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Abstract

Fidelity of histone gene regulation, and ultimately of histone protein biosynthesis, is obligatory for 

packaging of newly replicated DNA into chromatin. Control of histone gene expression within the 

3-dimensional context of nuclear organization is reflected by two well documented observations. 

DNA replication-dependent histone mRNAs are synthesized at specialized subnuclear domains 

designated histone locus bodies (HLBs), in response to activation of the growth factor dependent 

Cyclin E/CDK2/HINFP/NPAT pathway at the G1/S transition in mammalian cells. Complete loss 

of the histone gene regulatory factors HINFP or NPAT disrupts HLB integrity that is necessary for 

coordinate control of DNA replication and histone gene transcription. Here we review the 

molecular histone-related requirements for G1/S-phase progression during the cell cycle. Recently 

developed experimental strategies, now enable us to explore mechanisms involved in dynamic 

control of histone gene expression in the context of the temporal (cell cycle) and spatial (HLBs) 

remodeling of the histone gene loci.
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1 | INTRODUCTION

Regulatory mechanisms operative at the G1/S phase transition in normal and cancer cells 

(Baumbach, Stein, & Stein, 1987; Braastad, Hovhannisyan, van Wijnen, Stein, & Stein, 

2004; Carozzi et al., 1984; Chrysogelos, Pauli, Stein, & Stein, 1989; Chrysogelos, Riley, 
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Stein, & Stein, 1985; Green et al., 1984; Guo, Stein, van Wijnen, & Stein, 1997; Holmes et 

al., 2005; Hovhannisyan et al., 2003; Lichtler, Detke, Phillips, Stein, & Stein, 1980; Lichtler 

et al., 1982; Marashi et al., 1982; Miele et al., 2005; Mitra et al., 2003; Moreno, 

Chrysogelos, Stein, & Stein, 1986; Morris et al., 1986; Pauli, Chrysogelos, Stein, & Stein, 

1988; Plumb, Stein, & Stein, 1983; Sierra et al., 1982; Sierra, Stein, & Stein, 1983; Stein, 

Park, Thrall, Mans, & Stein, 1975; Stein, Stein, & Marzluff, 1984; Stein, Stein, Van Wijnen, 

& Lian, 1996; van Wijnen et al., 1996; Vaughan et al., 1995) provide mechanistic and 

clinically relevant insight into biological control and the molecular pathology of the cell 

cycle. A critical parameter of cell proliferation is the relationship of histone gene expression 

with DNA replication. Compromised cell cycle control is catastrophic for the cell.

Advances in understanding histone gene organization, expression and regulation (Birnbaum 

et al., 1995; Vaughan et al., 1998) have been instrumental in elucidating the integration of 

physiological signals that mediate physiological control of histone gene expression at 

multiple levels including transcription, 3′ end mRNA processing and mRNA stability. 

Competency for genome replication depends on the availability of histone proteins during S-

phase for immediate packaging of newly replicated DNA into chromatin. The initial rate-

limiting step in the induction of histone protein synthesis at the G1/S-phase transition, 

however, is cell cycle-dependent modulation of histone gene transcription.

The regulatory machinery for transcription and processing of histone RNAs is focally 

organized at major and minor histone gene loci in specialized subnuclear domains, 

designated histone locus bodies (HLBs, Figure 1) (Bongiorno-Borbone et al., 2008; 

Dominski & Marzluff, 2007; Ghule et al., 2007, 2008; Ma et al., 2000; Miele et al., 2005; Ye 

et al., 2003; Zhao, Dynlacht, Imai, Hori, & Harlow, 1998; Zhao et al., 2000). Loss of the key 

HLB components HINFP and NPAT leads to disruption of HLB focal organization, loss of 

competency for histone synthesis, and perturbation of cell cycle control; these regulatory 

factors are unequivocally required for physiological control of cell proliferation (Bongiorno-

Borbone et al., 2010; Dominski & Marzluff, 2007; Ghule et al., 2014; Salzler et al., 2013; 

Yang et al., 2014; Ye et al., 2003; Zhao et al., 2000).

An emerging dimension to transcriptional control is the contribution of higher-order nuclear 

organization and inter-/intra-chromosomal interactions in integrating activities of gene 

regulatory elements. Local interactions within the major histone gene locus (Fritz et al., 

2018) have recently been identified. Understanding the higher-order genomic organization/

chromatin architecture of histone genes within HLBs during cell cycle progression and the 

roles of HINFP and NPAT in regulating HLB structure and function is a compelling 

question.

