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Abstract

Land use and land cover change research has been applied to landslides, erosion, land

planning and global change. Based on the CA-Markov model, this study predicts the spatial

patterns of land use in 2025 and 2036 based on the dynamic changes in land use patterns

using remote sensing and geographic information system. CA-Markov integrates the advan-

tages of cellular automata and Markov chain analysis to predict future land use trends

based on studies of land use changes in the past. Based on Landsat 5 TM images from

1992 and 2003 and Landsat 8 OLI images from 2014, this study obtained a land use classifi-

cation map for each year. Then, the genetic transition probability from 1992 to 2003 was

obtained by IDRISI software. Based on the CA-Markov model, a predicted land use map for

2014 was obtained, and it was validated by the actual land use results of 2014 with a Kappa

index of 0.8128. Finally, the land use patterns of 2025 and 2036 in Jiangle County were

determined. This study can provide suggestions and a basis for urban development plan-

ning in Jiangle County.

Introduction

Land use research programs at a global scale have become central to international climate and

environmental change research since the launch of land use and land cover (LULC) change

project[1]. LULC has two separate terminologies that are often used interchangeably[2]. Land

cover refers to the biophysical characteristics of earth’s surface, including the distribution of

vegetation, water, soil, and other physical features of the land. While land use refers to the way

in which land has been used by humans and their habitat, usually with an emphasis on the

functional role of land for economic activities[3–5]. For instance, in terms of urbanization, a

large amount of agricultural / forestry land has been transformed into urban land, and mining

activities / oil exploitation have occurred worldwide to meet the demands of people and can

directly and obviously lead to the LUCC[6, 7]. In past studies, global environmental changes

such as emissions of greenhouse gases, global climate change, loss of biodiversity, and loss of
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soil resources have been closely linked to LULC changes[8]. Land use and land cover change

(LULCC) is the conversion of different land use types and is the result of complex interactions

between humans and the physical environment[9]. LULCC is a major driver of global change

and has a significant impact on ecosystem processes, biological cycles and biodiversity[7, 10,

11]. Moreover, LULCC is also closely related to the sustainable development of the social econ-

omy[12, 13]. Vast areas of the earth’s terrestrial surface have undergone LULCC[14–16]. With

rapid economic development, land uses change more rapidly, and the contrast among land use

types also increases[17].

Various techniques of LULC change detection analysis were discussed by Lu et al[18]. It is

possible to establish a model to predict the trends in land uses in a certain period of time

through the study of past land use changes, which could provide some basis for scientific and

effective land use planning, management and ecological restoration in a study area and guid-

ance for regional socio-economic development. Therefore, accurate and up-to-date land cover

change information is necessary for understanding and assessing LULC changes. Remote sens-

ing (RS) and geographic information system (GIS) are essential tools in obtaining accurate

and timely spatial data of land use and land cover, as well as analyzing the changes in a study

area[19–21]. Remote sensing images can effectively record land use situations and provide an

excellent source of data, from which updated LULC information and changes can be extracted,

analyzed and simulated efficiently through certain means[22, 23]. Therefore, remote sensing is

widely used in the detection and monitoring of land use at different scales[24–27]. GIS pro-

vides a flexible environment for collecting, storing, displaying and analyzing digital data neces-

sary for change detection[19, 28, 29].

Land cover change modeling means time interpolation or extrapolation when the modeling

exceeds the known period[30]. Commonly used models for estimating land cover changes are

analytical equation-based models[31], statistical models[32], evolutionary models[33], cellular

models[34], Markov models[35], hybrid models[36], expert system models[37] and multi-

agent models[38]. At present, the most widely used models in land use change monitoring and

prediction are cellular and agent-based models or the mixed model based on these two types

of models[39–42]. The Markov chain and Cellular Automata (CA-Markov) model, one of a

mixed models, is the hybrid of the Cellular Automata and Markov models. This model effec-

tively combines the advantages of the long-term predictions of the Markov model and the abil-

ity of the Cellular Automata (CA) model to simulate the spatial variation in a complex system,

and this mixed model can effectively simulate land cover change[43]. A CA model is a

dynamic model with local interactions that reflect the evolution of a system, where space and

time are considered as discrete units, and space is often represented as a regular lattice of two

dimensions[44]. CA-based models have a strong ability to represent nonlinear, spatial and sto-

chastic processes. However, CA model cannot represent macro-scale social, economic and cul-

tural driving forces that influence urban expansion well. Thus, an integration of agents into

