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Introduction
Micro-RNAs (miRNAs) are a large class of small, non-coding 
RNAs consisting of 22 nucleotides that are expressed from 
longer and endogenous hairpin-shaped transcripts generally 
referred to as pre-miRNAs.1 The miRNAs regulate protein-
coding gene expression post-transcriptionally via the transla-
tional repression or transcript degradation of their target 
messenger RNAs (mRNAs),1,2 thereby indicating that miR-
NAs perform crucial roles in a variety of biological functions. 
The results of recent studies have demonstrated that miRNAs 
are deregulated in cancers.2,3 Several computational methods 
have been proposed to determine how miRNAs pair with their 
target mRNAs,3,4 in an effort to unravel the roles of miRNAs in 
the deregulated expression of their target mRNAs during can-
cer development5,6 and some relationships were identified 
between miRNAs and their target mRNAs.5,7–11 However, the 
development of a computational method for the identification 
of such relationships in cancer remains a difficult issue. Thus far, 
2 computational methods have been developed: either the iden-
tification of miRNAs that are conserved in different species or 
stem loop prosecutors11 or the identification of the relationship 
between miRNAs and their target mRNAs via the use of 
sequence homologues. Previously, we proposed a numerical 
optimization method for multi (miRNAs) -to -multi (mRNAs), 
which was used for the identification of 16 miRNAs-mRNA 
relations in colon cancer microarray profiles.7 The proposed 

method was used to identify 207 relationships successfully, out 
of 484. Some relationships detected in that study were verified 
through previous experimental evidences. For example, the rela-
tionship between miR-17 and its target E2F1 was identified in 
a previous colon cancer study.12 Like previous studies, however, 
the difference between the expression profiles of normal and 
cancer tissues, which we believe to be a critical factor in deter-
mining the relationship between miRNAs and their target 
mRNAs, was ignored.

Here, we propose a novel method, referred to as prediction 
analysis by optimization method (PAOM), which is composed 
of a mathematical model and computational method designed 
to predict miRNA-mRNA relations in the context of cancer 
development. In this model, the predicted relations are filtered 
using sequence analysis resources. For mathematical modeling, 
we employed linear system equations to obtain the inhibiting 
parameters. The role of the computational method is to 
optimize the relations and to allow for comparisons of the dif-
ferences in the parameters between normal and cancer genes. 
We employed 2 optimization methods—the Broyden-
Fletcher-Goldfarb-Shannon (BFGS) and the Powell method,13 
both of which are well known for the optimization of a multi-
dimensional matrix problem. For filtering sequence analysis, 
we used PicTar, based on the scanning multiple alignment of 3′ 
UTR (untranslated region) sequences and a search set of 
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miRNA sequences, and scored the overlapping position.11 
MiRanda is a miRNA target prediction algorithm that opti-
mizes sequence complementarity using position-specific rules 
and relies on strict interspecies conservation requirements.14 In 
this study, we considered breast and colon cancer data with 676 
relationships between 26 miRNAs and 26 mRNAs.

Methods
The mathematical formulation and computational method of 
the PAOM are described in this section.

Mathematical formulation

It is generally accepted that miRNAs regulate gene expression 
via either the transcript cleavage or translational repression of 
their specific target mRNAs, whereas 1 mRNA expression is 
regulated by multiple miRNAs. For this mechanism, we have a 
linear equation model, in which 1 mRNA is affected by several 
miRNAs ( , , , )x x xm1 2   as follows:

y a x a x a x i ni i i im m= + + + =1 1 2 2 1� …, , , 	 (1)

where aij  represents the influence of the jth miRNA on the ith 
mRNA, x j  represents the expression level of the jth miRNA, 
and yi  represents the expression level of the ith mRNA. To 
observe the relation between m miRNAs and n mRNAs simul-
taneously, we rewrite the system of linear equations in matrix 
form.
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in which the measurements of the expression of m different 
miRNAs are denoted by ( , , )x xm1   and of the expression of n 
different mRNAs are denoted by ( , , )y yn1  . From K times 
experiments,

Y A Xn K n M m K× × ×= 	 (3)

We solve the equation as an inverse problem, and then 
obtain aij  as an unknown parameter, where aij  mainly repre-
sents the effect of xi  and y j , even if aij  is affected by the 
levels of other x’

i s(i’ ≠ i).

