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A B S T R A C T

Functional MRI (fMRI) is modeled as a convolution of the hemodynamic response function (HRF) and an un-
measured latent neural signal. However, HRF itself is variable across brain regions and subjects. This variability
is induced by both neural and non-neural factors. Aberrations in underlying neurochemical mechanisms, which
control HRF shape, have been reported in autism spectrum disorders (ASD). Therefore, we hypothesized that this
will lead to voxel-specific, yet systematic differences in HRF shape between ASD and healthy controls. As a
corollary, we also hypothesized that such alterations will lead to differences in estimated functional connectivity
in fMRI space compared to latent neural space. To test these hypotheses, we performed blind deconvolution of
resting-state fMRI time series acquired from large number of ASD and control subjects obtained from the Autism
Brain Imaging Data Exchange (ABIDE) database (N=1102). Many brain regions previously implicated in autism
showed systematic differences in HRF shape in ASD. Specifically, we found that precuneus had aberrations in all
HRF parameters. Consequently, we obtained precuneus-seed-based functional connectivity differences between
ASD and controls using fMRI as well as using latent neural signals. We found that non-deconvolved fMRI data
failed to detect group differences in connectivity between precuneus and certain brain regions that were instead
observed in deconvolved data. Our results are relevant for the understanding of hemodynamic and neuro-
chemical aberrations in ASD, as well as have methodological implications for resting-state functional con-
nectivity studies in Autism, and more generally in disorders that are accompanied by neurochemical alterations
that may impact HRF shape.

1. Introduction

Resting-state functional magnetic resonance imaging (fMRI) is
widely used to examine brain networks by investigating temporal cor-
relations of the blood oxygen level dependent (BOLD) signals in dif-
ferent brain regions (Biswal et al., 1995; Cordes et al., 2001). Specifi-
cally in the case of Autism Spectrum Disorder (ASD), resting-state fMRI
(rs-fMRI) based functional connectivity (FC) studies could be used to
identify potential biomarkers (Nielsen et al., 2014; Cheng et al., 2015;
Abraham et al., 2017). For example, under-connectivity of the superior
temporal sulcus that predicts emotion recognition deficits in ASD have
been reported (Alaerts et al., 2013). Also deficits in the somatosensory,
default mode, and visual regions have been highlighted in character-
izing ASD (Chen et al., 2015).

Notwithstanding the strides made in understanding the

neurobiology underlying ASD using rs-fMRI FC, one drawback of the
method is that the BOLD signal only provides an indirect measurement
of neural activity (Ogawa and Lee, 1990), i.e. the observed BOLD signal
is a convolution of latent neural activity with the hemodynamic re-
sponse function (HRF). HRF is the transfer function that broadly re-
presents neurovascular coupling. This could raise many issues while
using the BOLD signal as a tool for examining and inferring neural
activity. Specifically problematic is the large variability of the HRF
across subjects, as well as across brain regions in the same subject
(Handwerker et al., 2004; Handwerker et al., 2012; Aguirre et al.,
1998). Further, the HRF seems to vary across pathological populations
(Reynell and Harris, 2013; Duarte et al., 2015) and can be influenced by
the composition of the genome (Shan et al., 2016). With specific re-
ference to ASD, prior studies have shown alterations in neuro-
transmitters which control neurovascular coupling (Reynell and Harris,
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2013), and this could potentially cause changes in the HRF. Therefore,
if the HRF varies due to any factors other than underlying neural ac-
tivity, it could lead to false inferences of FC, because synchronicity
between observed BOLD data in any two given brain regions may or
may not exist in latent neural data depending on the differences in HRF
shape between the two given regions (Fig. 1) (Rangaprakash et al.,
2017a, 2018a). Our recent research also suggests that HRF variability
confounds FC estimates by 15% on average (Rangaprakash et al.,
2018b, c). Additionally, we have recently reported alterations in HRF
parameters as well as in associated seed-based FC in post-traumatic
stress disorder (Rangaprakash et al., 2017b, c), and hence we believe
that a similar investigation in ASD may be timely. Therefore, our ob-
jective in this work is to investigate the effects of HRF variability on
resting-state fMRI FC estimates in the ASD population. In order to do so,
we utilized blind deconvolution of rs-fMRI data (Wu et al., 2013) from
ASD and control populations and characterized FC differences before
and after deconvolution.

In fMRI task paradigms, the neural activity as well as the BOLD
response is entrained to the external sensory input or the motor output.
Hence, it is relatively straightforward to deconvolve the HRF and re-
cover latent neural activity, as the timing of neural events is known
(Havlicek et al., 2011; Grant et al., 2014; Deshpande et al., 2013; Grant
et al., 2015; Karahanoǧlu et al., 2013). However, this is not true in case
of resting state wherein the neural events must be estimated from the
data (Rangaprakash et al., 2017c; Wu and Marinazzo, 2014) or inferred
from independent measurements of electrical activity (David et al.,
2008) before deconvolution is performed. In this study, we employed
the rs-fMRI deconvolution method proposed by Wu et al. (2013), which

is based on assuming resting-state data to be generated by neural events
at random times and then performing Wiener deconvolution.

In ASD, abnormalities of the neurotransmitters which control neu-
rovascular coupling are well established (Reynell and Harris, 2013;
Fatemi et al., 2009). Thus, we hypothesized that the HRF, which de-
pends on cerebrovascular reactivity and neurovascular coupling, may
be altered between ASD and healthy controls, thereby altering inferred
group differences in resting-state FC. We examined voxel-specific HRFs
obtained by deconvolving each voxel time series and characterizing
group differences of HRF shape in terms of three parameters: time-to-
peak (TTP), response height (RH), and full-width at half-max (FMHW)
(see Fig. 2). We determined brain regions with significantly altered HRF
between the ASD and control groups. Further, we examined possible
impacts of the altered HRF on the rs-fMRI FC differences between
groups.

