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Abstract

Purpose of Review—Transcranial electrical stimulation (tES) is a non-invasive stimulation 

technique used for modulating brain function in humans. To help tES reach its full therapeutic 

potential, it is necessary to address a number of critical gaps in our knowledge. Here, we review 

studies that have taken advantage of animal models to provide invaluable insight about the basic 

science behind tES.

Recent Findings—Animal studies are playing a key role in elucidating the mechanisms 

implicated in tES, defining safety limits, validating computational models, inspiring new 

stimulation protocols, enhancing brain function and exploring new therapeutic applications.

Summary—Animal models provide a wealth of information that can facilitate the successful 

utilization of tES for clinical interventions in human subjects. To this end, tES experiments in 

animals should be carefully designed to maximize opportunities for applying discoveries to the 

treatment of human disease.
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Introduction

The technique of transcranial electrical stimulation (tES) relies on the application of weak 

electrical currents on the scalp. These currents can have different spatiotemporal patterns. In 

the last 18 years, transcranial direct-current (DC), alternating-current (AC) and random-
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noise current stimulation (commonly known as tDCS, tACS, and tRNS, respectively) have 

been used to neuromodulate different regions of the brain and their associated functions [1]. 

Despite the high number of published studies (especially for tDCS) [2,3], the neural 

mechanisms underlying tES and the rationale behind the choice of a specific tES modality, 

as well as the selection of the specific stimulation parameters (duration, polarity, intensity, 

frequency or location), remain unclear.

The main objective of this review is to summarize studies that have used animal models to 

improve stimulation protocols and to develop tES-based applications for enhancing normal 

brain function, and for treating a variety of neurological disorders. These studies in animal 

models have helped bridge a number of gaps in our knowledge of tES, such as basic 

mechanisms mediating its effects, the definition of safety limits, and the experimental 

validation of computational models. In the final section, we will discuss existing limitations 

for translating animal-based results to human studies and how we could possibly minimize 

them.

Understanding basic mechanisms of tES

A full understanding of the mechanisms underlying the effects of tES on brain activity 

requires electrophysiological measurements, local pharmacological manipulation, fine 

histological characterization and well-established behavioral tasks [4]. Animal models, 

including in vitro slice preparations as well as in vivo whole animal, anesthetized or awake, 

allow the application of powerful tools required to achieve a clear understanding of the 

impact of tES on brain function. The study of tES effects comprises (1) immediate effects 

observed in neural activity when the externally applied electric field enforces the 

displacement of intracellular ions altering the internal charge distribution and modifying the 

membrane potential of the neuron [4,5], (2) and the long-term effects mediated by protein 

modifications. Recent studies have begun to clarify how the immediate and long-term effects 

of tES are linked to related changes in local pre- and postsynaptic elements, including 

specific receptors, neurotransmitter systems, and glial cells, as well as the global impact of 

these changes on large-scale neural networks, and general blood perfusion levels in the brain 

[4,6].

After seminal investigations demonstrating the modulatory effect of epidural DC stimulation 

in anesthetized animals in the 1960s [7–9], and posterior descriptions about the underlying 

molecular mechanisms in the 1990s [10–12], various animal models appeared as a 

consequence of the new interest in transcranial application of DC for human brain 

modulation [13,14]. Early work indicated that anodal and cathodal DC stimulation leads to 

an increase and a decrease of neuronal excitability respectively [7,8,13]. Since then, in vitro 
studies have revealed a more complicated picture, by demonstrating the importance of 

different neuronal features, such as the orientation of somato-dendritic axes with respect to 

the electrical field [15], the neuronal morphology [16] or the axonal orientation [17]. In 

addition to investigating how single-neuron excitability is modified in response to externally 

applied electrical fields, other studies have focused on the modulation of synaptic events (at 

both presynaptic and postsynaptic sites). In vitro [16–22•] and in vivo animal models [23,24] 

have been used to demonstrate modulatory effects of DCS on excitatory postsynaptic evoked 
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potentials, suggesting the existence of tES mechanisms which affect the vesicle release 

probability at presynaptic terminals [17,23,25]. Moreover, the implication of glial cells [26], 

and different receptors, such as NMDA [27], mGluR5 [28], AMPA [29], and adenosine 

receptors [10–12,23], together with the involvement of neurotrophic BDNF [18,27] and the 

activation of early genes participating in protein synthesis [18,30], have been demonstrated 

in numerous animal-based experiments.