Computational method

In this section, we present a computational scheme for the 
identification of the relationships between miRNAs and their 
target mRNAs. The computational method is composed of 3 
components—the optimization routine, the objective function, 
and the direct code. Among them, the optimization routine is 
the principal component of the computational method, the role 

of which is to obtain a new set of parameter estimations by 
solving the inverse problem shown in Equation 3. In particular, 
we employ the BFGS method for optimization, the so-called 
quasi-Newton method, which requires second derivatives of 
the objective function and thereby makes a quadratic conver-
gent to the minimum of error norm, coupled with a drastic 
reduction of the computational burden. The second method is 
the Powell method known as direction set method, in which no 
such second derivatives of the objective function are required. 
Both methods are useful for multi-dimensional optimization, 
but they do not work successfully in all cases. After testing both 
methods with small nodes, we selected an appropriate one for 
the current cases. Next, the objective function is to provide the 
criterion for further processing to the next iteration on the 
basis of iterative error norms. Regarding the error norm, we 
employed the L1  and L2  norms, which are as follows:
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where y x aij( , )  is numerically computed data and yreal  is the 
experimentally obtained expression data. The L1  norm worked 
successfully for the BFGS method and the L2  norm worked 
better for Powell method. Finally, the direct solver is used to 
generate the computational data by solving the proposed math-
ematical model. Those computational data are then compared 
with the experimental data in an objective function. As both 
cancer and normal data were employed in this study, a note was 
that the predicted relations using cancer data are called Pcancer , 
and the predicted relations using normal data are called Pnormal . 
Then, the relationships between the cancer and normal data 
sets were computed and compared with each other. Therefore, 
the numerical scheme is composed of 3 individual algorithms, 
such as 2 subroutines and 1 main routine, as shown in Figure 1. 
In the main routines, we compared the inhibitory relations of 
the normal data with the inhibitory relations of the cancer data, 
and then calculated the comparison values (CVs) using relative 
error as follows:

CV
P P

P
normal cancer

normal
=

−( )

As CV becomes bigger, the relation is proportional to the 
strength of the relation between mRNA and miRNA. With 
the normal and cancer expression data sets, we calculated the 
unknown parameters as inhibitory relations in the subroutine. 
The overall numerical scheme of the proposed algorithm 
follows.

Data setting

We extracted experimentally known 26 miRNAs and 26 
mRNAs from the RNA expression profiles of human cancers 
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reported by Lu et al.15 In colon cancers, each gene consists of 4 
normal and 7 cancer data points. In breast cancer, each gene 
consists of 3 normal and 6 cancer data points. As the data sets 
are much smaller than unknown parameters, malpositioning 
problem frequently occurs in the algorithm. For filtering  
analysis, we used PicTar (https://pictar.mdc-berlin.de/) and 
miRanda (http://www.microrna.org). PicTar is a computa-
tional method used to identify common targets of miRNAs, 
based on scanning multiple alignments of 3′ UTR sequences 
and a search set of miRNA sequences, followed by the scoring 
of the overlapping positions combining the PicTar scores of 
orthologous transcripts.11 miRanda is a miRNA target predic-
tion algorithm that optimizes sequence complementarity using 
position-specific rules and relies on strict interspecies conser-
vation requirements.14 Neither sequence filtering has any rela-
tion with cancers.

Main routine

Main input: data sets

1.	 Call subroutine

Input : miRNA cancer, miRNA normal mRNA cancer, and 
mRNA normal data sets.
Output: P Pnormal cancer⋅

2. Compare the values of parameters

P P
P

normal cancer

normal

−( )
> 0 5.

