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Abstract

Hi-C technologies are widely used to investigate the spatial organization of genomes. Because 

genome structures can vary considerably between individual cells of a population, interpreting 

ensemble-averaged Hi-C data can be challenging, in particular for long-range and inter-

chromosomal interactions. We pioneered a probabilistic approach for generating a population of 

distinct diploid 3D genome structures consistent with all the chromatin-chromatin interaction 

probabilities from Hi-C experiments. Each structure in the population is a physical model of the 

genome in 3D. Analysis of these models yields new insights into the causes and the functional 

properties of the genome’s organization in space and time. We provide a user- friendly software 

package, called PGS, which runs on local machines (for toy runs) and high- performance 

computing platforms. PGS takes a genome-wide Hi-C contact frequency matrix along with 

information about genome segmentation and produces an ensemble of 3D genome structures 

entirely consistent with the input. The software automatically generates an analysis report, and 

provides tools to extract and analyze the 3D coordinates of specific domains. Basic Linux 

command line knowledge is sufficient for using this software. A typical running time of the 

pipeline is about 3 days with 300 cores on a computer cluster to generate a population of 1,000 

diploid genome structures at TAD level resolution.
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INTRODUCTION

The question of how a genome is intricately packed inside the nucleus has sparked a 

burgeoning field of study. Advanced Hi-C techniques are generating rich datasets of the 

contact frequencies between chromosome regions, which are extremely valuable for 

investigating the spatial organization of the genome1–9. Reconstructing the genome in 3D is 

an appealing approach to understanding the relationship between genome structure and 

function. However, the 3D organization of the genome varies greatly between cells9– 13. This 

variability poses a great challenge to interpreting ensemble Hi-C contact frequencies, which 

are averaged across an ensemble of cells. Long-range and inter-chromosomal interactions, 

which have low frequencies to begin with, are particularly difficult to integrate into 

consistent 3D models8,14–20. To address this challenge, we recently introduced the concept 

of population-based genome structure modeling. This probabilistic approach deconvolves 

the ensemble Hi-C data and generates an ensemble of distinct diploid 3D genome structures 

that is fully consistent with the input dataset of chromatin-chromatin interactions. Hence, 

our method explicitly models the variability of 3D genome structures across cells8,19. 

Moreover, because the generated population contains many different structural states, 

mutually exclusive interactions (often low-frequency, long-range interactions) can be 

accommodated by incorporating these in different structures. As a result, almost all observed 

chromatin interactions can be considered and alternative chromatin structural states can be 

analyzed in detail20. Our method is sufficiently flexible to integrate additional experimental 

information (e.g. Lamina DamID21) and model the genome at various levels of resolution.

Data-driven genome modeling approaches can be divided into three categories: i) consensus 

methods, ii) resampling methods, and iii) population-based deconvolution method22 (see a 

comparison in Table 1). Consensus methods generate a single structure from ensemble Hi-C 

data23,24 by relating contact frequencies with spatial distances, which are then used to 

generate a single 3D structure by optimizing a scoring function3,23–26, a likelihood function 

through Bayesian inference27, or solving a generalized linear model28. These methods are 

conceptually simple and computationally time efficient. However, by generating a single 3D 

model they cannot simultaneously reproduce all the contacts present in the Hi-C experiment, 

nor can they represent the considerable structural variability of genome structures between 

cells, which calls into question that a single-structure approach can fairly represent the 

complexity of genome structures. In contrast, resampling methods, such as TADbit29 and 

MCMC5C30 optimize many structures from the same scoring function to consider aspects of 

genome structure variability. TADbit performs many independent optimizations starting 

from random configurations using IMP31,32, while MCMC5C calculates an ensemble by 

assuming independency after large numbers of iterations in Markov chain Monte Carlo 

sampling30. Both methods mainly focus on 5C (Chromosome Conformation Capture Carbon 

Copy)33 data, which typically span several hundred kilo bases. Resampling is also applied 

by other methods like InfMod3Dgen34 and non-distance based methods like MOGEN35,36, 

and Chrom3D37. Gehlen et al. and Meluzzi et al. built polymer models at ~4kb resolution 

using a resampling strategy16,38. Common to all resampling methods is that usually the same 

input dataset is applied to all structures of the ensemble, which can include conflicting data 

from mutually exclusive chromatin conformations. This may lead to inconsistencies between 
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data and models (i.e., restraints violations) when the complete data is considered 

simultaneously in a single structure.