In addition to local effects, the impact of tES on neuronal populations distant to the 

electrically stimulated region has also been reported in animal models. Thus, neural 

processing in the pyramidal tract as well as the reticulo- and rubrospinal pathways is 

facilitated when tES is applied over different skull regions in anesthetized animals 

[24,31,32]. More recently, it has been reported that tDCS applied to the prefrontal cortex 

affects LFP coherence inducing a decrease in low frequencies between distant cortical sites 

and an increase in high frequencies between local sites [33•]. Finally, polarity-specific 

effects induced by tES on blood flow over wide areas of the brain [34,35] have also been 

characterized in animals. Based on these animal studies, it is clear that clinical application of 

tES must take into account that neuromodulation will not be restricted to the local brain area 

being stimulated.

Defining safety limits

Although tES is delivered with low-intensity currents in humans, concerns may arise about 

the technique when considering its safety limits, especially when protocols aim to increase 

intensity or duration of the applied electrical field, the number of stimulating sessions or 

when studies are performed in susceptible individuals (e.g., children) [36]. Nevertheless, 

only a few studies have addressed the issue of safety in human trials, mainly using 

computational models [37], or by assessing behavioral changes [38], the occurrence of skin 

erythema [39], and injury-related alterations of the blood-brain barrier or cerebral tissue 

detected by MRI [40]. However, the establishment of safety parameters for tES requires 

characterization of a dose-response curve, determination of a density threshold for 

histological damage and the impact of electrical fields on molecular markers that mediate 

neuroinflammatory processes [36].

Despite the obvious interest in the use of animal models for defining safety limits, it was not 

until 2009 that the first systematic study about safety aspects of tES was published. In this 

work, Liebetanz and colleagues evaluated the minimum current density (intensity/electrode 

surface area), as well as the minimum charge density (current density × time) necessary to 

cause first tissue damage by epicranial tDCS in rats [41]. Testing different current intensities 

and durations of cathodal tDCS, the authors estimated a charge density threshold of 52400 

C/m2 for histological damage, with no detectable tissue lesions below a current density of 

28.6 A/m2. On the other hand, brain tissue remained lesion-free with current densities 

between 142.9 and 287.0 A/m2 when the charge density was set below 52400 C/m2. This 

data suggests that the current densities usually applied in human studies (171 – 480 C/m2) 

are situated approximately two orders of magnitude below the calculated lesion threshold. 

Similarly, different tDCS protocols employed in subsequent animal-based studies have 

revealed harmful effects when current densities surpassed a threshold still significantly 
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above the values applied in humans [42–45•]. A recent study performed in rats reported a 

histological lesion threshold of about 20 A/m2 of current density for anodal tDCS being 

slightly below the previously established lesion threshold of 28.6 A/m2 [45•]. However, the 

threshold of charge density in this study was 72000 C/m2 (vs. 52400 C/m2 determined for 

cathodal tDCS), which highlights the importance of taking into account different parameters 

(stimulation time and density current) to assess the safety of tES.

Monitoring exclusively macroscopic lesions in brain tissue is not sufficient to define safety 

standards for the use of tES. Changes in the level of different molecular mediators involved 

in brain injury processes as a consequence of current electrical field application should be 

considered. Neuroinflammatory responses with density currents below established lesion 

thresholds have been observed, consisting of an upregulation of the innate immune response 

after both anodal and cathodal stimulation, as well as an increased number of neural stem 

cells with a directly proportional relationship to cathodal tDCS sessions [42]. A good 

example of tES safety characterization in mice has been recently reported for temporally 

interfering electric fields. In this inspiring study the authors demonstrate the safety profile of 

this new stimulation protocol by comparing immunohistochemically cellular and synaptic 

molecular profiles (apoptotic, DNA damage, microglial and astrocyte markers) in the 

stimulated vs. the non-stimulated hemisphere and with respect to a sham condition [46••].