2 | CONTROL OF HISTONE GENE TRANSCRIPTION

The HINFP transcription factor mediates coordinate expression of multiple histone H4 genes 

at the G1/S transition, including the abbreviated human embryonic stem (hES) cell cycle 

(Becker, Stein, Lian, van Wijnen, & Stein, 2007; Ghule et al., 2008, 2014; Holmes et al., 

2005; Miele et al., 2005; Mitra et al., 2003). Using in vivo mouse models, it has been 
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determined that HINFP is essential for fidelity of histone H4 gene expression and required 

for early embryonic development (Ghule et al., 2014; Xie et al., 2009).

NPAT is an essential and prototypical HLB resident protein that regulates expression of all 

replication-dependent histone gene classes (H4, H3, H2A, H2B, H1). Unlike HINFP, NPAT 

exerts its effects without directly binding to DNA. Molecular and biochemical studies show 

that HINFP is the critical anchor that tethers NPAT to histone H4 genes (Medina et al., 2007; 

Medina, van Wijnen, Stein, & Stein, 2006). In response to activation of the cyclin E/CDK2 

cell cycle signaling cascade at the onset of S phase, NPAT is phosphorylated to initiate 

histone gene transcription (Bongiorno-Borbone et al., 2008; Dominski & Marzluff, 2007; 

Ghule et al., 2007, 2008; Ma et al., 2000; Miele et al., 2005; Ye et al., 2003; Zhao et al., 

1998, 2000). Additional key protein components of the histone mRNA processing 

machinery, as well as other proteins involved in both histone RNA transcription and 

processing, that include FLASH, also co-localize at HLBs (Bongiorno-Borbone et al., 2008; 

Burch et al., 2011; Dominski & Marzluff, 2007; Ghule et al., 2008, 2009).

These results support the requirements of HINFP and NPAT for subnuclear organization of 

HLBs to regulate transcription of histone genes. It can be anticiapated that dynamic 

regulatory interactions mediated by HINFP and NPAT at HLBs occur in association with 

specific higher-order chromatin conformation within histone gene clusters, and that these 

regulatory interactions remodel with, and are functionally related to, cell-cycle progression.

3 | HISTONE GENE EXPRESSION IN NUCLEAR MICROENVIRONMENTS

Deregulation of histone gene expression upon loss of HINFP or NPAT causes disruption of 

HLBs and has drastic consequences for cell division and cell survival in both normal and 

cancer cells (Di Fruscio et al., 1997; Ghule et al., 2014, 2015; Ma et al., 2000). The resulting 

changes in the organization of newly replicated chromatin create both genomic instability 

and chromosomal aberrations, that are frequently observed during tumorigenesis. These 

findings provide a compelling basis for characterizing the organization of HLBs in normal 

and early stage cancer cells.

A fundamental question is exactly how DNA is organized within the 3-dimensional context 

of the nucleus and rendered accessible to regulatory factors during the cell cycle. This 

question has been the focus of studies on subnuclear organization (Cremer & Cremer, 2006; 

Zaidi et al., 2014). Emerging evidence using genome-wide high-resolution chromosome 

conformation capture (Hi-C) technologies indicates that non-random higher-order 

organization of genes into structural domains supports regulatory activities involving non-

contiguous sequences that influence transcription (Barutcu et al., 2016; Belton et al., 2012; 

Ching, Ahmed, Boutros, Penn, & Bazett-Jones, 2013; Dekker, Marti-Renom, & Mirny, 

2013; Hamdi et al., 2016; Lieberman-Aiden et al., 2009; Martin et al., 2015; Matheson & 

Kaufman, 2016; Mifsud et al., 2015; Rowley & Corces, 2016; Tjong et al., 2016; Wang et 

al., 2016).

The human histone locus bodies are unique nuclear domains for dynamic regulation of 

histone genes. They include multiple protein factors and clustered genes and an array of 
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intra-/inter-chromosomal interactions—analogous to organization of ribosomal gene clusters 

in nucleoli. Insights into 3D architecture of HLBs during the cell cycle, as well as the role of 

histone gene regulatory factors HINFP and NPAT in genomic organization and function of 

histone gene clusters can enhance understanding of cell cycle control that is necessary for 

development and tissue remodeling and is compromised in the onset and progression of 

cancer.

4 | HISTONE LOCUS BODY: A SUBNUCLEAR DOMAIN DEDICATED TO 

HISTONE BIOGENESIS

Insight into cell cycle control from regulatory and biological perspectives is provided by 

mechanisms that expedite G1 events that are required for the initiation of S phase. The 

subnuclear organization of the regulatory factors that control histone gene transcription: the 

cyclin E/CDK2-dependent NPAT/HINFP coactivation complex, histone mRNA-related 

processing factors, and histone locus bodies (HLBs) have been informative. It has been 

established that, although appearance of CDK2-phosphorylated NPAT in these domains 

occurs when cells enter S-phase, HLBs are formed ~6 hr before S-phase in human somatic 

cells. Furthermore, regulatory complexes that mediate transcriptional initiation of histone 

genes (e.g., NPAT, HINFP, FLASH) and processing of histone mRNA (e.g., Lsm11 and 

SLBP) co-localize at histone gene loci in HLBs that are distinct from Cajal bodies (Ghule et 

al., 2008, 2009).