2. Materials and methods

2.1. Resting-state fMRI data

The Autism Brain Imaging Data Exchange (ABIDE) (Di Martino
et al., 2014) consists of rs-fMRI data from 1102 subjects contributed by
17 different institutions, including 531 individuals with ASD and 571
age- and sex-matched typical controls. Of these subjects, 739 were
males, and 363 were females (Table 1). The data from each subject
consisted of resting functional MRI acquisitions and a volumetric
magnetization-prepared rapid acquisition with gradient echo
(MPRAGE) image. Local Institutional Review Boards (IRBs) approved

Fig. 1. Illustration of the impact of HRF variability on functional connectivity analysis. The measured BOLD signal, retrieved latent neural signal and the voxel-level
HRF are shown: (A) Two fMRI data timeseries that have low correlation while the correlation between underlying neural signals is high. (B) Two fMRI data timeseries
that are highly correlated while the correlation between underlying neural signals is low. This apparent dissociation between BOLD and latent neural space is induced
by the spatial variability of the HRF shape (especially, its latency), as illustrated. The figure was generated using two example fMRI time series and the corresponding
derived HRF, obtained from the experimental fMRI data used in this study. We performed a brute-force search of connectivity and HRF differences between raw and
deconvolved data to find this illustrative example.
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the study protocol at each institution, the subjects provided informed
consent, and the data was fully anonymized in accordance with Health
Insurance Portability and Accountability Act (HIPAA) guidelines. De-
tails of acquisition, informed consent, and site-specific protocols are
available at http://fcon_1000.projects.nitrc.org/indi/abide/.

2.2. Pre-processing

Pre-processing of rs-fMRI data was performed in Data Processing
Assistant for Resting-State fMRI (DPARSF) (Chao-Gan and Yu-Feng,
2010) toolbox, which is based on Statistical Parametric Mapping
(SPM8) (Penny and Harrison, 2006) and Resting-State fMRI Data
Analysis Toolkit (Song et al., 2011). For each individual participant's
data set, the first 4 image volumes were discarded. Remaining volumes
underwent the following pre-processing steps. Slice time correction was
performed by shifting the signal measured in each slice relative to the

acquisition of the slice at the mid-point of each TR. Realignment of all
the images by using six rigid body motion parameters was followed by
spatial normalization to the Montreal Neurological Institute (MNI)
template using 4th degree B-spline interpolation. Then we regressed out
head motion effects with a 24-parameter (6 head motion parameters, 6
head motion parameters one time point before, and the 12 corre-
sponding squared items) model (Friston et al., 1996). Signals from the
white matter and cerebrospinal fluid were regressed out to reduce re-
spiratory and cardiac effects.

At this point, the processing pipeline was split into two. In the first
pipeline, the data was deconvolved using the method proposed by Wu
et al. (2013), and the resulting latent neural variables were temporally
bandpass filtered in the (0.01–0.1 Hz) range. We will refer to this as the
deconvolved (DC) dataset. In the second pipeline, the data was not
deconvolved (hitherto referred to as non-deconvolved or NDC dataset),
but was subjected to temporal bandpass filtering in the (0.01–0.1 Hz)
range.

2.3. Blind deconvolution and HRF estimation

In order to characterize HRF variability in the data (Handwerker
et al., 2012), we employed a blind deconvolution technique developed
for rs-fMRI by Wu et al. (2013). This method has been validated using
both simulations and experimental data (Wu et al., 2013; Rangaprakash
et al., 2018b). It is based on the idea that the resting-state BOLD signal
[f(t)] could be considered as the convolution of the voxel-specific HRF
[h(t)] and spontaneous neural events [n(t)] occurring at random times
(Tagliazucchi et al., 2012).

= ⊗ +h t e tf(t) n(t) ( ) ( ) (1)

where e(t) is noise. Accordingly, spontaneous neural events n t( )͠ (de-
fined next in Eq. (2)) were determined from BOLD fluctuations of re-
latively large amplitude. “Relatively large” was quantified as one
standard deviation away from the mean, as prescribed in (Wu et al.,
2013; Tagliazucchi et al., 2011). This was done after pre-processing
procedures (elucidated earlier), which reduced or eliminated potential
sources of noise. This ensured that spikes contributed by noise sources
were not mistaken for neural events. Specifically, a temporal mask with
frame-wise displacement (FD)<0.3mm was added to avoid pseudo
point process events induced by motion artifacts. Using denoised and
pre-processed data, the spontaneous neural events were defined as
pseudo neural events modeled as a train of Dirac delta functions

Fig. 2. Illustration of response height (RH), time-to-peak (TTP), and full-width at half-max (FMHW) from a HRF derived from our experimental data (an arbitrary
autism subject), from an arbitrary voxel in the left angular gyrus.

Table 1
Gender distribution of data from autism spectrum disorder (ASD) and healthy
control groups in the ABIDE database, acquired at 17 different institutions.

No. Institutions Male Female ASD Control Total

1 California Institute of Technology 30 8 19 19 38
2 Kennedy Krieger Institute 42 13 22 33 55
3 University of Leuven 56 8 29 35 64
4 Ludwig Maximilians University

Munich
50 7 24 33 57

5 Oregon Health and Science
University

28 0 13 15 28

6 University of Pittsburgh School of
Medicine

49 8 30 27 57

7 Social Brain Lab UMC Groningen
NIN

30 0 15 15 30

8 San Diego State University 14 24 14 22 36
9 Stanford University 20 20 20 20 40
10 Trinity College Dublin 49 0 24 25 49
11 University of California, Los

Angeles
55 44 62 47 99

12 University of Michigan 117 28 68 77 145
13 NYU Langone Medical Center 79 105 79 105 184
14 Olin, Institute of Living at Hartford

Hospital
20 16 20 16 36

15 University of Utah School of
Medicine

58 43 58 43 101

16 Yale Child Study Center 28 28 28 28 56
17 Carnegie Mellon University 14 13 14 13 27
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(Tagliazucchi et al., 2012, 2011).

̂ ∑= −
=

∞

n t δ t τ( ) ( )
τ 0 (2)

Then, a general linear model (GLM) was fitted by adjusting the
delay between pseudo neural events n t( ) and the BOLD peaks as a free
parameter. Estimation of the HRF

∼h t( ) was then performed by fitting
the canonical double-gamma HRF model along with its two derivatives
to these delay-adjusted neural events. Once the estimated HRF was
available along with the BOLD time series, the latent neural time series
n t( )͠ was derived using a standard Wiener filter (Glover, 1999):

= ⊗ = −n f t FT W ω F ω(t) w(t) ( ) { ( ) ( )}͠ 1 (3)

where FT−1 is the inverse Fourier transform operator, and W(w) is the
Fourier transform of the Wiener filter defined as follows

=
+

∼

∼

∗
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H ω E ω
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The estimated HRFs were characterized by three parameters: re-
sponse height (RH), time-to-peak (TTP), and full-width at half-wax
(FWHM). The HRF parameters were further Z-scored. Statistical two
sample t-tests were performed to investigate between-group differences
in HRF parameters. Also, a two-way ANOVA analysis on HRF para-
meters with data acquisition sites and groups as two factors was per-
formed in order to investigate inter-site variability and its interaction
with group differences. Significant main effect of site or interaction
between group and site factors were not found. The deconvolution code
in MATLAB is publicly available at http://users.ugent.be/~dmarinaz/
HRF_deconvolution.html.