In conclusion, animal models constitute a valuable approach for defining safety limits 

allowing for a systematic and in-depth analysis of tES-related changes in the brain. Despite 

the low number of currently published papers focused on assessing safety thresholds for 

different types of non-invasive brain stimulation, the growing interest in human tES 

presumably will boost new animal studies in the near future.

Validating computational models

Two critical aspects of tES, namely the impact of the externally applied electrical field at the 

level of single neurons and neural networks [47], and the distribution of the electrical field in 

the brain [48,49], have been addressed by computational models that are based on the 

underlying biophysical properties of the brain. Because these biophysical models rely on 

physiological observations (i.e., neuronal response to exogenous electric fields or brain 

conductivity and geometry) obtained in both human subjects and animals [50], they provide 

valuable information for the optimization of tES protocols through the definition of proper 

electrode positions and size, as well as duration and intensity of current stimulation. In this 

context, computational studies can benefit from work in animal models, which supply 

fundamental physiological knowledge and facilitate the posterior validation of model 

predictions.

The synergy between experimental approaches based on computational and animal models 

is readily apparent in recent studies. For example, Bikson and colleagues have used data 

from animal experiments to make a number of major contributions to the design and 

development of biophysically-constrained computational models of tES [22•,45•,51]. One 

study used a combination of a multi-scale computational model and slices from rat cortex to 

determine the current diffusion and the effects of the electrical field orientation on the 
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polarization of different cellular compartments [51]. The authors based their simulations on 

physiological data previously obtained in animal models, which demonstrated a key role of 

the axo-dendritic axis orientation [15], as well as the morphology and orientation of the 

different subcellular compartments [15,51,52] in the electrical field. In another example, 

computational neural-mass models have been used to reveal a key role of polarization of 

interneuron populations in reproducing the effects of tES on real sensory potentials recorded 

in the cortex of alert rabbits [53].

Animal studies have also contributed to the success of computational models that explore 

electric field diffusion in the brain, by providing physiological data to represent stimulated 

tissues (scalp, skull, cerebrospinal fluid and brain) [23], as well as MRI and micro computed 

tomography scans that can be used to capture the underlying neural geometry [45•]. These 

models can be used to obtain an estimate of the strength of the electric field that is more 

realistic than the simple current density value applied to the stimulating electrode. Some of 

the key predictions of these computational models are supported by a recent study 

performed in human and nonhuman primates, which characterized the spatiotemporal 

distribution of intracranial electric fields induced by tES and found that electric fields act in 

a linear ohmic manner with greatest strengths in superficial brain regions [54••].

In summary, animal models provide an excellent opportunity to directly measure different 

parameters related to the strength of externally applied electrical fields during tES, helping 

to guide the design of future stimulation protocols by constraining the assumptions and 

validating the predictions of computational models.

Exploring new tES protocols

The animal-based validation of present tES protocols, together with other experimental 

approaches proposing a more unconventional application of tES, are of highest priority for 

the future application of the technique in human subjects.

The ubiquitous nature of oscillations in the brain [55] and the increasing interest in using 

tES protocols with higher physiological significance instigated the application of tACS in 

human subjects to enhance, or reduce, neuronal activity at specific electrocortical 

frequencies [56•,57]. Different experimental designs in animal models have been used to 

validate and improve tACS protocols. The effects of sinusoidal AC electric fields on brain 

tissue have been examined in vitro by using animal brain slices [58–60]. For instance, AC 

electric fields applied in rat hippocampal slices at frequencies ranging from 10 to 100 Hz 

resulted in sinusoidal membrane potential fluctuations with peak-to-peak amplitudes that 

decay exponentially as a function of frequency [58]. The same study also highlights the 

importance of considering naturally occurring endogenous fields, which have been shown to 

modulate the ongoing activity of local cortical networks in acute slices [61], and increase the 

sensitivity to specific stimulation frequencies during tACS [58]. Similarly, combining the 

application of AC electric fields (0.8–2.0 Hz) with optogenetic stimulation in mouse 

neocortical slices demonstrated that endogenously generated oscillations constrain the 

neuromodulatory effects of the externally applied sinusoidal electrical field [59].
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In addition to the in vitro approach, the modulatory effects of AC electrical fields at low 

frequencies (0.8–1.7 Hz) have also been reported in anesthetized rats showing reliably 

entrained neurons in widespread cortical areas [60]. The same study revealed that the effects 

of tACS on the discharge of single neurons depend on the animal’s behavioral state, showing 

no response in the awake animal in contrast to a 25–50% of entrained neurons during sleep 