In contrast to resampling methods, population-based deconvolution approaches deconvolve 

ensemble Hi-C data into a population of individual structures. These structures reproduce 

ensemble Hi-C data by distributing chromatin contacts across all structures of the 

population8,17,18, rather than imposing the same data set on each structure individually. As a 

result, structures can be in different conformational states, which could contain chromatin 

contacts that would otherwise be mutually exclusive when imposed on the same structure. 

They can typically reproduce almost all the contacts from Hi-C experiments without 

generating unphysical structures from imposing conflicting data in a structure. Previously, 

we developed one of the first population-based deconvolution methods for modeling diploid 

genomes from Hi-C data8. Another approach, developed by Giorgetti et al., uses an iterative 

Monte Carlo scheme to generate a population of chromatin loci spanning 780 kb17. Zhang et 

al. uses the maximum entropy principle and molecular dynamics to model mouse 

chromosomes18. However, software packages of population-based deconvolution methods 

have not been openly available and neither of them can currently be used to interpret Hi-C 

data on a diploid whole genome scale.

In this paper, we provide the protocol to run our software pipeline, named PGS (Population-

based Genome Structure), which has been substantially improved from the earlier version. 

Briefly, we employ a structure-based deconvolution of Hi-C data and optimize a population 

of distinct diploid 3D genome structures by maximizing the likelihood of observing the Hi-C 

data. Because there is no closed form solution, we employ an iterative and step-wise 

restraint optimization procedure. Each iteration involves two steps: constraint assignment 

(termed the A-step) and optimizing the structure population with a combination of the 

simulated annealing and conjugate gradient methods31,39,40 (termed the M-step). We 

increase the optimization hardness in a step-wise manner by gradually adding more contact 

constraints during the iterative optimization process (Fig. 1). Importantly, by embedding an 

ensemble of genome structures in 3D space as part of the optimization process, the method 

can detect which chromatin contacts are likely to co-occur in individual cells. Hence, the 

population represents a deconvolution of the Hi-C data into individual structures and domain 

contacts; it is the best approximation to the underlying true population of genome structures 

in the Hi-C experiment, given the available data and assumptions. Because our approach 

considers the stochastic nature of chromosome conformations it allows analysis of alternate 

chromatin structural states20. Our expectation-maximization (EM) modeling framework is 

extendable for integration of other data sources, for example combining Hi-C with Lamina 

DamID data21. The chromatin domain contacts of the structure population as a whole are 

statistically highly consistent with the Hi-C data.

Our PGS modeling package takes two inputs: an experimental Hi-C contact frequency map, 

and a segmentation of the genome sequence into chromatin domains (e.g., Topological 

Associated Domains, henceforth TADs) (Fig. 2). PGS generates a population of 3D genome 

structures where each domain is represented as a sphere, and the distribution of physical 

contacts between domain spheres across the population reproduces the Hi-C experiment. 

The software automatically generates an analysis of the structure population, including a 
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description of the model quality based on its contact probability agreement with experiments 

and various structural genome features, including the radial nuclear positions of individual 

chromatin domains. The software also comes with a set of additional tools to facilitate user 

customized analysis, such as a tool for exporting PDB structures for visualization. The 

individual genome structures also contain a wealth of information and can be used to detect 

higher-order structural patterns of chromatin regions (as described in Ref.8). As gold 

standard assessment, it is necessary to compare defined structural features from the structure 

population with independent experiments not included as input information when generating 

the models, for example, such information may be distances between specific loci from 3D 

FISH experiments19, contact frequencies between chromatin and the nuclear envelope from 

lamina DamID experiments21 or spatial features extracted from soft X-ray tomography 

experiments19.