2.4. Seed region selection

Our motive was to find brain regions that had alterations in all the
three HRF parameters (TTP, FWHM and RH) in ASD compared to
control subjects and use these regions as seeds to perform FC mapping
with DC and NDC data. Two sample two-tailed t-tests were conducted
using ASD and control samples for the three parameters separately to
obtain maps indicating voxels with statistically significant difference
(FDR corrected p-value < 0.05, cluster size > 50 voxels chosen based
on AlphaSim correction) between the groups. FDR corrections were
implemented by the Benjamini–Hochberg procedure. These maps were
overlapped (intersection) to obtain brain regions that had alterations in
all the three HRF parameters. We found that this corresponded to the
precuneus where in all the three HRF parameters were greater in con-
trols compared to ASD. Therefore, precuneus was selected as the seed
region of interest (seed ROI) for calculating FC with the remaining brain
regions (Fig. 4). Table S1 in supplementary material lists the details of
the chosen seed region, including the Montreal Neurological Institute
(MNI) coordinates of the cluster and cluster size.

2.5. Seed-based functional connectivity

For each participant, seed-based connectivity maps were obtained
by evaluating Pearson's correlation coefficient between the mean time
series from the precuneus seed ROI and the rest of the pre-processed
voxel time series in the brain. A Fisher's z-transform was applied to
improve the normality of these correlation coefficients (Press et al.,
1992; Lowe et al., 1998). The converted z-score maps are hereafter
referred to as “the correlation maps”. This pipeline was implemented
separately for the two datasets: (i) NDC: data pre-processed without
deconvolution, and (ii) DC: data pre-processed with deconvolution.

It is critical to note that connectivity differences obtained in the
latent neural space are not obtained from neural event data. The fixed
neural model (unit spiking before threshold crossing) is indeed used to
estimate the neural event time series and the HRF. The utility of this

model is in estimating the proper HRF lags for deconvolution. However,
once the voxel-specific HRF is obtained, the latent neural time series is
estimated using Wiener deconvolution. According to the model by
Karahanoğlu et al. (Karahanoǧlu et al., 2013) as well as that used by
Dynamic Causal Modeling (Friston et al., 2003), the former signal is the
“innovation signal” and is constrained by fixed amplitudes (i.e. either
ON or OFF). The latter latent neural time series used in connectivity
analysis is the “activity-inducing signal” which is a continuous time
series with amplitude variations as shown in the right-most column of
Fig. 1.

2.6. Group-level analyses

The z-score maps from individual subjects were entered into a
random effect one-sample t-test to determine the brain regions showing
significant connectivity to the precuneus within each group. They were
also entered into a random effect two-sample t-test to identify the re-
gions showing significant differences in connectivity to the precuneus
between control and ASD groups (Holmes and Friston, 1998). These
procedures were also implemented separately for both DC and NDC
datasets.

2.7. The effect of deconvolution

To investigate the effect of deconvolution on between-group dif-
ferences in FC, a two-way repeated-measures ANOVA was performed
within each voxel connected with the precuneus seed. We considered
the groups (Control and ASD) as one factor and with/without applying
deconvolution as the other factor. The voxels showing a significant
interaction between the two factors (FDR corrected, p < 0.05) were
identified. Statistical tests were performed using SPSS (version 20, IBM
Inc., USA).

3. Results

Whole brain voxel-specific maps of HRF parameters for each in-
dividual subject in both Autism and healthy control groups have been
shared publicly elsewhere (Yan et al., 2018).

3.1. Inter-group HRF differences

We found that the bilateral inferior occipital gyrus and precuneus
had significantly higher RH (Fig. 3A) in the control group while the
middle frontal gyrus and bilateral rectus had significantly higher RH
(Fig. 3B) in the ASD group. The bilateral parietal lobule, bilateral
rectus, supramarginal gyrus, superior temporal gyrus, and precuneus
exhibited significantly higher FWHM (Fig. 3C) in the control group
while the middle temporal gyrus exhibited significantly higher FWHM
(Fig. 3D) in the ASD group. The left lingual gyrus and precuneus
showed significantly higher TTP (Fig. 3E) in the control group. Detailed
information such as cluster sizes, cluster centroids etc. are represented
in Table S1 in supplementary material. We found that only one cluster
within the precuneus showed alterations in all three HRF parameters
(Fig. 4) (note: RH, TTP and FWHM were higher in Control group in this
region compared to ASD). Also, a two-way ANOVA analysis on HRF
parameters with data acquisition sites and groups as two factors did not
show significant main effect of site or interaction between group and
site factors.

3.2. Precuneus-based functional connectivity within groups

In the NDC dataset, positive FC between the precuneus seed and
bilateral angular gyrus were observed in both control and ASD groups
(Fig. 5B and D). In the control group, the positive FC between pre-
cuneus and the medial frontal lobe as well as negative FC between
precuneus and right superior temporal gyrus (also partly containing the
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Insula) were detected, while these were not detected in the ASD group.
In the DC dataset, more clusters significantly connected with the

precuneus were detected in both groups (Fig. 5A and C). In the ASD

group, in addition to precuneus – bilateral angular gyrus connectivity
that was observed with NDC data, additional significant positive FC
between precuneus and the medial frontal gyrus was detected.

Fig. 3. Spatial maps showing regions with significantly different HRF parameters in ASD compared to the control group. Color bars represent the T-value. (A)
Response height, Control > ASD, (B) Response height, ASD > Control, (C) FWHM, Control > ASD, (D) FWHM, ASD > Control, (E) Time-to-peak, Control > ASD
(F) Time-to-peak, ASD > Control.
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Likewise, in the control group, functional connectivities identified with
NDC data were also identified using DC data. Additionally, positive FC
between the precuneus and right middle temporal gyrus as well as
negative FC with right supramarginal gyrus and bilateral insula were
also detected. It is noteworthy that among regions identified to be
functionally connected to precuneus in both DC and NDC datasets,
those obtained from the DC dataset had a larger spatial extent (Table S2
in supplementary material).