Deregulation of subnuclear organization and cell growth regulatory pathways are hallmarks 

of tumor cells (Stein, Davie, Knowlton, & Zaidi, 2008; Tai et al., 2014; Zaidi et al., 2007, 

2014). It has been shown that HLB organization is disrupted in some cancer cell types in 

which histone gene transcription and histone mRNA processing factors are present in 

distinct compartments (i.e., HLBs and Cajal bodies, respectively) (Ghule et al., 2009).

Normal mammalian cells have two to four HLBs that encompass the two histone gene 

clusters at chromosomes 6p (major) and 1q (minor), as well as with factors involved in 

histone gene transcription (Figure 2) (Bongiorno-Borbone et al., 2008; Dominski & 

Marzluff, 2007; Ghule et al., 2007, 2008; Ma et al., 2000; Ye et al., 2003; Zhao et al., 1998, 

2000). One key finding of our recent studies with Hinfp-depleted mouse embryonic 

fibroblasts is that loss of HINFP dramatically alters the number and/or focal organization of 

NPAT-containing bodies. Rather than forming a few distinct foci per nucleus as in wild-type 

cells, Hinfp-deficient cells exhibit diffuse NPAT staining. This result suggests that HINFP 

has an important architectural role in HLBs. Therefore, focal arrangement of NPAT and 

HINFP in HLBs is important for histone gene regulation (Figure 3) (Ghule et al., 2014).

5 | CELL CYCLE CONTROL AND HISTONE GENE REGULATION IN HUMAN 

EMBRYONIC STEM CELLS

A fundamental mechanism that controls proliferation in pluripotent stem cells is a unique 

abbreviated cell cycle, with a shortened G1 phase and distinct differences in molecular 

parameters of cell cycle regulation (Becker et al., 2006, 2007; Ghule et al., 2007). hES cells 
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are pre-mitotically committed to self-renewal and acquire a lengthened G1 phase, upon 

lineage programming (Becker, Stein, Lian, van Wijnen, & Stein, 2010). A unique chromatin 

architecture is associated with histone H4 genes in this abbreviated G1 phase, as reflected by 

major nuclease hypersensitive sites, atypical distribution of epigenetic histone marks, and a 

region devoid of histone octamers. Furthermore, cell-cycle progression in hES cells involves 

cell cycle stage-specific chromatin-remodeling events, and rapid spatial and temporal 

assembly of HLBs that activate histone gene transcription to accommodate nucleosomal 

packaging of newly replicated DNA (Ghule et al., 2008; Medina et al., 2012). These findings 

in hES cells underscore the crucial role of subnuclear and chromosomal structure in 

activation of histone gene expression.

6 | HINFP IS AN ESSENTIAL REGULATOR OF HISTONE GENE 

TRANSCRIPTION AND FIDELITY OF CELL CYCLE CONTROL

Because histones are required for packaging DNA into chromatin, competency for DNA 

replication is functionally coupled to the activation of histone gene expression at the onset of 

S phase. It has been established that the histone gene activator HINFP is a unique zinc finger 

transcription factor with a novel conserved auxiliary DNA-binding motif in the C-terminus. 

The CDK2/cyclin E/NPAT/HINFP/histone gene signaling pathway at the G1/S phase 

transition is an essential, cell cycle regulatory mechanism that is established early in 

embryogenesis (Xie et al., 2009). CDK inhibitors selectively diminish cell cycle-associated 

activation of the histone H4 gene promoter by NPAT and HINFP (Mitra et al., 2009).

The autonomous biological role of Hinfp has been established using conditional-null Hinfp-

mouse embryonic fibroblasts. Recently it was demonstrated that Hinfp-mediated 

deregulation of histone H4 results in cellular and molecular defects that lead to genomic 

instability. Functional evidence has been provided that the tight coupling between DNA 

replication and histone synthesis is reciprocal (Ghule et al., 2014) Furthermore, 

simultaneous loss of Hinfp and p53 exacerbates cellular defects (Ghule et al., 2015). We 

observed that siRNA-depletion of HINFP-regulated H4 mRNAs causes genomic instability 

(unpublished data). This finding is consistent with the biological effects of genetic deletion 

of HINFP. Using a Hinfp-null mouse model, it has been observed that oocytes contain 

sufficient maternally-derived Hinfp-gene transcripts and/or protein for the earliest stages of 

embryogenesis, and that expression of zygote-derived Hinfp commences at the 4-cell stage 

of development (Ghule et al., 2016).