Limitations of PGS

The major drawback of PGS is the intense computational resources required by the pipeline 

as it relies on optimizing a large number of genome structures (typically 1,000–10,000 

structures). Depending on the computational resources, this requirement may practically 

limit the model resolution for calculating entire diploid genome structures of mammalian 

cells to ~50 to ~100kb resolution. For parallel computing, PGS currently supports only the 

Sun Grid Engine (SGE) and Portable Batch System (PBS) workload managers, e.g. Torgue. 

Other workload managers and cloud computing is not support yet. Also, Python 3 is not 

supported at this moment.

Software design and implementation

The PGS package generates a large number of genome structures, which constitute an 

optimized structure population consistent with the input data. The complexity of this 

computational problem originates also from the large scale of the input data (high-

resolution, genome-wide Hi-C contact frequencies), which must be processed to generate 

constraints on the structure population. To meet this computational challenge, PGS has been 

designed to run in a high-performance computing (HPC) environment, such as Sun grid 

engine (SGE) or Torque. We have also designed PGS to work on a laptop or personal 

computer, but this application should only be used to generate a small population of 

structures (around 100 for testing purposes). PGS is implemented as a single Python 

software package for ease of installation and use. We wrapped the source code in pyflow 
(https://github.com/Illumina/pyflow), a lightweight parallel task engine developed by 

Illumina, which runs the whole complex simulation process through a single command 

without any intermediate human intervention. Note that while the original pyflow library 

only supports local computers and SGEs, we developed a modified version of pyflow, called 
pyflow-alabmod (https://github.com/shanjunUSC/pyflow-alabmod) allowing PGS to run in a 

HPC environment with PBS (Portable Batch System) script. In addition to PGS, users must 

install the independent modeling software IMP (version 2.4 or above), which can be 

downloaded from https://integrativemodeling.org/. Users should also install Python 2 

(version 2.7 or higher) and its libraries, including numpy, matplotlib, pandas, h5py, seaborn, 

and scipy (web addresses indicated in the Materials section). To provide flexibility, we 

divided the whole workflow into three independent, consecutive stages (Fig. 2):
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1. Producing a domain-domain contact probability matrix from the input Hi-C data. 

(Step 2, matrix building)

2. Generating the optimized structure population. (Step 2, modeling step)

3. Producing a basic analysis summary for the resulting structure population. (Step 

3–5)

Users who already have a domain-domain contact probability matrix can skip Step 2, matrix 

building via the graphical user interface (GUI) (Fig. 3a) by selecting TAD-TAD Prob option. 

By default, PGS takes a raw (Hi-C) contact matrix as the input (Fig. 3b). In any case, even if 

the user skips this matrix building step, they must provide a text file containing the 

chromosome segmentations (i.e., the domain or TAD definitions; Fig. 3c). The required file 

formats are described in the Materials section.

PGS comes with a GUI to help new users generate the input configuration file (a json file). 

For an experienced user, it is straightforward to directly modify the input configuration file. 

This file contains the location of the raw Hi-C matrix file, the location of the chromatin 

segmentation or TAD definition file, modeling parameters, and system parameters. The first 

component normalizes the raw Hi-C contact map using KR-normalization41,42 and generates 

a TAD-level contact probability matrix. The second component generates an optimized 

population of a given number of genome structures through the iterative A-step and M-step 

cycles. The third component produces a report on the quality of the optimization, as well as 

basic structural analyses such as contact frequency heat maps and the average nuclear radial 

position of each TAD (Fig. 4).

MATERIALS

Equipment

A workstation with Linux or Mac OS X system, or HPC cluster with 2Gb of RAM 

per computing node.

PGS (https://www.github.com/alberlab/PGS).

CRITICAL PGS is a Python 2.7 package which runs on Linux and Mac OS X 

systems.