Output represents the relationship between miRNAs and their 
target mRNAs

Subroutine

Set gtol = −10 14

Read experimental data of the expression profiles of mRNAs 
and miRNAs;

1.	 Set initial guesses to zero
2.	 Construct linear model of Equation 2, and generate 

numerical data using miRNAs:D
3.	 Run Optimization method (BFGS)
4.	 Read expression microarray data profiles (normal:N or 

cancer:C)
5.	 Implement Objective function: f err D N C( ) | ( )|= − or 

Iff err gtol( ) >  then go to 2
Iff err gtol( ) <  then
Output
Pnormal : Parameters from normal data
Pcancer : Parameters from cancer data

Figure 1.  Comparison of real data set with reconstructed data set using obtained parameters from Powell and Broyden-Fletcher-Goldfarb-Shannon 

methods with L1 , and L2  norms.

https://pictar.mdc-berlin.de/
http://www.microrna.org). 
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Results
Figure 1 represents the comparisons of the real and recon-
structed data based on the parameters derived from the Powell 
and BFGS methods. We tested 2 optimization methods: 
Powell and BFGS, with 4 nodes of mRNAs (MAPK14, E2F1, 
HMGA2, and NOTCH1) and 4 nodes of miRNAs (miR-34a, 
miR-17a, miR-24, and miR-30) from data points of the nor-
mal colon tissues. We also assessed each method with the L1 
and L2 objective functions. The BFGS method with the L1  
and L2  norms successfully reconstructed the real data points. 
The Powell method worked well with the L2  norm for the 
reconstruction but not with L1 , which suggests that more 

numerical studies will be necessary to evaluate the performance 
of Powell method. When the BFGS method with the L1  and 
L2  norms was used for large nodes in the normal breast data, 
an error term of 0.011 was obtained with L2  norm, thereby 
indicating that its accuracy was quite poor as compared with 
that of 5.97E-7 with the L1  norm. In this study, therefore, we 
employed the BFGS method with L1 . Figure 2 shows the fre-
quency of negative relationships with each of the presented 
miRNAs in breast cancer by cutting the PAOM score 5.

The frequency of miR-20, miR-23a, and miR-223 are rela-
tively high, which suggests that those miRNAs do exert some 
effect on breast cancer.16,17 Zhang et  al6 presented miR-20 

with the copy number lost in breast cancer. Figure 3 repre-
sents the frequency of negative relation with each of the colon 
cancer miRNAs by cutting PAOM score 5. The frequencies 
of miR-17, miR-30a, and miR-124 were highest, which 
implies that those miRNAs exert an effect on colon cancer. 
Recently, Monzo et al12 observed that miR-17 was detected 
in human colon cancer development, and Silber et  al18 
observed upregulated miR-124 in colon (HCT-116) cancer 
cell lines. Tables 1 and 2 show the miRNAs-mRNAs rela-
tionships using the proposed method with filtering sequence 
analysis.

Prediction of breast cancer

Table 1 shows the predicted relationships between miRNAs 
and mRNAs with sequence analysis in breast cancer. Based 
on our proposed method, we acquired 61 strong candidates 
out of a total of 676 miRNA-mRNA relations. With the 
integration of filtering sequence analysis, we predicted 18 

Figure 2.  Distribution of the number of mRNAs of each miRNA with 5 PAOM in breast cancer. The most significant genes are miR-23a, miR-223, and 

miR-20. mRNA indicates messenger RNA; miRNA, micro-RNA; PAOM, prediction analysis by optimization method.

Figure 3.  Distribution of the number of mRNAs of each miRNA with 5.0 

PAOM in colon cancer. miR-124, miR-30a, and miR-17 are the most 

significant. mRNA indicates messenger RNA; miRNA, micro-RNA; 

PAOM, prediction analysis by optimization method.
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miRNA-mRNA relationships in the breast cancer cells. 
Filtering analysis include sequence conservation-based 
miRanda and PicTar applications.

