is also provided in Figure 1. The
number of hairpins supporting the distributions from miRBase are always higher compared to MirGeneDB
generally containing about one third of the entries in miRBase. For the individual species and the overall data,
the miRBase distribution has lower values for lower whisker and lower quartile as well as a larger interquar-
tile ranges. Except for human (hsa) and Danio rerio (dre) where the model score distributions are very similar
between MirGeneDB and miRBase. For example, dre interquartile range is 0.095 and 0.079 for MirGeneDB and
miRBase, respectively. The largest interquartile range was found for chicken (gga) for miRBase data (0.384)
while the interquartile range for MirGeneDB was 0.119.

In order to extract high confident entries from miRBase, all entries resembling MirGeneDB entries with
less than 0.2 distance score (normalized Levenshtein distance). The model score distribution shows that high
confident entries were extracted (Figure 8).
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Figure 8: Model score distribution for 2139 miRBase hairpins with maximum 0.2 distance score to entries in MirGeneDB
(left). Right part shows the model score distribution for 26,505 hairpins with distance values greater than 0.2 to Mir-
GeneDB entries.

Hundreds of features have been proposed to describe a pre-miRNA [27]. In an attempt to employ these
features to identify high confident miRNA entries in miRBase, putatively high confident entries in miRBase
were selected as positive data (2139) and possibly low quality ones (26,505) were selected as negative data (see
Figure 8). Information gain was calculated to assign an importance to the features describing a pre-miRNA
in respect to differentiating between high and low confidence (Table 1). The features with higher information
gain are better able to separate between positive and negative data and hence between high confidence and low
confidence entries in miRBase.

Among the features that are able to separate between high and low confidence entries in miRBase are
sequence-based ones (e.g.: %G++#%U/hpl). Other features have a structural component like mwmF/hpl or
a thermodynamic one such as Tm/hpl.

3.3 Model Prediction

In order to determine whether the pre-miRNA detection model employed in this study can be used for assigning
confidence to miRBase hairpins, different thresholds were applied to analyze miRBase data (not shown). A
suitable threshold could be provided by the lower quartile of the MirGeneDB score distribution (Figure 1;
0.862). Applying the model using that threshold to all miRBase data leads to the overall rejection of 8400 hairpins
(~28 %). Conversely, 43 (0.5 %) hairpins from the pseudo dataset pass the threshold.

3.4 Feature Model

In order to identify high confidence entries in miRBase, we used all non-sequence-based features from Table
1 (12, bold). With these features we established a machine learning model using the high quality sequences as
positive data and the low quality ones as negative data (see Figure 8). For establishing the model we used a
randomly sampled 70-30 training/testing scheme with 1000 fold MCCV and equal amount of positive (0.91
threshold; 1601 hairpins; Figure 8) vs. negative data (below 0.91; p804 hairpins; Figure 8). Applying the model
using the default threshold (0.5) to all miRBase data leads to the overall rejection of 20,586 hairpins (72 %).

4 Discussion

Many microRNAs have been detected and many more are expected to be found [28]. However, finding miR-
NAs even using NGS data is complicated and most current miRNAs have no evidence on the protein level.
Additionally, it is futile to aim to determine all miRNA-mRNA interactions experimentally. Therefore, com-
putational models are necessary and these models depend on training data [8]. While negative training data
is of unknown quality, positive training data should be of high confidence. Unfortunately, much of the data in
miRBase, the de facto source for all positive data used in machine learning to determine miRNAs is riddled with
false positive entries (perhaps related sequences like siRNAs, snoRNAs, etc.). Therefore, we analyzed the data
on miRBase and investigated different filtering strategies to distil a high confidence dataset.

By performing filtering based on reads per million (Filtering Strategy 1), an increase in the prediction per-
formance is possible (Figure 2). This is further confirmed through analysis of the median model score on a per
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species basis in miRBase (Figure 7). However, it also becomes clear that sufficient evidence on the transcript
level is only available for few species in miRBase and that RPM abundance, while effective, cannot completely
differentiate between high confident and low confident samples (Figure 7). This observation is inline with other
studies which have used the location of the mature sequence, additional read alignment and other parameters
to further investigate hairpin confidence.