Python 2.7 (http://www.python.org/)

Numpy 1.12.0(http://www.numpy.org/)

Scipy 0.18.1 (http://www.scipy.org/)

Matplotlib 2.0.0 (http://matplotlib.org/)

Pandas 0.19.2 (http://pandas.pydata.org/)

H5py 2.6.0 (http://www.h5py.org/)

Seaborn 0.7.1 (http://seaborn.pydata.org/)

IMP (Integrative Modeling Package) version 2.4 or later (https://

integrativemodeling.org/)
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JavaSE version 6 or later (https://www.java.com/) if the user want to use graphic user 

interface (GUI)

Input files (see Box 1)

Box 1

Input files for PGS

Prepare the experimental data. Depending on options chosen by the user during 

configuration, PGS can take different kinds of input files.

Option 1 (raw + TAD definition). The user provides a raw contact frequency matrix 

(uniformly binned) and TAD index information. PGS generates a TAD-TAD contact 

probability matrix from the raw data and automatically proceeds to the modeling 

component. This option requires two input files:

File 1: Genome-wide chromatin-chromatin interaction matrix, where each of the N 

rows describes one bin of the Hi-C data. This text file can be gzip or bzip 

compressed. It is formatted as follow (see Fig. 3b).

• No header

• Column 1: chromosome name (e.g. Chr1, Chr2, …, ChrX)

• Column 2: start genomic position of the Hi-C bin (0-based)

• Column 3: end genomic position of the Hi-C bin (1-based)

• Columns 4 to N+3: contact vector of the bin with all other bins (i.e. 

contact matrix) (integers)

There is also a wide range of existing storing methods for sharing Hi-C data. In 

addition to the raw dense matrix storing method we also provide support for *.hic 

(https://github.com/theaidenlab/juicer/wiki/Data)43 and *.cool (https://github.com/

mirnylab/cooler) data files. With the correct file extensions, data in these formats 

can be directly processed by PGS.

File 2: Chromosome segmentation file, where each row defines one topological 

associated domain (Fig. 3c). This text file has the BED file format:

• No header

• Column 1: chromosome name (e.g. Chr1, Chr2, …, ChrX)

• Column 2: start genomic positions of TAD (0-based)

• Column 3: end genomic positions of TAD (1-based)

• Column 4: flag for the kind of TAD (“domain”, “gap”, “CEN”)

Option 2 (TAD-TAD probabilities + TAD information). In this case, the user has already 

prepared a TAD-TAD contact probability matrix and must also provide the TAD 

definitions in a file. The two input files have the same formats as files 1 and 2 in Option 
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1. The bins in the first file represent TADs and the matrix elements must be probability 

values between 0 and 1.

Option 3 (hdf5 prob). The user provides a TAD-TAD contact probability matrix that was 

generated by PGS. This option is useful for producing independent structure populations 

from a different random initialization of the structures, or for testing different model 

parameters using the same input data.

Equipment setup

Installation of PGS—We recommend following the installation instructions from our 

online documentation (http://pgs.readthedocs.io/en/latest/quickstart.html). The easiest way 

to install PGS is to use a conda package manager. Both Anaconda (https://

www.continuum.io/downloads) and the minimal package Miniconda (http://

conda.pydata.org/miniconda.html) are suitable for managing all the required packages, 

including IMP. Once the PGS package has been downloaded along with all the dependencies 

mentioned above, set up the package using the following command.

$ python setup.py install

The script “ setup.py” is located in the PGS directory. To confirm that PGS is installed 

properly, users can execute the following shell commands.

$ cd test

$ sh runPgs_workflow_test.sh

This process should take less than two minutes on any current computing workstation. Users 

are encouraged to run “ runPgs_workflow_test.sh” and 

“ runPgs_probMat_run_test.sh” bash scripts located in test directory to test if the 

installation is successful.