Those filtering resources are not generally associated with 
breast cancer. However, the current methods predicted some 
relationships using normal breast and cancer breast expression 
data. The results of our proposed method indicate that let-7a, 
miR-223, miR-98a, and miR-34a downregulate CD24 expres-
sion in cases of breast cancer. With sequence analysis, we sug-
gest that let-7a (PAOM score 48.2) and miR-98a (PAOM 
score 12.0) are predicted to be strongly associated with CD24 
in breast cancer. Those relationships were experimentally 
verified.19,20 Kaipparettu et  al19 found that CD24 expression 
was downregulated by estrogen in breast cancer stem cells. 
Verghese et al20 found that let-7 family was downregulated sig-
nificantly in breast tumor-initiating cells (BT-1Cs) that were 
enriched with CD24. Dai et al21 showed that NF2 was a tumor 
suppressor gene in human breast cancer. The findings of the 
current study reveal that miR-24, miR-141, miR-23a, miR-19a, 
miR-27a, and miR-15a are involved in the downregulation of 

NF2 expression in human breast cancer cells. With further 
sequence analysis, we found that miR-141, miR-23a, and miR-
27a may be involved in the downregulation of NF2 expression 
in breast cancer cells. Recent findings have shown that miR-20 
regulates E2F1 negatively.8,22 Recently, Yu et al17 discovered a 
novel regulatory mechanism of breast cancer involving miR-
20, which we also found here in PAOM 57.3. The following 
target genes have yet been verified by their miRNAs in breast 
cancer; however, the supporting evidences suggest that the 
relations are strongly associated with the breast cancer. 
CXCL12 expression is downregulated in primary breast car-
cinomas.23,24 Inactivation of the product of MAPK14 via 
PPM1D overexpression was also previously discovered in 
breast tumor cell lines.25 Supporting evidence for the role of 
NOTCH1 in breast cancer cells involves the fact that the rate 
of NOTCH1 expression in human breast cancer was found to 
be significantly higher than those of normal breast tissues at 
the margin of tumor sections.26 Zang et  al27 showed that 
Notch signaling is overexpressed and highly activated in 
breast cancer. HMGA2 has been reported to be expressed in 
invasive and non-invasive breast cell lines.28 Yang et  al29 
experimentally verified that a core circadian CLOCK gene 
evidences tumor suppression properties and is downregulated 
in human breast cancer cells. Overexpression of THBS1 
(TSP1) was detected in breast carcinoma and melanoma cells 
by interferon (IFN)-gamma-differentiated U937 cells in vitro 
via the release of reactive oxygen species.30 Finally, the expres-
sion of SERP1 was suppressed in papillary thyroid cancer.31 
However, SERP1 and POLR2 have not yet been identified in 
breast cancer cells.

Prediction of colon cancer

Table 2 shows the prediction of 15 relationships in colon can-
cer using the proposed method with filtering sequence analysis. 
HMGA2 (high mobility group [HMGI]) was observed to be 
abundantly expressed in human colorectal carcinomas.32–34 
MAPK14 that is regulated by miR-12411,35 maintains a high 
level of ERbeta for E2 anti-proliferative effects in colon cancer 
cells36 and in giloblastoma.37 In addition, MAPK14 is involved 
in apoptosis in colorectal cancer induced by growth factors.38 
The activation of the Wnt signaling pathway appears to sup-
press the expression of the THBS1 gene in colon cancer cells.39 
Jung et al40 observed that SIP1 (ZEB2), an E-cadherin tran-
scriptional repressor, is induced by overexpressing TMPRSS2 
in colon cancer cells, and affects the loss of E-cadherin-
mediated cell-cell adhesion, resulting in an increase in cellular 
motility. Krugluger et al41 found that CLOCK is more abun-
dantly expressed in colon cancer tissues than in normal tissue.

In addition, Kiriakidou et al42 experimentally reported that 
CLOCK is a target gene of miR-141. Recently, Zhang et al43 
demonstrated that the Notch1 signal transduction pathway 
mediates the effect of COX-2 selective inhibitors on colorectal 
cancer cells, and also discovered the mechanism of the Notch1 

Table 1.  The relation of miRNAs and target mRNAs with sequence 
analysis of breast cancer, experimental analysis, and optimization 
analysis.