(tACS at 1.25 Hz). Importantly, tACS has been successfully used in behaving animal models 

to enhance sleep-dependent memory consolidation in rats [62] and more recently, to 

generate tactile perception when applied over the whisker somatosensory cortex of awake 

rabbits at specific frequencies (100 Hz) similar to the frequencies recorded during 

somatosensation [56•]. Also in this last study, tACS application at different frequencies 

(0.05–200 Hz) over the motor cortex of the awake animal suggested that the sub- or supra-

threshold nature of tACS-associated effects depends on the frequency of the applied current.

Finally, information gained from animal models about the impact of oscillatory AC electrical 

fields on neuronal networks has instigated a movement toward more sophisticated 

stimulation approaches using arbitrary stimulating waveforms or even the combination of 

multiple electric fields. Thus, work in epileptic rats has demonstrated how seizure-triggered 

feedback tES (consisting of a 50-ms Gaussian waveform) can be used to successfully reduce 

spike-and-wave episodes [63]. In another application, the combination of slightly different 

frequency AC electrical fields (2.01 and 2 kHz) applied over two distant electrodes on the 

mouse scalp has been shown to stimulate neurons in deeper structures like the hippocampus 

without recruiting superficially located cortical neurons [46••].

Results from animal studies suggest an extensive margin of improvement in the application 

of non-invasive tES. Considering the current state of the art, it is not an exaggeration to 

affirm that the success of this technique in human application for basic research and clinical 

treatments will rely to a large extent on the findings we will make for optimizing and 

refining stimulation protocols in animal models.

Improving brain function

The possibility of enhancing brain function in healthy subjects through the application of 

tES is enticing. Indeed, it has been demonstrated that tES can improve visual contrast 

perception [64], spatial tactile acuity [65], motor performance [66,67], and learning and 

memory processes [68] in human subjects. Animal models offer a unique opportunity to 

explore new stimulation protocols aimed to boost brain function, particularly those that are 

unconventional and may be associated with higher risk. In this regard, animal models have 

shown tES-induced enhancement of sensory-motor, learning and memory processes, 

constituting a “proving ground” for future applications in human subjects.

Modulatory effects of tES on sensory processing have been demonstrated in the 

somatosensory and visual cortices of anesthetized [69,70] and awake [23,53,56•,71,72] 

animals. For example, a recent study performed in macaque monkeys showed that tACS at 

10 Hz applied 4 cm anterior to the vertex attenuated sensory adaptation to visual stimuli 

[72]. In addition, the application of anodal and cathodal tDCS over S1 or primary visual 

cortex, respectively, increased and decreased simultaneous sensory evoked potentials 
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induced by tactile [23,56•,70] or visual [69] stimuli. The functional significance of the 

observed LFP enhancement during anodal tDCS has been examined by using whisker 

stimulation as conditioned stimulus in a delay paradigm in the classical eyeblink 

conditioning learning protocol [23]. The authors described long-term effects of tDCS over 

S1 after 20 min of cathodal currents (but not after anodal) consisting in a decreased 

amplitude of sensory LFPs in response to both whisker pad or ventroposterior medial 

thalamic nucleus electrical stimulation [23]. These asymmetric long-term effects of tDCS on 

sensory cortex constrain the underlying mechanisms to the thalamocortical pathway.