PROCEDURE

Generate the configuration file and execution script. Timing: less than 10 minutes

1 Use the graphical user interface (GUI) called PGS-Helper (requires Java) to 

generate the configuration file and execution script (option A). More 

experienced users can modify the prepared configuration file and execution 

script directly (option B). 11

A. Using PGS-Helper (if Java is installed)

i. Open PGS-Helper by running the following command:

$ java –jar PGSHelper.jar
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The command will display the PGS GUI (Fig. 3a) prompting the user to enter the 

needed information. In Table 2 we describe the fields displayed in the GUI. Most 

of the fields are pre-populated, so the user can just review and modify them if 

necessary. There are 4 blank fields that the user must complete, i.e. ‘Working 

Directory”, “PGS Source Directory” and “Raw Matrix(txt)” and “TAD file 

(.bed)” in the Input section of the GUI. ?Troubleshooting

ii. Click the “Generate” button at the bottom. The user then can review the usage in 

the bottom box, and confirm to generate the configuration 

( input_config.json) and executable files ( runPGS.sh).

B. Check and modify the configuration and executable files directly

i. In case users do not have Java installed to run the PGS Helper program, the 

package also provides examples to set the parameters in a text file. Open the 

configuration file “ input_config.json” (Box 2) and “ runPGS.sh” (Box 3) 

in the pgs/test directory, and modify them as needed.

Box 2

Editing Guideline for input_config.json

This is an example of input_config.json file. Each parameter is explained in brackets. 

Refer to Table 2 for more detailed information for each parameter. There are also 

examples in pgs/test directory, which can be easily modified.

 {“source_dir” : “[Directory name where pgs socurce is]”,

  “input” : {

     “contact_map_file_hdf5” : “[Contact map file]”,

       “TAD_file” : “[ TAD file, .bed format]”

       “resolution” : “[Resolution of input contact_map_file] e,g. 100000”

       “genome” : “[Genome version], e.g. hg19”

     },

  “output_dir” : “[Output Directory to store the results], e.g.

$PROJECT_DIR/result”,

 “modeling_parameters” : {

     “theta_list” : [Theta list] e.g, [“1”, “0.2”, 

“0.1”,”0.05”,”0.02”,”0.01”],

      “num_of_structures” : [Number of structure to generate] e.g. 10000,

       “max_iter_per_theta” : [Max Iterations per job] e.g. 10,

       “violation_cutoff” : [Violation Cutoff ] e.g. 0.005

       “chr_occupancy” : [Chromosome Occupancy ] e.g. 0.2

       “nucleus_radius” : [Nucleus Radius ] e.g. 5000.0

    },

   “system” : {

        “max_core” : [Maximum number of cores in a single node], e.g. 8,
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        “max_memMB” : [Maximum size of mem(MB) in a single node] e.g. 

64000,

        “default_core” : [Default number of cores], e.g. 1,

        “default_memMB” : [Default size of mem(MB)] e.g. 1500

    }

}

Box 3

Editing Guideline for runPGS.sh

This is an example of runPGS.sh file. This is a bash command line file with only one 

simple command. Please replace parameters starting with the dollar sign ‘$’ with the 

actual directory name. Please also modify parameters after double dash flags. There are 

also examples in the pgs/test directory, which can be easily modified.

python $PGS_DIRECTORY/pgs.py

--input_config $PROJECT_DIR/input_config.json

--run_mode [running platform]

--nCores 300

--memMb 800000

--pyflow_dir $PROJECT_DIR

--schedulerArgList [“-q”,”[qname]”,”-l”,”walltime=100:00:00”]

Run PGS. Timing: 3d to 2 weeks, depending on parameters

2 After the configuration file and execution script are generated, execute PGS with 

the following command.

$ sh runPgs.sh

This step consists of 2 parts: matrix building and modeling. These two parts are 

consecutively executed automatically.

The matrix building step is a general preprocessing of Hi-C contacts. The 

purpose of this step is to convert the raw Hi-C count matrix to a probability 

matrix. The details of this procedure can be found in the Supplementary Data.