3.3. Precuneus-based connectivity differences between groups

We quantified the differences in seed-based FC between ASD and
control groups, using both DC and NDC datasets separately. In the NDC
dataset, the superior temporal gyrus showed higher negative con-
nectivity with precuneus in the control group, while bilateral angular
gyrus and medial frontal gyrus showed higher positive connectivity in
the control group compared to ASD (Fig. 6, Table S3 in supplementary
material). In the DC dataset, the superior temporal gyrus, insula and
right supramarginal gyrus showed higher negative connectivity with
precuneus in the control group while bilateral angular gyrus, medial
frontal gyrus and right middle temporal gyrus showed higher positive
connectivity in the control group compared to ASD (Fig. 6, Table S3 in
supplementary material).

3.4. The effect of deconvolution

Voxels in left medial frontal gyrus, left cuneus, right angular gyrus
and bilateral postcentral gyrus showed a significant interaction effect
between groups and deconvolution (Fig. 7, Table S4 in supplementary
material). This means that group differences between ASD and Controls
in these regions would be inferred differently in DC and NDC data.

Finally, to assess if any global effects were impacting our findings,
we compared the global signal across groups using pre-processed fMRI
data. We found no significant difference between groups in derived
global signal measures (p > 0.05), based on which we concluded that
global signal effects did not impact any group differences observed in
this study (more details in supplementary material SI-2).

4. Discussion

In this study, we tested the hypothesis that the HRF is altered in
individuals with ASD as compared to controls, and that this could lead
to differences in resting-state FC estimated from latent neural signal as
compared with that obtained from pre-processed (but not deconvolved)
BOLD fMRI data. In order to do so, we estimated the HRF at each voxel
using a blind deconvolution technique and characterized significant
differences in HRF characteristics such as RH, FWHM and TTP. Further,

resting-state FC maps obtained from DC and NDC data had significant
differences, and this impacted inferences about group differences de-
rived from resting-state connectivity analysis. These results seem to
lend credence to the fact that scenarios such as the ones shown in Fig. 1
could occur in experimental data. Therefore, in order to mitigate the
uncertainty introduced by the variability of the HRF, we feel that it is
desirable to perform resting-state FC analysis in the latent neural space
than with BOLD data. Given the recent push to investigate FC differ-
ences as a potential imaging biomarker of ASD (Deshpande et al., 2013;
Di Martino et al., 2014, 2017) as well as a metric for tracking treatment
response (Levin et al., 1998), we feel that taking HRF differences in FC
analysis will be critical in the clinical context.

The shape of the HRF is controlled by both non-neural and neural
factors. The non-neural factors include vasculature differences, baseline
cerebral blood flow, hematocrit, alcohol/caffeine/lipid ingestion, par-
tial volume imaging of veins, global magnetic susceptibilities, slice
timing differences and pulse or respiration differences (Handwerker
et al., 2004) (Aguirre et al., 1998; Rangaprakash et al., 2018b). These
factors induce HRF differences across both brain regions and subjects.
On the other hand, systematic differences in the shape of the HRF ob-
served between ASD and controls could at least partly be attributed to
underlying neural factors that control the HRF shape.

One might wonder why specifically three HRF parameters were
used. This choice was guided by prior literature, in part by Wu et al.'s
findings as well as other studies that tie neurochemical mechanisms
with these three HRF parameters. For example, Lindquist and Wager
(2007) suggest the use of three parameters for optimal estimation of the
HRF: RH, TTP, and FWHM as potential measures of response magni-
tude, latency, and response duration. The relationship between HRF's
other morphological features and neurochemical mechanisms control-
ling HRF shape is yet unclear.

Concerning the choice of Wu et al.'s deconvolution technique in this
study, we evaluated various methods for deconvolution and deduced
that this technique is most suitable for investigating voxel-level HRF
differences across subjects. For example, the “Total Activation” ap-
proach (Karahanoǧlu et al., 2013) performs impressively for finding
transient and block-type co-activation patterns in the latent neural
space, especially for task data. However, since it uses the same anato-
mical constraint across subjects, it may not fully capture the true inter-
subject HRF variability. Also, HRF shape can be greatly influenced by
proximity to blood vessels (Wu et al., 2013), and it might be in-
appropriate to impose the constraint that the HRFs within a given
anatomical region must be similar.

A comprehensive account of neural factors that control the shape of
the HRF is beyond the scope of this report. However, we will discuss
neurochemicals that have been shown to affect the shape of the HRF
and then link them with independent reports of altered neurochemistry

Fig. 4. The cluster within the precuneus which showed alterations in all three HRF parameters with RH, TTP and FWHM being higher in Controls compared to ASD.
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in Autism. Fig. S1 (in supplement) shows various neurochemicals that
control the coupling between neural activity and blood flow. The de-
mand for energy due to neural activity is coupled to blood flow changes
by signaling pathways controlled by various neurochemicals that di-
rectly or indirectly mediate vasodilation or vasoconstriction. The HRF is
a mathematical transfer function which represents this coupling and

hence could be altered as a consequence of changes in any of these
neurochemicals. Specifically, glutamatergic and GABAergic inter-
neurons impact the HRF (Bush et al., 2015; Brown et al., 2003) by re-
leasing neuromodulators which control local cerebral blood flow
(Buzsáki et al., 2007; Lozano-Soldevilla et al., 2014). In brain regions
with low concentrations of GABA, taller, quicker and narrower HRFs

Fig. 5. Within group functional connectivity maps with precuneus seed. (A) Deconvolved ASD group. (B) Non-deconvolved ASD group. (C) Deconvolved Control
group. (D) Non-deconvolved Control group. Red indicates area of the significant positive functional connectivity while blue indicates significant negative functional
connectivity. Color bars represent Z-values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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have been observed previously (Muthukumaraswamy et al., 2012).
Also, local activation of brain regions causes blood vessel dilation,
which is mediated by glutamatergic actions on N-methyl-D-aspartate
(NMDA) receptors (Busija et al., 2007). Attwell et al. (2010) point that
GABA decreases excitability, implying that decreased GABA con-
centration leads to increased neuronal excitability and therefore ele-
vated neuronal firing and higher glutamate release, which triggers the
release of vasodilators, increases blood flow and modulates the HRF.
However, these relationships are likely not linear. Neural activations as
well as neurotransmitters could contribute to altered HRFs. Therefore,
in the supplement (SI-3. Further discussion on the neurochemistry un-
derlying our findings) we provide a detailed discussion on abnormal-
ities in GABA, serotonin, nitric oxide (NO), glutamate and neural acti-
vations in ASD (as indicated in Fig. S1 of supplement), and ways in
which such aberrations could have impacted HRF differences between
groups.