mRNA miRNA miRandaa PicTara PAOMb

MAPK14 miR-124 O o 5.5

CLOCK miR-141 O 7.9

NF2 miR-141 O 7.6

  miR-23a O 5.0

  miR-27a O 6.0

  miR-15 O o 56.4

NFIA miR-155 O 41.5

HMGA2 miR-20 O o 10.5

THBS1 miR-19a O 25.5

CXCL12 miR-141 o 8.3

E2F1 miR-20 O o 57.3

NOTCH1 miR-155 O 8.5

SERP1 miR-223 O 5.5

CD24 let-7a O 48.2

  miR-98a O 12.0

POLR2 miR-223 O 6.1

  miR-98a O 24.0

  miR-16 O 5.1

Abbreviations: mRNA, messenger RNA; miRNA, micro-RNA; PAOM, prediction 
analysis by optimization method.
aPredicted targets based on sequence analysis.
bPredicted targets based on the proposed method.
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pathway which regulates the proliferation and apoptosis of 
colorectal cancer cells. E2F3, a member of E2F family, is down-
regulated in the HCT 116 and RKO colon cancer cell lines.44 
You et al45 determined that with the differential expression of 
dishevelled segment polarity protein 2 (DVL2), the Wnt sign-
aling pathway may contribute to colon carcinogenesis. You 
et  al46 reported that DVL2 was expressed in sporadic colon 
cancer tissues. Wendt et al47 recently reported that the expres-
sion of CXCL12 in human colorectal carcinoma cells reduced 
orthotopic tumor formation and inhibited metastasis in severe 
combined immunodeficient mice. HRAS and MTPN are yet 
to be confirmed.

Discussion
Most previous computational studies have been conducted to 
predict miRNA-mRNA relations on the basis of DNA 
sequence data. The resultant large number of the sequence pre-
dictions makes biological validation quite difficult. On the 
contrary, a variety of previous studies have demonstrated that 
an miRNA deregulates its target mRNA in a cancer type-
specific manner. For example, miR-34a deregulates E2F in 
cancer cell lines44 whereas miR-17 deregulates E2F in breast 
cancer cells.20 In this article, we suggested a PAOM consisting 
of a mathematical model and computational method using 

microarray data sets and filtering sequence analysis, such that 
the cancer-specific relationships between miRNAs and 
mRNAs can be predicted. The proposed PAOM was assessed 
and compared with normal and cancer microarray profiles in 
both breast and colon cancers. Among 676 relationships, we 
predicted 61 and 28 miRNA-mRNA relationships that might 
exert some effects on breast and colon cancer development, 
respectively. According to the results of sequence analysis fil-
tering, we uncovered 18 breast putative relations with 12 
mRNAs and 14 miRNAs and 15 colon putative relations with 
12 mRNAs and 10 miRNAs. We confirmed that 8 genes—
MAPK14, CLOCK, NF2, HMGA2, CXCL12, E2F1, NOTCH1, 
and CD24—are associated with breast cancer. Most impor-
tantly, we demonstrated that miR-20, a member of miR-17 
cluster, is the target for E2F1 with PAOM score 57.3. Yu et al17 
and Verghese et al20 independently verified that miR-20 regu-
lates the development of breast cancer. In addition, Hossain 
et al48 confirmed that miR-17 down regulates E2F1 expression 
in breast cancer cells. Therefore, miR-20 is a strong candidate 
for targeting E2F1 mRNA in breast cancer. In particular, we 
predicted that CD24 is the target of let-7a and miR-98 with 
PAOM scores 48.2 and 12.0, respectively, in breast cancer,19 
which was previously verified by Kaipparettu et  al.19 Further 
studies will be necessary to verify those findings. In colon can-
cer cells, we predicted 15 relationships with 12 genes and veri-
fied 9 genes—MAPK14, CLOCK, HMGA2, THBS1, CXCL12, 
SIP1, NOTCH1, E2F3, and DVL2—influence on colon cancer. 
Overall, the proposed method described in this study was suc-
cessful in the detection of some potential relationships, and 
may provide information for experimental studies targeting 
toward the identification of miRNA-mRNA relationships for 
specific cancers. However, there is no doubt that many uniden-
tified relations continue to exist. Therefore, a novel approach 
using both computational methods and experimental valida-
tion is yet to be proposed for better outcomes in the prediction 
of miRNA-mRNA relationships in cancers.
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