Table 1. Optimization of the Reaction Condition of Benzo[a]phenazin-5-ol with Diphenyl Acetylenea.
| entry | catalyst | oxidant | solvent | yield (%)b |
|---|---|---|---|---|
| 1 | [RuCl2(p-cymene)]2 | Cu(OAc)2·H2O | toluene | 14c, 30 |
| 2 | [RuCl2(p-cymene)]2 | Cu(OAc)2·H2O | Cl-benzene | 40 |
| 3 | [RuCl2(p-cymene)]2 | Cu(OAc)2·H2O | 1,4-dioxane | 10 |
| 4 | [RuCl2(p-cymene)]2 | Cu(OAc)2·H2O | t-AmOH | 20 |
| 5 | [RuCl2(p-cymene)]2 | Cu(OAc)2·H2O | CH3OH | 18 |
| 6 | [RuCl2(p-cymene)]2 | Cu(OAc)2·H2O | DMF | 30 |
| 7 | [RuCl2(p-cymene)]2 | Cu(OAc)2·H2O | 1,2-DCE | 72 |
| 8 | [RuCl2(p-cymene)]2 | Cu(OAc)2 | 1,2-DCE | 68 |
| 9 | [RuCl2(p-cymene)]2 | AgOAc | 1,2-DCE | 45 |
| 10 | [RuCl2(p-cymene)]2 | Ag2CO3 | 1,2-DCE | 25 |
| 11 | [RuCl2(p-cymene)]2 | K2S2O8 | 1,2-DCE | 18 |
| 12 | [RuCl2(p-cymene)]2 | PhI(OAc)2 | 1,2-DCE | trace |
| 13d | [RuCl2(p-cymene)]2 | Cu(OAc)2·H2O | 1,2-DCE | 28 |
| 14 | [RuCl2(p-cymene)]2 | − | 1,2-DCE | 0 |
| 15e | [RuCl2(p-cymene)]2 | Cu(OAc)2·H2O | 1,2-DCE | 65 |
| 16f | [RuCl2(p-cymene)]2 | Cu(OAc)2·H2O | 1,2-DCE | 50 |
| 17g | [RuCl2(p-cymene)]2 | Cu(OAc)2·H2O | 1,2-DCE | 10 |
| 18 | RuCl2·5H2O | Cu(OAc)2·H2O | 1,2-DCE | trace |
| 19 | [RhCp*Cl2]2 | Cu(OAc)2·H2O | 1,2-DCE | 60 |
| 20g | Pd(OAc)2 | Cu(OAc)2 | DMF | trace |
Reaction conditions: 1a (0.3 mmol), 2a (0.3 mmol), catalyst (5.0 mol %), additive AgSbF6 (20 mol %), and oxidant (1 equiv) in the indicated solvent (2.0 mL) at reflux or 110 °C for 12 h under air.
Isolated yield.
Under nitrogen.
Oxidant (0.5 equiv).
KPF6 was employed instead of AgSbF6.
AgBF4 was employed instead of AgSbF6.
Without additive.
