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Abstract 

MicroRNAs (miRNAs), which are endogenous about 20–23 nucleotides non-coding RNAs, have been acted as post-
transcriptional regulators of gene expression. Current studies demonstrated that miRNAs are promising candidates for 
tumor gene therapy because of their important biological functions in tumor cell proliferation, metastasis, apopto-
sis, and drug resistance. As an important delivery system, nanostructured lipid carriers (NLCs) have great potential 
in tumor gene therapy, particularly for miRNA delivery, due to low toxicity, low immunogenicity, long metabolic 
cycles, and easy modification. This article reviews recent research progress on NLCs for miRNA delivery in tumor gene 
therapy and prospective applications.
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Background
MicroRNAs (miRNAs), discovered in 1993, are dou-
ble-stranded non-coding RNAs composed of about 20 
nucleotides that regulate gene expression at the post-
transcriptional level [1–4]. Extensive research works 
pointed out many miRNAs played important roles in 
tumor development, such as tumor cell proliferation, 
migration, apoptosis and drug resistance [5–8], there-
fore, miRNAs have been gradually applied in new thera-
peutic strategies for tumors [9]. However, because of low 
stability, low penetrability of cell membrane, and tissue 
non-specificity of miRNAs, researchers have studied the 
optimal ways to deliver these miRNAs into cells with dif-
ferent delivery system including nanostructured lipid 
carriers and have achieved significant progress [10, 11].

Nanostructured lipids (NLs), first prepared in 1961 
based on spherical vesicles by Bangham, are com-
posed of a phospholipid bilayer with a diameter of tens 
to hundreds of nanometers [12–14]. NLs are the first 
nanoparticles applied in clinical medical research and 
widely used to deliver a variety of small molecules, 

chemical and biological drugs [15–17]. Recently, NLs 
have been improved to become nanostructured lipid 
carriers (NLCs), which have spherical structures with a 
mixed solid and liquid matrix, having an aqueous core 
surrounded by a lipid bilayer. NLCs have better entrap-
ment efficiency, loading efficiency, and stability [18, 19]. 
Currently, there are three major types of NLC: cationic 
NLC, neutral NLC, and targeting-modified NLC (Fig. 1). 
Moreover, these types of NLCs have been widely used in 
the delivery of nucleic acids including distinct miRNA 
molecules for tumor gene therapy and have bright pros-
pect for many clinical applications because of superior 
biocompatibility, high biodegradability and low immuno-
genicity [20–25].

Cationic NLCs and delivery of miRNAs
Cationic NLCs are positively charged lipid vesicles and 
can be used as carriers for negatively charged substance, 
including proteins, polypeptides, oligonucleotides, RNAs 
and DNAs. Most cationic NLCs molecules are composed 
of three regions: a cationic head, a hydrophobic hydro-
carbon backbone and a linker region. And cationic NLCs 
can improve the miRNA delivery efficiency as the result 
of electric charge interactions. For instance, Chen et  al. 
[26] reported that cationic NLCs have been success-
fully used to deliver miR-34a to treat experimental lung 
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metastasis of murine B16F10 melanoma. After treatment, 
tumor cell migration was significantly inhibited in  vivo, 
indicating that cationic NLCs have potential for delivery 
of miRNAs in vivo. Furthermore, cationic NLCs have also 
been used to deliver miR-107 in the treatment of head 
and neck squamous cell carcinoma (HNSCC) in  vitro 
and in  vivo. Piao et  al. [27] found that cationic NLCs 
could deliver miR-107 into tumor cells, and the clono-
genic survival, cell invasion and cell migration of HNSCC 
cells were suppressed in delivery of miR-107 by cationic 
NLCs group compared with those in free miR-107 group, 
accompanied by decreased expression of tumor growth-
related factor, such as protein kinase Cε (PKCε), cyc-
lin-dependent kinase 6 (CDK6) and hypoxia-inducible 
factor 1-β (HIF1-β). In vivo experiment further revealed 
that in a preclinical mouse model of HNSCC, systemic 
administration of miR-107 delivered by cationic NLCs 
evidently stunted tumor growth by 45.2% compared to 
control group. These studies demonstrated the effective-
ness of cationic NLCs for delivery of distinct miRNAs 
in cancer gene therapy. To cancer cells with drug resist-
ance, recent evidence also suggested the efficacy of NLCs 