CA models results in the improved CA-Markov model[40]. In the Markov model, the change

in an area is summarized by a series of transition probabilities from one state to another over a

specified period of time. These probabilities can be subsequently used to predict the land use

properties at specific future time points[45]. The use of the CA-Markov model in LULCC

studies has advantages such as its dynamic simulation capability; high efficiency with data,

scarcity and simple calibration; and ability to simulate multiple land covers and complex pat-

terns[17, 46]. Many researchers have applied the CA-Markov model to monitor land use and

landscape changes and predictions[23, 36, 47, 48]. Therefore, we adopted this method to

obtain reliable results for Jiangle. In this study, the 2025 and 2036 LULCs were predicted based

on the state of 2003 and 2014 LULCs.
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In recent decades, rapid population migration from rural to urban regions and improved

economic conditions in China have resulted in unprecedented LULC changes and urban

expansion rates[6]. Drivers of urbanization and changes in urban planning should be taken

into account[48]. Many studies have focused on the LULCC at the scale of large cities to prov-

inces in terms of surface runoff, urban impervious surface, surface urban heat islands, etc.[1, 6,

8, 49, 50]. While there are few studies on small cities such as Jiangle, a county that is west of

Fujian Province. Fujian Province, one of the most economically developed provinces in China

and located in the southeastern hilly area, plays an important role in China. Moreover, Fujian

Province is the core area of the “the Belt and Road Initiative” policy[51]. Jiangle is the repre-

sentative county of the hilly area and owns a state-owned forest farm. In the “National Wood

Strategic Reserve Production Base Construction Plan (2013–2020)”, Jiangle is one of the bases.

Therefore, understanding the LULC in this area and predicting future LULC can be of great

importance.

This study seeks to utilize remotely sensed data and GIS tools to analyze the LULCC in Jian-

gle County in Fujian, China for the purpose of detecting changes in the area by comparing

images between two years. Based on the Markov model, the transfer probability was estab-

lished based on the data from 1992 and 2003, and the predicted data of 2014 was processed

using the transfer probability and suitability maps in the CA model. After validation, the land

use and land cover in 2025 and 2036 were predicted. Finally, a scientific basis for decision-

making for the region’s ecological protection and optimal allocation of resources is provided.

Study area

Jiangle, located in the western part of Fujian Province, has a latitude between "26˚25’ 31”~27˚

4’8” N and a longitude between 117˚5’2”~117˚39’56”E (Fig 1). The study area is in the subtrop-

ical monsoon climate zone, with marine and continental climate characteristics. The annual

average temperature is 18.7˚C. The annual average rainfall during 2011 to 2015 was 1802.16

mm, and the frost-free period is approximately 273 days[52]. The precipitation during April—

August accounts for more than 60% of the annual precipitation. The study area is in the mid-

dle of the main section of the Wuyi Mountains, with an average elevation of 540 m, and its

highest peak in the southwest is Longxi Mountain with a height of 1620 m. The altitude in the

center of the study area is lower than the altitude around the edge of the area. The terrain is

tilted from northwest to southeast. The terrain is complex, and 90% of the region is the moun-

tain hilly landform. The Jinxi River runs across the county. The main soil type in the study

area is red soil. The main vegetation types are natural secondary forest, artificial fir, Pinus mas-
soniana and Phyllostachys pubescens.

Data collection and research methods

Fig 2 illustrates the framework of the prediction process. The major steps include (1) data

preparation; (2) determination of the classification results of three years; and (3) the applica-

tion of the CA-Markov model to obtain the predictions the LULCs in the years 2025 and 2036.

Data collection

In this study, Landsat satellite remote sensing images from 1992, 2003 and 2014 are used, with

a resolution of 30 m and track numbers of 120 / 41, 120 / 42. The detailed data are shown in

Table 1. Documents such as the "Land use status classification" from the national standards

and "Fujian Environmental Bulletin" and "Fujian Statistical Yearbook" are used.
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Remote sensing image preprocessing and accuracy verification

The remote sensing image data of the years 1992, 2003 and 2014 were radially calibrated

and atmospherically corrected. The relative geometric corrections of the three images

were conducted to remove geometric distortion caused by the sensor or the Earth rota-

tion. Due to the differences between the TM and OLI sensors, the geometric correction of

the year 2002 was based on the DEM data of the study area. Then, the 1992 and 2014

images were georeferenced to the 2002 image[48]. The errors were less than 1 pixel.