It is our aim to establish confidence in miRBase entries without the use of additional transcriptomic data
or the reliance on different levels in the miRNA genesis pathway like the location of the mature miRNA. Hun-
dreds of features have been proposed for pre-miRNA detection and it is likely that some of those features, or
a combination of them, are able to discriminate between high and low confidence hairpins in miRBase. A first
attempt was clustering based on the feature vectors of all pre-miRNAs in miRBase. Three clusters were gener-
ated using k-means clustering and it was possible to enrich a cluster in confident miRBase entries (Figure 3).
In the future, this could be improved iteratively to arrive at different quality datasets. Cluster 1 has the lowest
distribution and is therefore likely enriched with pre-miRNAs from miRBase that could be false positives (Fig-
ure 4). The same analysis was done for MirGeneDB where cluster 0 likely contains non miRNAs and clusters 1
and 2 probably are enriched in true miRNAs (Figure 9). Our previous analysis of mouse data from MirGeneDB
confirms that there are still non-miRNAs in the MirGeneDB dataset [8]. The low quality data from miRBase has
a very unfavourable distribution of model scores when compared to the other datasets (Figure 6). Conversely,
and expanding on our previous results, here we show that mouse data from miRBase can be filtered effectively
while still retaining more hairpins than other approaches (Figure 6).
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Figure 9: Performance of clusters in MirGeneDB data. Overall Cluster 0 has 402 hairpins, Cluster 1 has 563 hairpins and
Cluster 2 has 469 hairpins. Cluster 0: Minimum 0.113, Lower whisker 0.438, Lower quartile 0.753, Median 0.877, Upper
quartile 0.971, Upper Whisker 0.992, Maximum: 0.992; Cluster 1: Minimum 0.230, Lower whisker 0.788, Lower quar-
tile 0.908, Median 0.980, Upper quartile 0.988, Upper Whisker 0.992, Maximum:0.992; Cluster 2: Minimum 0.447, Lower
whisker 0.802, Lower quartile 0.913, Median 0.985, Upper quartile 0.988, Upper Whisker 0.992, Maximum:0.992.

While there are relatively few entries in MirGeneDB, they are of high confidence as can be seen from Figure 5
where the score distribution for the MirGeneDB subset and the remainder of miRBase was analyzed. The model
score distribution is better for the subset when compared to the remainder of miRBase (Figure 5). This means
that MirGeneDB succeeded in extracting high confidence miRNAs from miRBase. However, the distribution for
miRBase is also quite well which means that a large portion of the entries in miRBase are also of high confidence.

Additionally, while having a similar number of hairpins, the model score distribution is better for the miR-
Base high quality dataset when compared to the MirGeneDB dataset (Figure 6).

Since there may be species specific characteristics of miRNAs it may be beneficial to use positive data from
the organism of interest for machine learning. Therefore, we applied our izMiR model to all species in miRBase
which have at least one hairpin with more than 0 and less than 100 read support and at least one hairpin with
more than 100 read support. Only 35 (~16 %) species fulfilled these criteria (Figure 7). Of these species, most
have high quality data while the ones with lower quality data were pinpointed by lower model score median for
hairpins with less than 100 read support and conversely, the subset with more than 100 read support generally
showed increased model score medians (Figure 7). This supports our previous work where we showed that
the izMiR model (trained on human) is applicable to all species and speculated that the decrease in positive
prediction rate for some species was due to false positive examples (Sagar Demirci et al. [29] [accepted for
publication]; http:/ /www.nature.com/protocolexchange /protocols/4919).

Since MirGeneDB entries were of high confidence and since the izMiR model is widely applicable we used
the izMiR model with the lower quartile of the MirGeneDB entries as a threshold to analyze all entries in miR-
Base. Twenty eight percent of the entries in miRBase were rejected in that manner, which is in line with previous
reports of 30 % entries in miRBase being questionable (Taylor et al. [30], Chiang et al. [9]). Since the izMiR model
was established using miRBase data, we wondered whether a different approach would lead to similar result.
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Therefore, we used high confidence miRBase entries as positive data and low confidence ones as negative data,
established a machine learning model, and extracted the features that separate between the datasets. Applica-
tion of the model to all miRBase data led to the rejection of about 70 % of entries in miRBase. While this is similar
to what Peterson and colleagues found for human (Fromm et al. [18]), it seems very restrictive; and others have
not found such a large percentage of questionable hairpins [11], [12], [13], [14], [15], [16], [17]. Both models we
created were applied to all data in miRBase and all entries were scored and rated providing a comprehensive
positive dataset. Out of the 28,644 entries in miRBase 72 % pass the Averagepr, 28 % the feature model, and
24 % both models (Supplementary Table 1). We suggest to use the Averagepy decision as a filter mechanism but
if more stringency is needed, the miRBase entries passing both models could be useful.

5 Conclusion

Computational detection of pre-miRNAs directly from the genome and in RNA-seq data is important since
experimental methods are convoluted. This is usually achieved by machine learning which depends on training
data. Unfortunately, true negative data is unavailable. Therefore, the analysis of the positive data is needed
to increase the overall confidence in established machine learning models. Here we analyzed miRBase and
MirGeneDB data and found that miRBase contains about 28 % low confident entries while MirGeneDB also
seems to contain a number of questionable entries (Figure 9). The Averagepr model of our izMiR platform
allows the successful filtering of miRBase entries while retaining more entries for mouse than MirGeneDB or
the high confidence data provided by miRBase. We applied our model and an alternative one we established
in this study to all entries in miRBase and distilled a high confidence dataset in this manner. For all entries we
indicate the decision of Averagepr and our feature model which can furthermore be combined into an ensemble
decision for highest confidence. This high confidence dataset will enable the establishment of more successful
machine learning models and increase the confidence in findings in the area of hairpin detection which is also
important for the analysis of dysregulation in diseases like cancer.
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