These results establish a linear causality between cyclin E/CDK2 mediated stimulation of 

the NPAT/HINFP coactivation complex, temporal and functional fidelity of H4 gene 

expression, chromatin integrity and genomic stability. These studies defined HLBs as crucial 

regulatory hubs that organize histone genes into specialized subnuclear domains in which 

transcriptional and processing pathways are juxtaposed. It was demonstrated that HLB 

organization is disrupted in at least some cancer cells. There is a necessity to understand 

functional changes in the higher-order genomic architecture of HLBs during the cell cycles 

of normal and cancer cells, and the functions of HINFP and NPAT in structuring the 

genomic organization of HLBs.
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7 | HIGHER ORDER CHROMATIN ORGANIZATION OF THE MAJOR HISTONE 

LOCUS

Alterations in nuclear morphology are common in cancer progression. However, the degree 

to which gross morphological abnormalities translate into compromised higher-order 

chromatin organization is poorly understood. Functional links between gene expression and 

chromatin structure in breast cancer, have been established by global gene expression 

profiling on the MCF10 basal breast cancer progression model cells. Positional gene 

enrichment identified the major histone gene cluster at chromosome 6p22 (Hist1) as one of 

the most significantly upregulated (and not amplified) clusters of genes from the normal-like 

MCF10A to premalignant MCF10AT1 and metastatic MCF10CA1a cells. The Hist1 cluster 

is subdivided into three sub-clusters of histone genes that are organized into hierarchical 

topologically associating domains (TADs). Interestingly, the sub-clusters of histone genes 

are located at TAD boundaries and interact more frequently with each other than the regions 

in-between them, suggesting that the histone subclusters form an active chromatin hub. The 

anchor sites of loops within this hub are occupied by CTCF, a known chromatin organizer 

(Figure 4). While the overall chromatin structure of the major histone gene locus is 

maintained across breast cancer progression, the role of HLB genomic organization in 

regulating histone gene expression needs further validation. Importantly, breast tumor 

specimens also exhibit a coordinate pattern of upregulation across the Hist1 locus (Fritz et 

al., 2018). Our results provide a novel insight into the higher-order chromatin organization 

of the major histone gene locus during breast cancer progression that may be clinically 

informative.

8 | CONCLUSION AND PERSPECTIVE

A compelling question and novel dimension to cell cycle control at the G1/S-phase 

transition is how higher-order organization and genomic context at HLBs change during the 

cell cycle to regulate histone RNA transcription. A “working hypothesis” is that higher order 

genomic organization of histone genes and dynamic recruitment of HINFP and NPAT at 

histone locus bodies are functionally linked to competency and fidelity of histone gene 

expression during the cell cycle. Compromised cell cycle control is a hallmark of cancer 

development/progression. Pursuing nuclear structure and gene expression relationships will 

elucidate new dimensions for control of the cell cycle and cell proliferation. Chromosome 

conformation capture approaches can identify higher-order genomic organization of, and 

regulation at, HLBs during the cell cycle. These strategies will define the dynamic function 

roles of two principal cell-cycle regulators, including HINFP and NPAT, in higher-order 

genomic organization of HLBs, which coordinate histone gene expression with DNA 

replication for competency to package DNA as chromatin and for genome integrity. We 

expect new insights into fundamental relationships of higher order nuclear structure with cell 

cycle regulation of biological control and perturbations in cancer.
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FIGURE 1. 
IF microscopy showing co-localization of histone gene transcription factors HINFP and 

NPAT at HLBs
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FIGURE 2. 
Immuno-FISH in normal diploid fibroblasts showing co-staining for HLB factor NPAT and 

the major Hist1 loci on 6p (white arrows) (left panel). Cell cycle stage-specific organization 

of the major HLB at 6p (Late G1) (middle panel) and both major (6p) and minor (1q) HLB 

(yellow arrows) (right panel) in S-phase
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FIGURE 3. 
IF microscopy on WT and Hinp null cells showing loss of HLB factor HINFP causes 

deregulation of focal HLB organization
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FIGURE 4. 
(Adapted from Figures 3 and 4 published in Fritz et al. (2018)) The higher-order chromatin 

organization of the major histone gene locus. (a) Pairwise DNA-DNA interactions were 

analyzed via Hi-C within the major histone gene cluster in the MCF10 cells. The structure of 

the region is organized into hierarchical topologically associating domains. Interactions that 

are enriched above expected linear sequence-interactions are shown. (b) CTCF is a structural 

component of the major histone gene locus. CTCF ChIP-seq showing CTCF is coincident 

with looping of chromatin at the major histone gene cluster
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