Skip to main content
. 2018 Jul 2;12:434. doi: 10.3389/fnins.2018.00434

Table 2.

Simulation results presented in a similar fashion to Bamford et al. (2010) for three cases, all of which incorporate synaptic plasticity.

Case 1 2 3
Synaptic rewiring
Synaptic plasticity (STDP)
Input correlations
Target neuron mean spike rate 21.15 Hz 20.11 Hz 9.31 Hz
Final mean feedforward fan in / target neuron 15.91 N/A 11.87
Weight proportion of maximum 0.83 0.72 0.62
Mean σaffinit 2.35 2.35 2.35
Mean σafffinconnshuf 2.33 N/A 2.31
Mean σafffinconn 1.62 2.35 1.85
p(WSR σafffinconn vs. σafffinconnshuf) 2.80 × 10−43 N/A 3.65 × 10−27
Mean σafffinweightshuf 1.61 2.32 1.78
Mean σafffinweight 1.49 1.92 1.57
p(WSR σafffinweight vs. σafffinweightshuf) 4.03 × 10−33 4.02 × 10−43 1.44 × 10−21
Mean ADinit 0.81 0.81 0.81
Mean ADfinconnshuf 0.82 N/A 1.09
Mean ADfinconn 0.77 0.81 0.91
p(WSR ADfinconn vs. ADfinconnshuf) 0.39 N/A 0.002
Mean ADfinweightshuf 0.79 0.92 1.04
Mean ADfinweight 0.85 0.79 1.07
p(WSR ADfinweight vs. ADfinweightshuf) 0.0002 0.0001 0.58

Case 1 consists of a network in which both synaptic rewiring and input correlations are present. Case 2 does not integrate synaptic rewiring, but still has input correlations. Case 3 relies on synaptic rewiring and STDP to generate sensible topographic maps in the absence of input correlations.