Skip to main content
. 2018 Jul 6;12:42. doi: 10.3389/fninf.2018.00042

Table A1.

gCNN architecture and parameter size.

No. Type Input size Patch size/stride Output size Param. mem.
1 Convolution 1 40962 × 25 × 2 1 × 25/1 40962 × 1 × 36 7 KB
2 Batch normalization 1 40962 × 1 × 36 576 B
3 ReLU 1 40962 × 1 × 36
4 Mean pool 1 40962 × 1 × 36 1 × 6 or* 1 × 7/1 10242 × 1 × 36
5 Convolution 2 10242 × 25 × 36 1 × 25/1 10242 × 1 × 36 127 KB
6 Batch normalization 2 10242 × 1 × 36 576 B
7 ReLU 2 10242 × 1 × 36
8 Mean pool 2 10242 × 1 × 36 1 × 6 or 1 × 7/1 2562 × 1 × 36
9 Convolution 3 2562 × 25 × 36 1 × 25/1 2562 × 1 × 36 127 KB
10 Batch normalization 3 2562 × 1 × 36 576 B
11 ReLU 3 2562 × 1 × 36
12 Mean pool 3 2562 × 1 × 36 1 × 6 or 1 × 7/1 642 × 1 × 36
13 Convolution 4 642 × 25 × 36 1 × 25/1 642 × 1 × 36 127 KB
14 Batch normalization 4 642 × 1 × 36 576 B
15 ReLU 4 642 × 1 × 36
16 Mean pool 4 642 × 1 × 36 1 × 6 or 1 × 7/1 162 × 1 × 36
17 Convolution 5 162 × 25 × 36 1 × 25/1 162 × 1 × 36 127 KB
18 Batch normalization 5 162 × 1 × 36 576 B
19 ReLU 5 162 × 1 × 36
20 Mean pool 5 162 × 1 × 36 1 × 6 or 1 × 7/1 42 × 1 × 36
21 Fully connected layer 6 42 × 1 × 36 42 × 1/1 1 × 1 × 50 295 KB
22 Batch normalization 6 1 × 1 × 50 800 B
23 ReLU 6 1 × 1 × 50
24 Fully connected layer 7 1 × 1 × 50 1 × 1/1 1 × 1 × 2 408 B
25 Softmax classifier 1 × 1 × 2
Total 1.63 MB

*The size of the mean pool at each node differs according to the number of neighborhood nodes at the node, either 6 or 7.