Initially described by Nitsche and Paulus in humans [13], modulatory effects of tDCS on 

motor function have been successfully reproduced in anesthetized mice showing increased 

or decreased amplitude of motor-evoked potentials in response to anodal or cathodal tDCS 

in M1 [73]. A recent study in anesthetized rats, using tACS over the hindlimb area of the 

motor cortex, highlighted the importance of the cortical excitation/inhibition balance for 

determining whether tACS ultimately leads to increases or decreases in cortical excitability 

[74]. Besides the modulation of cortical neurons, tDCS applied over the sensory-motor 

cortex can also have an impact on the excitability of subcortical motor systems, which has 

been demonstrated by recording neck-muscle EMG and descending volleys from the surface 

of the spinal cord in response to electrical stimulation of the red nucleus, medial longitudinal 

fascicle and the pyramidal tract in anesthetized cats and rats [24,31,75]. Interestingly, the 

long-lasting effects of anodal and cathodal tDCS on subcortical neurons resulted, 

respectively, in facilitation and depression of evoked motor responses in the cat [24], 

whereas the opposite modulation has been observed in the rat [31].

One potential of tES, actively studied in human subjects but less in animals, is the capability 

of improving learning processes and memory formation [68,76]. Based on the proposed 

capacity to modulate the functional connectivity of the brain [33•], and to enhance synaptic 

plasticity processes [20•,25,27] such as long-term potentiation (LTP), investigations using 

animal models have attempted to apply tDCS to boost performance in a variety of learning 

protocols. The frontal cortex has received much attention, likely due to the fact that frontal 

cortex neurons project to numerous brain areas [77–79], i.e., their modulation could affect 

performance of a variety of tasks. The encoding and retrieval of spatial memory rely on the 

correct functioning of the frontal cortex [80], and applying three sessions of pre-training 

cathodal tDCS in this brain area in rats resulted in improved long-term task retention [81], 

whereas in a different study twice-daily anodal tDCS for five consecutive days had a 

minimal impact on subsequent long-term spatial learning and memory [82]. Interestingly, 

this last study found a significantly enhanced exploration rate of a new item in a novel object 

recognition task, used to evaluate working memory [83], four weeks after the repeated 

exposure to anodal tDCS in the frontal cortex [82]. A different modality of tES combining 

tDCS with slowly oscillating electric currents at a frequency characteristic for slow wave 

sleep has been applied over the frontal cortex during post-learning non-rapid eye movement 

sleep in rats. The findings showed modulated endogenous neural oscillations together with 

improved hippocampus-dependent memory consolidation after receiving tDCS [62,84], 

confirming learning-related interactions between hippocampus and frontal cortex [85,86]. 

Notably, a single-session of anodal tDCS on the cortical area above the hippocampal 

formation improves both spatial learning and working memory in the short-term (2–24h) and 
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the long-term (7 days), verifying previously described tDCS effects on deeper brain 

structures [25,31]. Regarding immediate online effects of tDCS on learning, recent findings 

showed significantly facilitated associative learning performance with anodal stimulation 

over the prefrontal cortex during behavioral training in non-human primates. This 

observation was accompanied by an increase of low-frequency oscillations within the 

stimulated area, which possibly modified the functional connectivity of different brain 

regions [33•]. In a different study, repeated (20 consecutive days) bilateral anodal tDCS in 

S1 resulted in an improved accuracy of movements in rats performing a skilled reaching task 

[87].

Clearly, tES can have an impact on a variety of brain functions, even if the exact way tES is 

able to modulate behavior and enhance performance is not yet fully understood. Animal 

models provide an optimal approach to explore the use of tES for boosting specific brain 

functions and to start elucidating the underlying cortical and subcortical neuronal 

mechanisms. Although recent findings encourage the use of tES to improve different 

neuronal processes and treat different neurological disorders linked to impaired brain 

function in human subjects [88], animal studies are necessary in order to discard possible 

adverse effects.

Exploring potential therapeutic applications

Animal models are being used to study possible benefits of tDCS for treating a number of 

neurological and neuropsychiatric disorders that result from brain injury or pathology.

Rodent models of acute cerebral ischemia have shown that repeated applications of anodal 

tDCS over the affected area not only improved motor function [89–91•] and cognitive 

recovery [89], but also resulted in a neuroprotective effect, established by an augmented 

level of axonal plasticity [89], intensified dendritic outgrowth [89] and spine density [90], 

diminished abnormal membrane permeability and ionic dysregulation [90], and induced 

neurogenesis [91•]. However, the effects of tDCS appear to be very sensitive to the 

parameters of the stimulation protocol because in a different study a single session of anodal 

tDCS resulted in increased post-ischemic lesion volume and blood brain barrier imbalance 

[92].