Finally, terrain correction and image stitching were conducted. Considering the "China

Land Classification System" and the goal of this study, the land use types were divided

into five categories: farmland (including dry land and paddy field), woodland (the forest

area), water, construction land (including settlements and roads) and bare land. Based on

Google Earth images, Forest Management Inventory data and Landsat data of different

periods, the training samples and the validation data of different periods were selected.

With the help of the maximum likelihood method, classification was carried out on these

three images. Precision testing was conducted using the Kappa index and the overall accu-

racy for the classification[53, 54]. Image processing was based on the UTM WGS 1984

(50N) projection system. The software ENVI 5.1 and ArcGIS 10.2 were used.

Prediction of future LULC dynamics

Markov chain analysis. Markov Chain Analysis is frequently used to simulate complex

processes such as land use change. It is mainly used to study the transition probability between

an initial state and a final state to determine the transition trend among different land use

states. Markov chain analysis is a random process that is discrete in both time and state[55–

57]. The model simulation process mainly produces a land use area transfer matrix and a prob-

ability transfer matrix to predict land use change trends. Here, the Markov chain model could

be described as a set of states, S = {S0, S1, S2, . . ., Sn}, assuming that the current state is St, and

then, it changes to state Sj at the next step with a probability denoted by transition probabilities

pij. Thus, state St+1 in the system could be determined by former stage St in the Markov chain

Fig 1. Schematic diagram of the study area (for illustrative purposes only, the image here is from the Landsat8

OLI data of 2014).

https://doi.org/10.1371/journal.pone.0200493.g001
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using the following formula[58, 59]:

Pij ¼

p11 � � � p1n

..

. ..
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ð0 � Pij < 1 and
Xn

j¼1

Pij ¼ 1; i; j ¼ 1; 2; � � � ; nÞ

ð1Þ

Stþ1 ¼ Pij � St ð2Þ

where Pij is the state transition probability matrix and n is the land use type number; S is land

Fig 2. Data processing flow chart.

https://doi.org/10.1371/journal.pone.0200493.g002
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use status, t; t+1 is the time point. In this study, the Markov chain analysis was implemented in

two periods: 1992 to 2003 and 2003 to 2014. Thus, the land use area transfer matrix and transi-

tion probability matrix were obtained.

Cellular automata model. Cellular Automata (CA) is a bottom-up dynamic model with a

spatiotemporal calculation. It is discrete in space-time and state and can carry out complex

time-space simulations[43]. The data for every cell in state St+1 are decided by the cell itself

and its neighboring cells in state St, meaning that the change in the cell is decided by rules. The

Cellular Automata model consists mainly of cell, cell space, neighbor, rule and time. The

neighbors are determined by the filter of the CA model. The closer the distance between the

nuclear cell and neighbor, the larger the weight factor will be. The weight factor is combined

with the probabilities of transition to predict the state of adjacent grid cells, so that land use

change is not a completely random decision. The commonly used neighborhoods are Moore,
the extended Moore, and von Neumann. In this study, we used the von Neumann neighbor-

hood. The rules are the suitability maps that show the possibility of the cell changing from one

status to another. The model expression is:

Stþ1 ¼ f ðSt;NÞ ð3Þ

where S is the set of states of the finite cells. The t and t+1 are different moments; N is the

neighborhood of cells; and f is the transformation rule of local space.

CA-Markov model. There are no spatial variables in the Markov model, while the status

for cells in the CA model is closely related to the spatial variables. The CA-Markov model inte-

grates the CA model’s ability to simulate the spatial variation in complex systems and the

advantages of the long-term predictions of the Markov model. The Markov chain model com-

ponent controls the temporal dynamics among the LULC classes based on transition probabil-

ities, while the spatial dynamics are controlled by local rules determined either by the CA

spatial filter or transition potential maps. The transition probabilities matrix produced by the

Markov chain model is one of the inputs of the CA model[23]. The CA Markov model effec-

tively combines the advantages of the Markov model and the CA model. The spatial prediction

accuracy can be effectively simulated at the same time[60]. The process of prediction with the

CA-Markov model is 1) building the suitability atlas based on the MCE, 2) generating the

transfer matrix and the state transition probability matrix using the Markov model, and 3) pre-

dicting the future LULC using the CA model.

Table 1. Data collection table.