delivery system. For example, Rai et al. [28] conducted an 
in vivo study of delivery of miR-7-expressing plasmid by 
cationic NLCs to treat mouse xenograft model of human 
lung cancer. Their results showed that overexpression of 
miR-7 dramatically reversed the resistance effect of epi-
thelial growth factor receptor-tyrosine kinase inhibitors 
(EGFR-TKIs) in lung cancer cells, suggesting the poten-
tial for use of cationic NLCs to deliver specific miRNAs 
to overcome tumor cell anti-cancer drug resistance [29]. 
Interestingly, Pramanik et al. [30] evaluated the safety of 
using Cationic NLCs delivery miR-34a or MiR-143/145 
to treat pancreatic cancer xenograft model. In intrave-
nous injection, cationic NLCs delivery miR-34a or MiR-
143/145 effectively inhibited the growth of pancreatic 
cancer subcutaneous xenografts. Meanwhile, there were 
no obvious histopathologic changes or biochemical tox-
icity in mice, indicating safety of Cationic NLCs applied 
in vivo.

Recent studies have focused on the feasibility of cati-
onic NLCs for delivery of miRNAs in combination 
therapy. For instance, Xu et  al. [31] described the effect 
of the cationic NLCs were used to deliver miR-101 in 

Fig. 1  Current major types of nanostructured lipid carriers. The sketch of structure and characters of three major types of nanostructured lipid 
carriers (NLC): cationic NLC, neutral NLC, and targeting-modified NLC
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combination with doxorubicin (DOX) to treat hepato-
carcinoma xenograft model. They found that the prolif-
eration, migration and invasion of hepatocarcinoma cells 
were inhibited obviously in co-delivery system miR-101/
DOX group in  vitro and in  vivo. Notably, they further 
found that there were no significant difference in body 
weight of model mice between the combined treatment 
group and single treatment group. Taken together, their 
finding suggested that cationic NLCs did not increase the 
toxicity in combination therapy of tumors. Consistently, 
other studies also demonstrated that the effect of miR-
NAs in co-delivery system with cationic NLCs, includ-
ing significantly improved chemotherapeutic sensitivity 
of tumor cells and the enhanced final therapeutic effects 
in combination therapy [32, 33]. For example, Yang et al. 
[34] found that cationic NLCs delivery of miRNA-375 
effectively inhibited the proliferation, and enhanced the 
cell apoptosis as well as cell cycle arrest of cancer cells 
induced by cisplatin in combination with cisplatin in the 
treatment of hepatocellular carcinoma (HCC). Interest-
ingly, this study also found that miRNA-375 in combi-
nation with cisplatin to treat the double oncogenes Akt/
Ras-induced primary HCC mouse model could signifi-
cantly delay the recurrence of tumor, indicating that the 
effect mechanism seems to be associated with the inhibi-
tion of the Akt signaling pathway by miR-375.

Over the years, cationic NLCs have been used as the 
standard carriers of RNA [35]. Nevertheless, cationic 
NLCs are also associated with significant toxicity prob-
lem. For instance, a high concentration of cationic NLCs 
could compromise the membrane integrity resulting 
in cell lysis and necrotic death. Moreover, at a sublethal 
concentration, cationic NLCs could still cause irritation 
to the cells and induce cell shrinkage, vacuolization of the 
cytoplasm and a reduced number of mitoses [36, 37].

Neutral NLCs and delivery of miRNAs
In recent years, neutral NLCs have attracted attention 
as a novel carrier of miRNAs. Neutral NLCs have a tar-
geted characteristic for delivery of miRNAs in  vivo. 
Unlike cationic NLCs, neutral NLCs does not consist of 
cationic lipids. Thus, neutral NLCs can avoid a number 
of the disadvantages that can be attributed to charge. For 
example, neutral NLCs are not easy to form aggregates in 
biofluids and then avoid being filtered by the liver, adher-
ing the endothelium or taken up by macrophages [38]. 
For instance, Trang et  al. [4] reported that delivery of 
miR-124 by neutral NLCs via tail-vein injection has been 
used to treat mouse model of lung cancer. After 10 min 
of injection of miR-124/neutral NLC complex, the blood 
and three important organs including liver, kidneys and 