Since the precuneus showed alterations in all three HRF parameters,
we chose that region as the seed for FC analysis. It is noteworthy that
precuneus is a core region of the Default-Mode Network (DMN) (Zhang
and Li, 2012; Andrews-Hanna et al., 2014). Therefore, by using pre-
cuneus as the seed, in effect, we probed the DMN in ASD and controls
using both DC and NDC datasets. Between-group differences obtained
from both datasets were largely consistent with those obtained from
previous studies (Di Martino et al., 2014; Lynch et al., 2013;
Washington et al., 2014; Maximo et al., 2014; Uddin and Menon, 2009;
Williams and Minshew, 2007; Assaf et al., 2010).

With between-group comparisons, bilateral angular gyrus and
medial frontal gyrus showed higher positive connectivity in the control
group compared to ASD in both DC and NDC datasets (Fig. 6, Table S3
in supplementary material). This supports the notion that under-con-
nectivity of DMN contributes to core ASD deficits (Assaf et al., 2010;
Jann et al., 2015; Ren et al., 2016). In the DC dataset, the right middle

Fig. 6. Between-group (ASD vs. control) differences in seed-based functional connectivity estimated from a seed in precuneus. Results are shown from both DC and
NDC datasets. (A) Non-deconvolved ASD > Control, (B) Deconvolved ASD > Control, (C) Non-deconvolved Control > ASD, (C) Deconvolved Control > ASD.
Color bars represent T-values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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temporal gyrus exhibited hypo-connectivity with precuneus in ASD. We
also detected lower negative connectivity with precuneus in superior
temporal gyrus, insula and right supramarginal gyrus in ASD, with
these negative correlations related to the DMN being considered as
“anti-correlated” (Chang and Glover, 2010). However, in the NDC da-
taset, we observed only lower negative connectivity with precuneus in
right superior temporal gyrus in ASD (Fig. 6, Table S3 in supplementary
material).

Using repeated-measures ANOVA, we investigated whether brain
regions show an interaction between group and deconvolution factors,
i.e. whether significant differences between ASD and control groups
were themselves significantly different between DC and NDC datasets.
We found that the connectivity between the precuneus seed and the
following regions – left medial frontal gyrus, left cuneus, right angular
gyrus and bilateral postcentral gyrus (Fig. 7, Table S3 in supplementary
material) – showed this interaction effect. This shows that FC group
differences in these regions would be inferred differently in DC and
NDC datasets. This is consistent with Lehmann et al. (2017) who found
that the HRF to confound connectivity estimates in similar regions. This
finding reinforces the point that we would be better off performing FC
analysis in the latent neural space using DC data than in BOLD space

using NDC so that inferences are not confounded by HRF variability.
Finally, we present some limitations of this study and point towards

future directions which could address those limitations. First, we esti-
mated the effect of HRF variability using seed-based FC using a pre-
cuneus seed. We did this since the precuneus showed alterations in all
three HRF parameters. However, one could investigate the effect of
voxel-wise HRF variability on voxel-wise FC differences between con-
trols and ASD at the whole brain level, rendering a broader picture.
Second, the deconvolution method chooses the threshold based on the
normalized time series in each voxel of each subject. Thus, even if the
ASD group has abnormal neural activations, the method only considers
the relative amplitude in time series at one voxel as one event. This is
nevertheless a limitation even if neural differences between the groups
are captured by the latent neural time series (which is a continuous
time signal that allows for amplitude variations as shown in Fig. 1)
obtained from deconvolution (and not the neural event time series
obtained by thresholding the BOLD data, which is binary). Third, we
have discussed various neurochemical alterations in ASD and how they
could have influenced the shape of the HRF. These inferences are in-
direct at best, since we did not directly measure the concentration of
those neurochemicals. Such an endeavor, using noninvasive in vivo

Fig. 7. The brain regions showing significant (p-value < 0.05, FDR corrected) interaction between groups (ASD and control) and with/without applying decon-
volution. Color bars represent F-values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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methods such as magnetic resonance spectroscopy in humans as well as
invasive methods in animal models, could provide evidence that is
more direct and further validate our observations. Fourth, all reported
blind deconvolution algorithms have demonstrated their face validity
using simulations (although many methods are applicable only to task
data, and the number of methods capable of deconvolving resting state
data are small). Therefore, in principle, we should get similar (not
same) results using any blind deconvolution algorithm. However, in the
absence of any reports of direct comparison of deconvolution algo-
rithms within the same framework, it is difficult to definitively say that
all of them would lead to the same conclusion. Given mounting evi-
dence from previous literature supporting the notion that HRF varia-
bility corrupts fMRI data (Rangaprakash et al., 2017b, c, 2018b; Müller
et al., 2011), and given our further contribution to the understanding of
HRF confound, we recommend researchers to perform deconvolution
during pre-processing to minimize the confound of HRF variability.

Disclosures

The authors report no competing interests.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2018.04.013.

References

Abraham, A., Milham, M., Martino, A.D., Craddock, R.C., Samaras, D., Thirion, B.,
Varoquaux, G., 2017. Deriving reproducible biomarkers from multi-site resting-state
data: an autism-based example. NeuroImage 147, 736–745.

Aguirre, G.K., Zarahn, E., D'esposito, M., 1998. The variability of human, BOLD hemo-
dynamic responses. NeuroImage 8 (4), 360–369.

Alaerts, K., Woolley, D.G., Steyaert, J., Di Martino, A., Swinnen, S.P., Wenderoth, N.,
2013. Underconnectivity of the superior temporal sulcus predicts emotion recogni-
tion deficits in autism. Soc. Cogn. Affect. Neurosci. 9 (10), 1589–1600.

Andrews-Hanna, J.R., Smallwood, J., Spreng, R.N., 2014. The default network and self-
generated thought: component processes, dynamic control, and clinical relevance.
Ann. N. Y. Acad. Sci. 1316 (1), 29–52.

Assaf, M., Jagannathan, K., Calhoun, V.D., Miller, L., Stevens, M.C., Sahl, R., O'Boyle,
J.G., Schultz, R.T., Pearlson, G.D., 2010. Abnormal functional connectivity of default
mode sub-networks in autism spectrum disorder patients. NeuroImage 53 (1),
247–256.