Animal studies provide valuable information about the critical periods after brain damage 

that are most amenable to tES interventions. For example, anodal tDCS applied one to two 

weeks after an ischemic lesion ameliorated both motor deficits [89,90], and memory 

impairments [93]. However, other animal-based studies have intervened with tES 

immediately after a brain injury (from a few hours up to three days). In this context, a single 

session of anodal tDCS promoted early recovery of consciousness and motor function when 

applied immediately after a mild traumatic brain injury in rats [94]. Similarly, cathodal tDCS 

applied directly after cerebral infarction revealed a neuroprotective effect [92,95,96], 

inducing functional improvement and neurogenesis with concurrent migration of 

oligodendrocyte precursors towards the ischemic region [91•]. This tDCS-induced 

enhancement (particularly with cathodal stimulation) of proliferation and mobility of neural 

stem cells has been repeatedly shown in animal models [42,43,97], along with activated 
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innate inflammatory responses through repeated tDCS [42,97], promoting the use of 

restorative tDCS-based therapies. However, increased neuroinflammation, characterized as a 

"two-edged sword", can also be neurotoxic for the affected brain tissue [98], leaving open 

the question of whether interventions aimed at reducing neuroinflammation might be the 

better choice to promote recovery after brain injury, as observed by Peruzzotti-Jametti and 

colleagues after applying cathodal tDCS in ischemic mice [92].

The chronic presentation of inflammatory mediators results in an increase of nociceptors' 

sensitivity, inducing pain [99]. The therapeutic significance of tDCS for chronic-

inflammatory pain treatment is derived from the anti-hyperalgesic effect observed after 

repeated anodal stimulations applied to the rat motor cortex [100]. The underlying 

mechanism of this antinociceptive tDCS effects seems to be a top-down modulation of 

descending inhibitory pathways resulting in pain suppression [101]. Several studies using 

different tDCS protocols, such as combined DC:AC electric fields applied to the cortex of 

healthy rats [102], repeated anodal tDCS in rat models of chronic stress [103,104], and 

cathodal tDCS in both ovariectomized [105] and healthy rats [106] demonstrated pain-

reducing effects. Likewise, tDCS is able to reduce neuropathic pain induced by partial 

sciatic nerve ligation in mice [107], or by chronic constriction injury in rats [108–110], 

eliciting enhanced exploratory activity and reduced anxiety-like behavior [109].

Therapeutic applications of tDCS in mental disorders such as anxiety, depression, addiction, 

epilepsy or attention deficit hyperactivity disorder (ADHD) have been widely investigated in 

humans [111], and are now being examined in animals [112]. A sparse number of studies 

using animal models but with significant findings showed that repeated application of anodal 

tDCS in frontal cortex attenuated molecular and behavioral responses associated with 

addiction or abstinence [82,113,114]. One of the observed tDCS effects was a reduced long-

lasting antidepressant behavior in Nicotine-treated mice [82], which has been reproduced in 

both healthy mice and a mouse model of depression [115], and is possibly mediated by the 

involvement of astrocytic Ca2+ signaling [26,116•]. Beneficial tDCS-effects on short-term 

memory of an ADHD rat model, possibly via dopaminergic modulation have also been 

reported [117]. In addition, cathodal tDCS has been shown to suppress in vitro epileptic 

excitatory postsynaptic currents [118], reduce spontaneously occurring spike and slow-wave 

discharges in a genetic rat model of absence epilepsy [119], and act as an anticonvulsant in 

rodents [120–123], while seizure-triggered sinusoid tES (consisting of a 50-ms Gaussian 

waveform) significantly reduced spike-and-wave episodes in a generalized epilepsy model 