The modeling step is also fully automatic. Structure populations (Fig. 4a) will be 

generated and stored in structure directory (See anticipated results for more 

information)

CRITICAL STEP If an unexpected error occurs during the run, a simple restart 

of the step will usually fix the problem.
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?Troubleshooting

Analysis. Timing: ~1h

3 Analyse the data using the tools offered in the PGS package (details can be 

found at http://pgs.readthedocs.io/en/latest/tools.html) or by customizing tools 

using alab API (http://pgs.readthedocs.io/en/latest/alabapi.html).

To extract the 3D coordinates of the genome, run the following commands in 

Python:

import alab

hmsfile = ‘result/structure/copy0.hms

problvl = ‘0.01a’

hms = alab.modelstructures(hmsfile, [problvl])

TADidx = hms.idx #TADs information

xyz = hms[0].xyz #diploid set of coordinates

This stores the coordinates in xyz for analysis. The TAD information with 

genomic location is stored in the TADidx variable. In the following we provide 

some other usage of coordinates.

4 Make the contact probability map by running the following commands in 

Python:

import alab

hmsfiledir = ‘result/structure’

problvl = ‘0.01a’

nstruct = 1000

summary = alab.structuresummary(hmsfiledir, problvl, nstruct)

m = summary.getContactMap()

m.plot(‘heatmap.png’,format=’png’,clip_max=1)

m.makeIntraMatrix(‘chr1’).plot(‘chr1_heatmap.pdf’,format=’pdf’,clip

_max=1) 

This will create the probability maps in the result/report/heatmap and result/

report/intraMatrix folders.

5 (OPTIONAL) Some users might wish to get the coordinates and radii in a 

Protein Data Bank (PDB) format, e.g. for visualization purposes. Transfer the 

coordinates to PDB format with the scripts in the tool/ directory by running the 

following shell command under $PROJECT_DIR/:

$ tools/hms_export.py result/structure/copy0.hms 0.01b copy0.pdb
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TROUBLESHOOTING

Troubleshooting advice can be found in Table 3.

TIMING

Step 1: The configuration of PGS should take only about 1 minute.

We have designed PGS to automatically and dynamically run a series of processes or steps. 

If there are failures on a running job, for example because a node is down, the network is 

busy, or there is a disk I/O failure, PGS tries to resubmit the failed job two more times 

before aborting.

Step 2: The total run time for PGS can vary widely depending on available computing 

resources, data size, and modeling complexity. The first task is to build the input matrix, 

which takes about 1 minute or less for input options 2 and 3. If the user selects input option 

1, this task takes from several minutes to several hours depending on the size of the matrix 

(Box 1) For instance, it takes about one minute to process a 2 Mb resolution Hi- C matrix, 

but 14 hours to build the ~2300x2300 contact probability matrix from a 100kb resolution Hi-

C matrix (these times are on a single ~2.8 GHz CPU). The second task is to optimize the 

structure population by running A/M cycles (iterations of the A-step and M-step). This 

process starts immediately after the input matrix is generated, with PGS submitting many 

simultaneous jobs on a computing cluster. The typical time required to finish one M-step 

optimization for a single genome structure with ~2x2300 TAD domains is about 45~90 

minutes (at ~1 Mb resolution). If the user asked for a population of 2,000 structures, and 

allocates 500 CPUs to the task, then PGS will run the first 500 jobs simultaneously. The 

remaining 1500 jobs are queued and sent one by one to CPUs on the cluster as they become 

available. PGS waits until the M-step is complete for all structures before it submits the A-

step jobs. In this example, the A-step calculation takes about 5–30 minutes. Thus, a single 

A/M cycle for a population of 2000 structures at ~1 Mb resolution could take about 3 hours. 

The length of the theta list and number of iterations per theta value will also affect the 

timing, as multipliers of the A/M cycle time. The expected total time is about equal to the 

number of theta parameters plus 5 to 10 (based on our experience) times the A/M cycle time. 