lungs of model mice have been analyzed. Data showed 
that both the blood and these important organs were 
elevated on the level of miR-124. To further confirm 
whether the miR-124 was uptaken by cells or existed only 
in the blood of the tissues, these organs of mice were 
perfused with 0.9% saline before analysis. It is worth not-
ing that following perfusion with 0.9% saline, the level of 
miR-124 was decreased by 70–80% in liver and kidneys, 
indicating that the most of miR-124/neutral NLCs com-
plex have effectively remained in the blood. However, 
saline perfusion rarely affected the level of miR-124 in the 
lungs, indicating that miR-124 was significantly taken up 
by lung tissue and neutral NLCs may be a useful vehicle 
to deliver distinct miRNAs to lung tumors.

In addition, neutral NLCs may have less toxicity than 
cationic NLCs. For example, Wiggins et  al. [39] found 
that systemic delivery of miR-34a mimics used neutral 
NLCs has the potential to be translated into the lung can-
cer clinic. Their data showed the antioncogenic effects 
are accompanied by an accumulation of miR-34a in the 
tumor tissue and downregulation of direct miR-34a tar-
gets. Importantly, intravenous delivery of formulated 
miR-34a did not induce an elevation of cytokines or liver 
and kidney enzymes in serum, suggesting that the neutral 
NLCs is well tolerated and does not induce an immune 
response. Other studies further showed that tumor sup-
pressor genes let-7 delivered by neutral NLCs in treat-
ment of mouse models of lung cancer, not only preferred 
to target lung cancer cells, but also elicited no specific 
immune response in vivo [4]. Consistently, some reports 
also pointed out that delivery of miR-34a and miR-495 
by neutral NLCs have been used to treat mouse model 
of diffuse large B cell lymphoma and lung cancer and 
could achieve good therapeutic effects. Meanwhile, these 
model mice were without serious adverse reactions [40, 
41].

These results suggested the low toxicity of neutral 
NLCs applied in  vivo. However, neutral NLCs were 
reported not only may reduce the RNA encapsulation 
efficiency, but also may decrease the transfection effi-
ciency and subsequently the therapeutic effectiveness 
[22].

Targeting‑modified NLCs and delivery of miRNAs
Although delivery of miRNAs used both cationic NLCs 
and neutral NLCs was feasible, the target efficacy of 
these delivery systems was still lacking in vivo. Therefore, 
targeting-modified NLCs have been a focus of current 
research works. To reduce the recognition and phago-
cytosis of NLCs by macrophages, NLCs could be coated 
with biocompatible polymers. Such as polyethylene glycol 
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(PEG), which significantly improved stability and half-life 
of NLCs in vivo. Moreover, to increase the concentrations 
of miRNA/NLC complex in target tissues, ligands of spe-
cific cells could be conjugated to the surface of the NLC, 
which improved targeting of NLC delivery [42]. In addi-
tion, NLCs have also been modified by different ligands 
might have different biological features, such as life-span, 
targeting ability and cellular permeability [25]. For exam-
ple, Hayward et  al. [43] reported that miRNA-125-a-5p 
was delivered by NLCs in which the surface was coated 
with Hyaluronic Acid (HA) was used to treat HER2 posi-
tive metastatic breast cancer. Their results showed that 
miRNA-125-a-5p primarily targeted metastatic breast 
cancer cells (21MT-1) which were isolated from the met-
astatic pleural effusion over normal breast tissue via an 
intrinsic HA-CD44 mediated endocytosis, had the ability 
to escape from the intracellular endolysosomal pathway 
to effectively induced gene silencing, subsequently could 
knock out HER2 proto-oncogenes which was involved in 
both transcriptional and translational regulations. Mean-
while, the related pathways including the PI3K/Akt and 
MAPK signaling pathways, cell proliferation as well as 
cell migration, which were also significantly inhibited. 
Similarly, Chen et al. [26] reported that delivery of miR-
34a by NLCs modified with tumor-targeting single-chain 
variable fragment (scFv) has been used to treat experi-
mental lung metastasis of murine B16F10 melanoma. 
The experimental results showed that miR-34a was 
delivered by the scFv targeted NLCs efficiently induced 
tumor cell apoptosis and inhibited tumor cell migration 
in  vivo, which was associated with the downregulation 
of survivin and the inhibition of the MAPK pathway. 
In terms of ligands, for instance, Zhang et  al. [44] con-
ducted a study in which transferrin (Tf) modified NLCs 
was used to deliver miR-221 antisense oligonucleotides 
(anti-miR-221) to the human Hepatocellular carcinoma 
(HCC) cell line HepG2. Their data showed that the aver-
age size of these particles was 122.5 nm and the encapsu-
lation efficiency of about 70%. Moreover, the Tf modified 
NLCs was most stable at 4 °C. Importantly, their experi-
ment data showed that Tf modified NLCs were able to 
deliver anti-miR-221 more efficiently and thus provided 
better efficacy than nontargeted NLCs in the HepG2 cells 
through the Tf-mediated endocytosis process.