Dataset Date Azimuth Elevation angle

Landsat 8 OLI� (Path/Row:120/41,120/42) Oct. 17, 2014 150.64 49.18

149.44 50.31

Landsat 5 TM� (Path/Row:120/41,120/42) Oct. 19, 2003 144.13 45.88

146.92 46.89

Landsat 5 TM� (path/Row:12041,120/42) Oct. 20, 1992 139.90 43.13

138.71 44.07

ASTER GDEM These data with 30-m spatial resolution were registered into the same coordinate system as the images

and are used to conduct topographic correction of Landsat imagery.

Topographic map 1: 50,000 Topographic map of Jiangle County

Forest Management Inventory data of Jiangle County obtained in 2013, Google Earth image

The shape files of streets and water in Jiangle were obtained from the Google Earth and OpenStreetMap(https://www.openstreetmap.org/).

�: These data were collected from the official website of US Geological Survey (USGS) (http://glovis.usgs.gov).

https://doi.org/10.1371/journal.pone.0200493.t001
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Suitability maps preparation. To use Cellular Automata, a suitability atlas for all the clas-

ses is considered as a prerequirement[17]. The suitability atlas contains a series of suitability

maps, which are usually built through the multi-criteria evaluation (MCE). The basic point of

MCE is to integrate different rules to derive a single index of evaluation[61]. The MCE

includes two parts: the constraints (the hard rules) and the factors (the soft rules). The con-

straints are the criteria that limit the expansion of classes. The constraints are expressed in the

form of Boolean maps where the areas that are not suitable will be set a value of 0, while the

suitable areas will be set a value of 1. The factors give a degree of suitability for an area to

change (mostly on distance basis) [62]. The process of data preparation is outlined in Fig 2.

There are 3 steps: (1) Identification and development of the criteria, (2) standardization of the

criteria and (3) aggregation of the criteria to obtain the suitability map for each class.

Due to the complexity of the terrain, social development and the Soil and Water Conser-

vation Work Regulations, the existing slope, road, construction area, water are adopted to

build the rules. The water and construction area were derived from the LULC maps. The

road was downloaded from the OpenStreetMap and was checked according to the image

data of each year. The slope was derived from the DEM data of study area with a resolution

of 30×30 m. Factor and constraint images were first prepared in ArcGIS 10.0. Then, the

images were imported into the IDRISI 17.0 for further processing. Using the Decision Wiz-

ard module in IDRISI, the suitability maps (Water, Construction, Bare land, Woodland and

Farm land) were derived (Fig 3). First, the constraints for the year 2014 were standardized

into Boolean maps. Here, we utilized two constraints, the water and existing construction,

because no changes can take place in the waterbodies and existing construction areas. Sec-

ond, the Fuzzy function combined with the Weighted Linear Combination (WLC) was used

to process the standard factors. During the standardization, the factors were stretched from

0 to 255 using different fuzzy functions and control points. For different type of factors, the

fuzzy functions can be Sigmoidal, J-shaped and Linear, with monotonically increasing/

decreasing or symmetric. For the control points, we set them according to the statistical

results or regulations from the government. The weights of the factors were derived with

Fig 3. The input data and the suitability maps. Construction (b), Bare land (c), Woodland (d), Farmland(e) and Water (a) are suitability

maps. Slope (f), Elevation (g), Road (h) and Construction (i) are the input data.

https://doi.org/10.1371/journal.pone.0200493.g003
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the AHP function in the WLC module. Third, the suitability map of a certain class was pro-

cessed in the MCE module with the constraints, factors, and weights. Finally, the suitability

atlas was obtained using Collection Editor in IDRISI.

LULC change prediction. In this study, the cell is the image grid cell, the unit size is

30×30 mm, and the whole land use spatial pattern is the cell space. The interval time is 11

years, so the number of cycles for the cellular automaton is 11. First, the land use transfer

matrix and state transition probability matrix from 1992 to 2003 and 2003 to 2014 are calcu-

lated using the Markov module of IDRISI 17.0. Based on the MCE suitability map, the multi-

objective decision-making module (multicriteria evaluation, MCE) in IDRISI is used to deter-

mine the suitability[63]. After comparing the results derived under the 3×3 filter with the 5×5

filter in CA model process, we adopted the 5×5 filter, meaning that the change in status for a

central cell will be affected by the 5×5 neighbor cells. Finally, the land use predictions for 2025

and 2036 based on the data in 2003 and 2014 were carried out using the CA-Markov module

integrated in IDRISI.