Since PGS decides on the fly (based on the violation cutoff parameter) whether to continue 

iterating the A/M cycle or move to the next theta level, we cannot provide a more accurate 

prediction of the timing. The run time also depends on the quality of the data set. Noisy or 

inconsistent data are likely to produce artifacts that are hard to optimize and hence require 

more A/M cycles.

Step 3–5: The actual time for follow up analysis can vary considerably. Extracting model 

coordinates and exporting to a PDB file for visualization takes less than a second for one 

particular structure (Step 3 and Step 5). However, looping through all the structures in a 

population will consume time up to hours. Generating a contact matrix (Step 4) usually takes 

~1 hour for genomes with TAD sizes around 1Mb. However, this time will also scale up by 

O(n2) where n is the number of TADs in the genome.
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ANTICIPATED RESULTS

The main output of PGS is a structure population. All results are stored under the 

resultdirectory. In this version, PGS writes to four subdirectories:

probMat: contains the input contact probability matrix (in hdf5 binary format) if 

option 1 or 2 is selected (See Software design and implementation section).

actDist: contains intermediate files generated by the A-step, which are used in the 

subsequent M-step.

structure: contains the genome structure information during optimization, saved in 

hdf5 binary files (with .hms file extension). One file corresponds to one structure, 

and contains a history of optimization snapshots for the different theta parameters. 

The smallest theta, with the last iteration step (alphabetically ordered, i.e. the last 

snapshot) is the final model. We refer to the whole set of final models as the structure 

population (Fig 4a). Users then read TAD coordinates from these structure files and 

perform further analysis that relates to their research. We have provided a library of 

tools on the PGS public repository to help users easily analyze the structure 

population (for further details, refer to the PGS documentation page at http://

pgs.readthedocs.io/en/latest/tools.html).

report: contains some basic analysis, e.g. heat maps of contact probability matrices, 

radial positions of TADs, and the quality of optimization (Figs. 4b–e). PGS writes the 

average nuclear radial position for every TAD in the file 

radialPlot_summary.txt. Users can also find a summary of the violation portion 

that reflects the overall quality agreement between experiment data (input of PGS) 

and the structure population (output of PGS).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of the PGS algorithm that deconvolves ensemble-averaged Hi-C data into a 

population of distinct diploid 3D genome structures. (Reprinted with permission from Tjong 

et al. 20167) (a) The iterative scheme involves constraint assignments (A-step) and dynamic 

optimization of the structures (M-step). The new structures are used as feedback for the next 

A-step. (b) Constraints are added to the model gradually by decreasing a contact probability 

threshold.
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Figure 2. 
PGS software workflows. Building the input matrix, modeling and optimizing structure 

population with A/M cycles, and basic analysis from the final structure population.
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Figure 3. 
PGS setup. (a) GUI to help users generate configuration files. (b) An example showing the 

format of an acceptable contact frequency matrix file. (c) An example showing the format of 

an acceptable TAD file.
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Figure 4. 
Examples of PGS outputs. (a) Structure population as hms files. (b) Histogram of violated 

constraints. The maximum number of violated restraints is defined in the “violation cutoff” 

configuration setting (see Step 1). (c) Comparison of contact probabilities for chromosome 2 

between the input data from Hi-C experiment and the genome structure population. Input 

data are shown in the lower triangular of the matrix and the contact probabilities from the 

final structure population are show in the upper triangular of matrix. The color scheme is 

from white (0) to red (0.2). (d) Density scatter plots comparing all pairwise domain contact 

probabilities from the structure population and the input Hi-C data. The Pearson’s 

correlation coefficient (PCC) of the comparison is indicated. Histograms of the contact 

probabilities are shown along the sides of the plot.(e) The average radial position of domains 

along a chromosome. PGS generates this plots for every chromosome.
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Table 2
PGS-Helper GUI fields

PGS-Helper is a GUI to simplify the input parameter generation for end users. The GUI has 6 fields (Figure 

3a). Field by field explanations of PGS-Helper GUI is shown in each row. Bold italic words refer to the 

corresponding input box in each field. Prepopulated default values are also given in brackets.