Recently, other studies further found that the effective-
ness of delivery of targeting-modified NLCs was related 
to particle size and encapsulation efficiency. For example, 
Lee et al. [45] documented that ephrin-A1 (ephrin type-A 
receptor 1) modified NLCs have also been used to deliver 
let-7-a into mouse models of non-small cell lung can-
cer (NSCLC). Data showed that the ephrin-A1 modified 

NLCs with an average diameter of 100 nm showed high 
stability, low cytotoxicity, and high loading efficiency of 
let-7a and ephrin-A1. Moreover, ephrin-A1 modified 
NLCs could inhibit NSCLC proliferation, migration and 
tumor growth, as well as could improve the effective-
ness of targeted delivery of let-7a. However, the correla-
tion among the delivery efficiency of targeting-modified 
NLCs, particle size and encapsulation efficiency, as well 
as size limitation of protein fragments, especially, the 
relationship between delivery efficiency and local tem-
perature of tumors in vivo remain to be elucidated in the 
future.

It would be noticed that in recent studies the combi-
nation of targeting-modified NLCs delivery miRNA and 
other drugs have also achieved progress. Costa et  al. 
[46] documented that chlorotoxin (CTX) targeted NLCs 
have been used to deliver anti-miR-21 for treatment of 
glioblastoma (GBM). Their data showed that the encap-
sulation efficiency of anti-miR-21 was above 85% and a 
mean particle size was less than 190  nm. Meanwhile, 
intravenously-administration of anti-miR-21 delivered 
by the CTX targeted NLCs led to preferential accumula-
tion within brain tumors, and without obvious systemic 
immune injury. Additional studies reported that systemic 
administration of anti-miR-21 delivered by CTX targeted 
NLCs in combination with sunitinib also efficiently inhib-
ited tumor cell proliferation, promoted tumor cell apop-
tosis and increased the survival of GBM-bearing mice, 
indicating the potential prospect of targeting-modified 
NLCs delivery in combination therapy strategies.

Summary
Recent studies have shown that NLCs had good prospec-
tive application as a new type of carriers for delivery of 
miRNAs in tumor gene therapy and combination therapy 
(Table 1). However, many questions remain unanswered, 
and require further study. For example, in the process of 
gene therapy in vivo, what are the relationships between 
NLCs particle size and effectiveness of targeting deliv-
ery? What is the size limitation of the protein fragments 
utilized in the targeting-modified NLCs in  vivo? Fur-
thermore, how to evaluate the relationship between the 
uptaken of NLCs by normal organs and tissues and the 
efficiency of miRNA was delivered by NLCs in the condi-
tion of distinct delivery routes? Also, what is the pharma-
cokinetics of NLCs in vivo? And so on.

In all, taking into account in-depth studies of NLCs 
regarding molecular structures, releasing mechanisms, 
and pharmacokinetics in  vivo, and along with a better 
understanding of biological functions and tumorigenesis 
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mechanisms of miRNAs, tumor gene therapy with NLC-
delivered miRNAs will become safer, more effective and 
stable, thereby promoting the development of clinical 
novel cancer therapeutic strategies.
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