Attwell, D., Buchan, A.M., Charpak, S., Lauritzen, M., MacVicar, B.A., Newman, E.A.,
2010. Glial and neuronal control of brain blood flow. Nature 468 (7321), 232–243.

Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S., 1995. Functional connectivity in the
motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34
(4), 537–541.

Brown, G.G., Eyler Zorrilla, L.T., Georgy, B., Kindermann, S.S., Wong, E.C., Buxton, R.B.,
2003. BOLD and perfusion response to finger-thumb apposition after acetazolamide
administration: differential relationship to global perfusion. J. Cereb. Blood Flow
Metab. 23 (7), 829–837.

Bush, K., Cisler, J., Bian, J., Hazaroglu, G., Hazaroglu, O., Kilts, C., 2015. Improving the
precision of fMRI BOLD signal deconvolution with implications for connectivity
analysis. Magn. Reson. Imaging 33 (10), 1314–1323.

Busija, D.W., Bari, F., Domoki, F., Louis, T., 2007. Mechanisms involved in the cere-
brovascular dilator effects of N-methyl-D-aspartate in cerebral cortex. Brain Res. Rev.
56 (1), 89–100.

Buzsáki, G., Kaila, K., Raichle, M., 2007. Inhibition and brain work. Neuron 56 (5),
771–783.

Chang, C., Glover, G.H., 2010. Time-frequency dynamics of resting-state brain con-
nectivity measured with fMRI. NeuroImage 50 (1), 81–98.

Chao-Gan, Y., Yu-Feng, Z., 2010. DPARSF: a MATLAB toolbox for ‘pipeline’ data analysis
of resting-state fMRI. Front. Syst. Neurosci. 4 (May), 13.

Chen, C.P., Keown, C.L., Jahedi, A., Nair, A., Pflieger, M.E., Bailey, B.A., Müller, R.-A.,
2015. Diagnostic classification of intrinsic functional connectivity highlights soma-
tosensory, default mode, and visual regions in autism. NeuroImage. Clin. 8, 238–245.

Cheng, W., Rolls, E.T., Gu, H., Zhang, J., Feng, J., 2015. Autism: reduced connectivity
between cortical areas involved in face expression, theory of mind, and the sense of
self. Brain 138, 1382–1393.

Cordes, D., Haughton, V.M., Arfanakis, K., Carew, J.D., Turski, P.A., Moritz, C.H.,
Quigley, M.A., Meyerand, M.E., 2001. Frequencies contributing to functional con-
nectivity in the cerebral cortex in ‘resting-state’ data. Am. J. Neuroradiol. 22 (7),
1326–1333.

David, O., Guillemain, I., Saillet, S., Reyt, S., Deransart, C., Segebarth, C., Depaulis, A.,
2008. Identifying neural drivers with functional MRI: an electrophysiological vali-
dation. PLoS Biol. 6 (12), e315.

Deshpande, G., Libero, L.E., Sreenivasan, K.R., Deshpande, H.D., Kana, R.K., 2013.
Identification of neural connectivity signatures of autism using machine learning.
Front. Hum. Neurosci. 7, 670.

Di Martino, A., Yan, C.G., Li, Q., Denio, E., Castellanos, F.X., Alaerts, K., Anderson, J.S.,
Assaf, M., Bookheimer, S.Y., Dapretto, M., Deen, B., Delmonte, S., Dinstein, I., Ertl-
Wagner, B., Fair, D.A., Gallagher, L., Kennedy, D.P., Keown, C.L., Keysers, C.,
Lainhart, J.E., Lord, C., Luna, B., Menon, V., Minshew, N.J., Monk, C.S., Mueller, S.,
Müller, R., Nebel, M.B., Nigg, J.T., O'Hearn, K., Pelphrey, K.A., Peltier, S.J., Rudie,
J.D., Sunaert, S., Thioux, M., Tyszka, J.M., Uddin, L.Q., Verhoeven, J.S., Wenderoth,
N., Wiggins, J.L., Mostofsky, S.H., Milham, M.P., 2014. The autism brain imaging
data exchange: towards a large-scale evaluation of the intrinsic brain architecture in
autism. Mol. Psychiatry 19 (6), 659–667.

Di Martino, A., O'Connor, D., Chen, B., Alaerts, K., Anderson, J.S., Assaf, M., Balsters,
J.H., Baxter, L., Beggiato, A., Bernaerts, S., Blanken, L.M.E., Bookheimer, S.Y.,
Braden, B.B., Byrge, L., Castellanos, F.X., Dapretto, M., Delorme, R., Fair, D.A.,
Fishman, I., Fitzgerald, J., Gallagher, L., Keehn, R.J.J., Kennedy, D.P., Lainhart, J.E.,
Luna, B., Mostofsky, S.H., Müller, R.A., Nebel, M.B., Nigg, J.T., O'Hearn, K., Solomon,
M., Toro, R., Vaidya, C.J., Wenderoth, N., White, T., Craddock, R.C., Lord, C.,
Leventhal, B., Milham, M.P., 2017. Enhancing studies of the connectome in autism
using the autism brain imaging data exchange II. Sci. Data 4.

Duarte, J.V., Pereira, J.M., Quendera, B., Raimundo, M., Moreno, C., Gomes, L., Carrilho,
F., Castelo-Branco, M., 2015. Early disrupted neurovascular coupling and changed
event level hemodynamic response function in type 2 diabetes: an fMRI study. J.
Cereb. Blood Flow Metab. 35 (10), 1671–1680.

Fatemi, S.H., Reutiman, T.J., Folsom, T.D., Thuras, P.D., 2009. GABAA receptor down-
regulation in brains of subjects with autism. J. Autism Dev. Disord. 39 (2), 223–230.

Friston, K.J., Williams, S., Howard, R., Frackowiak, R.S., Turner, R., 1996. Movement-
related effects in fMRI time-series. Magn. Reson. Med. 35 (3), 346–355.

Friston, K.J., Harrison, L., Penny, W., 2003. Dynamic causal modelling. NeuroImage 19
(4), 1273–1302.

Glover, G.H., 1999. Deconvolution of impulse response in event-related BOLD fMRI.
NeuroImage 9 (4), 416–429.

Grant, M.M., White, D., Hadley, J., Hutcheson, N., Shelton, R., Sreenivasan, K.,
Deshpande, G., 2014. Early life trauma and directional brain connectivity within
major depression. Hum. Brain Mapp. 35 (9), 4815–4826.