[63]. Finally, tDCS has been used to improve behavioral performance, as well as learning 

and memory in animals with brain injury [89,124] and diabetic rats [125], and to ameliorate 

the pathological symptoms in animal models of Alzheimer's disease [126,127] and 

Parkinson's disease (PD) [128–130]. AD rats received 20 min of single-session [126] or 

twice-daily [127] anodal tDCS applied five times a week for up to four weeks to the frontal 

cortex. The stimulation protocols resulted in improved cognition and spatial memory, and 

induced a protective effect on neurons, reducing the probability of neuronal damage through 

the β-amyloid neurotoxicity. Regarding PD models, a single-session of anodal tDCS was 

shown to alleviate the unilateral bias in PD rats [128], whereas a 12-day treatment of anodal 

tDCS over the motor cortex of PD monkeys enhanced motor function via an augmented 

activation of primary motor cortex and substantia nigra neurons [129], and a three week 
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treatment of daily 10-min anodal tDCS over the frontal cortex of PD mice improved motor 

coordination as well as reduced oxidative stress [130]. Moreover, 10 min of cathodal but not 

anodal tDCS was sufficient to increase extracellular dopamine levels in the normal rat 

striatum [131]. In this context, an elegant study recently revealed that a 14-day treatment of 

20 min anodal but not cathodal tDCS enhanced survival and striatal reinnervation of 

dopaminergic cell transplants in a PD rat model [132••], providing highly valuable 

information for future cell transplantation therapies in PD patients.

In conclusion, therapeutically oriented studies addressing the applicability of tES in animal 

models of brain dysfunction contribute to our understanding of disease progression and 

recovery. In addition, these animal studies provide an opportunity to elucidate the 

mechanisms underlying the beneficial effects of tES, and to design systematic experiments 

for assessing the efficacy of different stimulation protocols for treating brain pathology.

Conclusions

The use of animal models for exploring tES effects and associated underlying basic 

mechanisms has undergone a resurgence in recent years that parallels the increased interest 

in the application of this methodology to treat and enhance human brain function. As 

emphasized in this review, animal models provide an invaluable scientific instrument to 

understand the mechanisms implicated in tES, to define safety limits through the detection 

of lesion thresholds and the impact on molecular mediators involved in brain injury, to 

validate computational models, to inspire the development of more effective stimulation 

protocols, to enhance normal brain function, and to explore new therapeutic applications. 

Much of the progress in addressing these fundamental questions has come from studies that 

have taken advantage of animal models to apply tES in combination with invasive 

neuroscientific tools that are difficult to implement in human subjects, like 

electrophysiological recording of neural activity, fluorescent and two-photon imaging, or 

optogenetic manipulation.

Nevertheless, tES applications in animal models present important differences with respect 

to tES interventions in humans, and these must be taken into account before basic research 

findings can be translated to the clinic. Some of these limitations are inherent to the brain 

anatomy and geometry of the selected animal species, whose brains often lack cortical 

circumvolutions (in rodents) or are smaller in size and contain fewer neurons. Other 

limitations are related to the specific details of the stimulation protocols, e.g., the application 

of higher density currents [4] or the exploration of induced tES effects on behavioral tests 

with no clear translation to human behavior. However, as commented in this review, some 

studies have already examined the impact of tES on behavior, as well as on the activity of 

neural networks [33•] and electrical field distribution, in the brains of non-human primates 

[54••], helping bridge the difference between animal and human work. In addition, 

investigators have already started reducing the applied current densities in alert animals to 

levels used in clinical trials [24,31], and some have explored the impact of tES on behavioral 

tasks that are commonly used to assess brain function in humans [23,56•,72].
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In conclusion, the future of tES and its successful utilization in basic research and clinical 

interventions in human subjects partially rely on the correct use of animal models and on the 

extent that these animal studies can provide answers to fundamental questions about the 

mechanisms underlying tES effects in the human brain. To this end tES experiments in 

animals should be carefully designed to maximize opportunities for applying discoveries to 

the treatment of human disease.
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Abbreviations

AC alternating current

ADHD attention deficit hyperactivity disorder

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

BDNF brain-derived neurotrophic factor

DC direct current

EEG electroencephalography

EMG electromyography

fMRI functional magnetic resonance imaging

LFP local field potential

M1 primary motor cortex

mGluR5 metabotropic glutamate receptor 5

MRI magnetic resonance imaging

NMDA N-methyl-D-aspartate

S1 primary somatosensory cortex

tACS transcranial alternating-current stimulation

tDCS transcranial direct-current stimulation

tES transcranial electrical stimulation

tRNS transcranial random-noise stimulation
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