Field 1: Working 
directory

This is the directory where the output of the GUI (the executable script runPGS.sh and the configuration file 
input_config.json), the log files (pyflow.data directory), and the results of the 3D genome modeling will be stored.

Field 2: PGS 
Source directory

This is the PGS installation directory, which contains pgs.py

Field 3: Input Select one of the three options to specify which types of input files are to be used (see Equipment for details), and specify 
the file locations.
Genome. The current version of PGS supports recent human and mouse genomes: hg19, hg38, mm9, and mm10. PGS 
automatically generates the diploid autosome and X chromosome representations.
Resolution. The bin resolution (integer number of base pairs) of the raw Hi-C matrix.

Field 4: 
Modeling 
Parameters

Num of structures. The number of structures in the population to optimize (default = 1,000). We recommend increasing 
this value to at least 10,000 for a final sampling).
Violation cutoff. The maximum proportion of violated constraints. A smaller value will generally result in better 
agreement with the input data (default = 0.05).
Theta list. A decreasing series of values in the range 1 ≤ theta < 0. Each theta is a contact probability threshold, 
determining which contacts are used in the optimization. PGS progresses through all the values in this list, gradually 
including more and more Hi-C contacts in the optimization (default = 1, 0.2, 0.1, 0.05, 0.02, 0.01).
Max iteration. The maximum number of A/M cycles for each value of theta (default = 10).
Nucleus Radius. The radius of the nucleus in nanometers. A typical human nucleus has a radius of 5000 nm (default = 
5000).
Genome occupancy. The ratio between the genome-wide chromosomal volume and the total volume of the nucleus 
(default= 0.2).

Field 5: System 
Parameters

Default core. The default number of computing cores to use for each job. Light jobs, such as the modeling step (M-step), 
do not require more than one CPU (default = 1).
Default mem MB. The memory limit for each job in megabytes (default = 1,500).
Max core. The maximum number of computing cores to allocate for a heavy job, such as building the matrix or 
calculating pairwise distance distributions (default = 8).
Max mem MB. The memory allocation limit for a heavy job (default = 64,000 MB).

Field 6: 
Command setup

Run mode. The user’s computing platform. This can be local (e.g. a personal workstation), SGE (Sun Grid Engine), or 
Torque.
Core limit. Specify the maximum number of cores to allocate. (This setting is valid for all three run modes. In local mode, 
set this value to the cores of the computer.)
Mem limit. Specify the limit of total memory usage in MB.
Optional argument list. Additional unix-style command line arguments (user specific) for all job submissions. The GUI 
provides a template allowing the user to recognize and supply missing values (e.g. in [‘-q’,‘[qname]’,‘- l’, 
‘walltime=hh:mm:ss’] replace qname with the user’s HPC queue name, and hh:mm:ss with hours:minutes:seconds.).
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Table 3

Troubleshooting

Step Problem Possible reason Solution

1 Java is installed, but the GUI of PGS Helper 
does not appear

X11 for graphical display is not turned 
on

Log in again to your HPC with the 
“ssh – X” option

2 The terminal where PGS was executed closed, 
so the PGS process was stopped

Accidentally closed, system shut-down, 
or broken node.

Rerun PGS, using the same command 
as before

2

PGS stops with [ERROR] messages containing 
“… failed sub-workflow classname: 
‘BuildTADMapFlow’ …” and “IndexError: … 
is out of bounds …”

The resolution is set incorrectly, or the 
input matrix format is wrong.

Fix the resolution parameter in 
input- config.json, and 
check the input file format.

2

PGS stops with [ERROR] messages containing 
“… failed sub-workflow classname: 
‘BuildTADMapFlow’ …”, “… using non-
integer …”, and “originHist = …”

The raw input matrix contains a non- 
integer Check and fix the matrix

2 PGS stops while running the A/M- cycles Computing cluster problems Try to request more than 10 GB 
memory for the main PGS program
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