Grant, M.M., Wood, K., Sreenivasan, K., Wheelock, M., White, D., Thomas, J., Knight,
D.C., Deshpande, G., 2015. Influence of early life stress on intra- and extra-amyg-
daloid causal connectivity. Neuropsychopharmacology 40 (7), 1–12.

Handwerker, D.A., Ollinger, J.M., D'Esposito, M., 2004. Variation of BOLD hemodynamic
responses across subjects and brain regions and their effects on statistical analyses.
NeuroImage 21 (4), 1639–1651.

Handwerker, D.A., Gonzalez-Castillo, J., D'Esposito, M., Bandettini, P.A., 2012. The
continuing challenge of understanding and modeling hemodynamic variation in
fMRI. NeuroImage 62 (2), 1017–1023.

Havlicek, M., Friston, K.J., Jan, J., Brazdil, M., Calhoun, V.D., 2011. Dynamic modeling of
neuronal responses in fMRI using cubature Kalman filtering. NeuroImage 56 (4),
2109–2128.

Holmes, A.P., Friston, K.J., 1998. Generalisability, random effects and population in-
ference. NeuroImage 7, S754.

Jann, K., Hernandez, L.M., Beck-Pancer, D., Mccarron, R., Smith, R.X., Dapretto, M.,
Wang, D.J.J., 2015. Altered resting perfusion and functional connectivity of default
mode network in youth with autism spectrum disorder. Brain Behav. 9, 5.

Karahanoǧlu, F.I., Caballero-Gaudes, C., Lazeyras, F., Van De Ville, D., 2013. Total acti-
vation: FMRI deconvolution through spatio-temporal regularization. NeuroImage 73,
121–134.

Lehmann, B.C.L., White, S.R., Henson, R.N., Cam-CAN, Geerligs, L., 2017. Assessing dy-
namic functional connectivity in heterogeneous samples. NeuroImage 157, 635–647.

Levin, J.M., Ross, M.H., Mendelson, J.H., Kaufman, M.J., Lange, N., Maas, L.C., Mello,
N.K., Cohen, B.M., Renshaw, P.F., 1998. Reduction in BOLD fMRI response to pri-
mary visual stimulation following alcohol ingestion. Psychiatry Res. 82 (3), 135–146.

Lindquist, M.A., Wager, T.D., 2007. Validity and power in hemodynamic response
modeling: a comparison study and a new approach. Hum. Brain Mapp. 28 (8),
764–784.

Lowe, M.J., Mock, B.J., Sorenson, J.A., 1998. Functional connectivity in single and
multislice echoplanar imaging using resting-state fluctuations. NeuroImage 7 (2),
119–132.

Lozano-Soldevilla, D., Ter Huurne, N., Cools, R., Jensen, O., 2014. GABAergic modulation
of visual gamma and alpha oscillations and its consequences for working memory
performance. Curr. Biol. 24 (24), 2878–2887.

Lynch, C.J., Uddin, L.Q., Supekar, K., Khouzam, A., Phillips, J., Menon, V., 2013. Default
mode network in childhood autism: posteromedial cortex heterogeneity and re-
lationship with social deficits. Biol. Psychiatry 74 (3), 212–219.

Maximo, J.O., Cadena, E.J., Kana, R.K., 2014. The implications of brain connectivity in
the neuropsychology of autism. Neuropsychol. Rev. 24 (1), 16–31.

Müller, R.A., Shih, P., Keehn, B., Deyoe, J.R., Leyden, K.M., Shukla, D.K., 2011.
Underconnected, but how? A survey of functional connectivity MRI studies in autism
spectrum disorders. Cereb. Cortex 21 (10), 2233–2243.

Muthukumaraswamy, S.D., Evans, C.J., Edden, R.A.E., Wise, R.G., Singh, K.D., Feb. 2012.
Individual variability in the shape and amplitude of the BOLD-HRF correlates with
endogenous GABAergic inhibition. Hum. Brain Mapp. 33 (2), 455–465.

Nielsen, J.A., Zielinski, B.A., Fletcher, P., Alexander, A.L., Lange, N., Bigler, E.D.,
Lainhart, J.E., Anderson, J.S., 2014. Abnormal lateralization of functional con-
nectivity between language and default mode regions in autism. Mol. Autism 5 (1), 8.

Ogawa, S., Lee, T.M., 1990. Magnetic resonance imaging of blood vessels at high fields: in
vivo and in vitro measurements and image simulation. Magn. Reson. Med. 16 (1),
9–18.

W. Yan et al. NeuroImage: Clinical 19 (2018) 320–330

329

https://doi.org/10.1016/j.nicl.2018.04.013
https://doi.org/10.1016/j.nicl.2018.04.013
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0005
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0005
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0005
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0010
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0010
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0015
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0015
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0015
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0020
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0020
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0020
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0025
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0025
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0025
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0025
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0030
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0030
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0035
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0035
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0035
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0040
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0040
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0040
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0040
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0045
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0045
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0045
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0050
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0050
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0050
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0055
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0055
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0060
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0060
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0065
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0065
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0070
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0070
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0070
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0075
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0075
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0075
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0080
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0080
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0080
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0080
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0085
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0085
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0085
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0090
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0090
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0090
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0095
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0095
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0095
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0095
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0095
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0095
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0095
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0095
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0095
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0100
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0100
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0100
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0100
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0100
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0100
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0100
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0100
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0105
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0105
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0105
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0105
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0110
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0110
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0115
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0115
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0120
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0120
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0125
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0125
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0130
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0130
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0130
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0135
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0135
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0135
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0140
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0140
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0140
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0145
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0145
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0145
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0150
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0150
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0150
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0155
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0155
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0160
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0160
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0160
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0165
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0165
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0165
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0170
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0170
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0175
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0175
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0175
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0180
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0180
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0180
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0185
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0185
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0185
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0190
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0190
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0190
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0195
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0195
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0195
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0200
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0200
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0205
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0205
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0205
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0210
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0210
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0210
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0215
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0215
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0215
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0220
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0220
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0220


Penny, W., Harrison, L., 2006. Multivariate autoregressive models. In: Friston, K.,
Ashburner, J., Kiebel, S., Nichols, T., Penny, W. (Eds.), Statistical Parametric
Mapping: The Analysis of Functional Brain Images. Elsevier, London.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., 1992. Numerical recipes in
C. In: The Art of Scientific Computing, 2nd ed. vol. 29 (no. 4).

Rangaprakash, D., Deshpande, G., Daniel, T.A., Goodman, A.M., Robinson, J.L., Salibi, N.,
Katz, J.S., Denney, T.S., Dretsch, M.N., 2017a. Compromised hippocampus-striatum
pathway as a potential imaging biomarker of mild-traumatic brain injury and post-
traumatic stress disorder. Hum. Brain Mapp. 38 (6), 2843–2864.

Rangaprakash, D., Dretsch, M.N., Yan, W., Katz, J.S., Denney, T.S., Deshpande, G., 2017b.
Hemodynamic response function parameters obtained from resting-state functional
MRI data in soldiers with trauma. Data in Brief 14.

Rangaprakash, D., Dretsch, M.N., Yan, W., Katz, J.S., Denney, T.S., Deshpande, G., 2017c.
Hemodynamic variability in soldiers with trauma: implications for functional MRI
connectivity studies. NeuroImage Clin. 16, 409–417.

Rangaprakash, D., Dretsch, M.N., Venkataraman, A., Katz, J.S., Denney, T.S., Deshpande,
G., 2018a. Identifying disease foci from static and dynamic effective connectivity
networks: illustration in soldiers with trauma. Hum. Brain Mapp. 39 (1), 264–287.

Rangaprakash, D., Wu, G.-R., Marinazzo, D., Hu, X., Deshpande, G., 2018b.
Hemodynamic response function (HRF) variability confounds resting-state fMRI
functional connectivity. Magn. Reson. Med. http://dx.doi.org/10.1002/mrm.27146.
(in press).

Rangaprakash, D., Wu, G.-R., Marinazzo, D., Hu, X., Deshpande, G., 2018c. Parametrized
hemodynamic response function data of healthy individuals obtained from resting-
state functional MRI in a 7T MRI scanner. Data in Brief 17 1175–59.

Ren, Y., Hu, X., Lv, J., Quo, L., Han, J., Liu, T., 2016. Identifying autism biomarkers in
default mode network using sparse representation of resting-state fMRI data. In:
Proceedings - International Symposium on Biomedical Imaging, pp. 1278–1281.

Reynell, C., Harris, J.J., 2013. The BOLD signal and neurovascular coupling in autism.
Dev. Cogn. Neurosci. 6, 72–79.

Shan, Z.Y., Vinkhuyzen, A.A.E., Thompson, P.M., McMahon, K.L., Blokland, G.A.M., de

Zubicaray, G.I., Calhoun, V., Martin, N.G., Visscher, P.M., Wright, M.J., Reutens,
D.C., 2016. Genes influence the amplitude and timing of brain hemodynamic re-
sponses. NeuroImage 124, pp, 663–671.

Song, X.-W., Dong, Z.-Y., Long, X.-Y., Li, S.-F., Zuo, X.-N., Zhu, C.-Z., He, Y., Yan, C.-G.,
Zang, Y.-F., 2011. REST: a toolkit for resting-state functional magnetic resonance
imaging data processing. PLoS One 6 (9), e25031.

Tagliazucchi, E., Balenzuela, P., Fraiman, D., Montoya, P., Chialvo, D.R., Jan. 2011.
Spontaneous BOLD event triggered averages for estimating functional connectivity at
resting state. Neurosci. Lett. 488 (2), 158–163.

Tagliazucchi, E., Balenzuela, P., Fraiman, D., Chialvo, D.R., 2012. Criticality in large-scale
brain fmri dynamics unveiled by a novel point process analysis. Front. Physiol. 3
(FEB).

Uddin, L.Q., Menon, V., 2009. The anterior insula in autism: under-connected and under-
examined. Neurosci. Biobehav. Rev. 33 (8), 1198–1203.

Washington, S.D., Gordon, E.M., Brar, J., Warburton, S., Sawyer, A.T., Wolfe, A., Mease-
Ference, E.R., Girton, L., Hailu, A., Mbwana, J., Gaillard, W.D., Kalbfleisch, M.L.,
Vanmeter, J.W., 2014. Dysmaturation of the default mode network in autism. Hum.
Brain Mapp. 35 (4), 1284–1296.

Williams, D.L., Minshew, N.J., 2007. Understanding autism and related disorders: what
has imaging taught us? Neuroimaging Clin. N. Am. 17 (4), 495–509.

Wu, G.R., Marinazzo, D., 2014. Point-process deconvolution of fMRI BOLD signal reveals
effective connectivity alterations in chronic pain patients. Brain Topogr. 28 (4),
541–547.

Wu, G.R., Liao, W., Stramaglia, S., Ding, J.-R.J., Chen, H., Marinazzo, D., 2013. A blind
deconvolution approach to recover effective connectivity brain networks from resting
state fMRI data. Med. Image Anal. 17 (3), 365–374.

Yan, W., Rangaprakash, D., Deshpande, G., 2018. Hemodynamic response function
parameters obtained from resting state BOLD fMRI data in subjects with autism
spectrum disorder and matched healthy controls. Data in Brief (in press).

Zhang, S., Li, C. shan R., 2012. Functional connectivity mapping of the human precuneus
by resting state fMRI. NeuroImage 59 (4), 3548–3562.

W. Yan et al. NeuroImage: Clinical 19 (2018) 320–330

330

http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0225
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0225
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0225
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0230
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0230
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0235
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0235
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0235
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0235
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0240
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0240
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0240
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0245
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0245
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0245
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0250
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0250
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0250
http://dx.doi.org/10.1002/mrm.27146
http://dx.doi.org/10.1002/mrm.27146
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf9310
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf9310
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf9310
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0260
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0260
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0260
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0265
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0265
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0270
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0270
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0270
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0270
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0275
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0275
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0275
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0280
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0280
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0280
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0285
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0285
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0285
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0290
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0290
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0295
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0295
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0295
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0295
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0300
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0300
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0305
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0305
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0305
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0310
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0310
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0310
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0315
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0315
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0315
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0320
http://refhub.elsevier.com/S2213-1582(18)30122-0/rf0320

	Aberrant hemodynamic responses in autism: Implications for resting state fMRI functional connectivity studies
	Introduction
	Materials and methods
	Resting-state fMRI data
	Pre-processing
	Blind deconvolution and HRF estimation
	Seed region selection
	Seed-based functional connectivity
	Group-level analyses
	The effect of deconvolution

	Results
	Inter-group HRF differences
	Precuneus-based functional connectivity within groups
	Precuneus-based connectivity differences between groups
	The effect of deconvolution

	Discussion
	Disclosures
	Supplementary data
	References