CA-Markov model validation. Model calibration and validation is an important step in

the process of model prediction. The usefulness of a model depends on the output of the

validation model. The Kappa index is one of the most popular used methods for quantify-

ing the predictive power of a model[23]. That is to compare the predicted data with refer-

ence data using the VALIDATE module. Using the CROSSTAB module in IDRISI, the

predicted LULC of 2014 is compared with the 2014 observed results to obtain the Kappa

index. When the Kappa index is acceptable, the land use and land cover in 2025 and 2036

can be predicted.

Analysis on dynamic change rate of land use

The rate of land use change reflects the severity of land use change in the study area in a given

time period. The standard of measurement is divided into a single land use dynamic degree

and a comprehensive land use dynamic degree[64–66]. In this study, we adopt a single land

use dynamic degree and a comprehensive land use dynamic degree. In addition, a spatial anal-

ysis model of land use dynamic change on the basis of the dynamic degree proposed by Liu

Shenghe and Shu Jin is also used to compare the differences between these two dynamic evalu-

ation methods[67]. The formulas are as follows:

The single land use dynamic degree:

Si ¼
LAði;t1Þ � ULAi

LAði;t1Þ
�

1

t2 � t1
� 100% ð4Þ

The comprehensive land use dynamic degree:

S ¼

Xn

i¼1

fLAði;t1Þ � ULAig

Xn

i¼1

LAði;t1Þ

�
1

t2 � t1
� 100% ð5Þ

The spatial-based land use dynamic degree (the rate of change):

CCLi ¼ TRLi þ IRLi ð6Þ

TRLi ¼
LAði;t1Þ � ULAi

LAði;t1Þ
�

1

t2 � t1
� 100% ð7Þ
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IRLi ¼
LAði;t2Þ � ULAi

LAði;t1Þ
�

1

t2 � t1
� 100% ð8Þ

where Si, is the dynamic degree of a single land use type and S is the comprehensive land use

dynamic degree. LA(i, t1) is the area of a certain type of land use at an earlier date, while LA(i, t2)
is the area of a certain type of land use at a later date. ULAi is the part that is not changed. t1
and t2 represent the year before and after the change, respectively. TRLi is the transfer-out rate,

IRLi is the transfer-in rate, and CCLi is the sum of TRLi and IRLi.

Results and discussion

Results of classification and analysis

Classification results of the preprocessed images in 1992, 2003 and 2014 are presented in Fig 4.

According to the classification results, the statistics for the three years of different types of land

use areas and their proportions are shown in Table 2. It can be drawn from Table 2 and Fig 4

that the area of woodland is the largest in the study area. The woodland area are 2012.78 km2,

2020.76 km2, and 1997.88 km2 in 1992, 2003 and 2014, respectively. Construction land

increases gradually during the 22 years from 1992 to 2014, which is characteristic of the Chi-

nese urbanization process. The water area shows a trend of decreasing first and then increas-

ing. According to the images of the years and relevant data, water bodies were developed and

dredged. Substantial sand excavation equipment existed in the early stage and sediment built

up. The river width was narrower in 2014 than 1992, so the water area decreased sharply.

Woodland and bare land changes correlate with urban expansion and wood cutting. The Jian-

gle state-owned forest farm is dominated by Chinese Fir, which is cut and planted for a fixed

period.

In this study, 163 polygons for Landsat TM and 172 polygons for Landsat OLI are randomly

selected to assess classification accuracy. The validation data are randomly and manually cho-

sen based on Google Maps and the Forest Management Inventory. Table 3 contains the evalua-

tion results of the three periods of images. Producer’s accuracy and user’s accuracy are

obtained by a confusion matrix. Overall classification accuracy in 1992, 2003 and 2014 are

94.94%, 92.12% and 92.33%, respectively, with Kappa indexes of 0.9254, 0.8964 and 0.8746,

respectively.

Analysis of land use change

Fig 5 is the schematic diagram of each land use in the periods of 1992–2003 (Fig 5(A)), 2003–

2014 (Fig 5(B)) and 1992–2014 (Fig 5(C)), and the diagrams show the increase and decrease of

each land use. Table 4 is the statistical table of land use change in Jiangle. Considering Fig 5

and Table 4, it can be concluded that land use change is obvious in the three periods. Fig 6 is a

sketch map of the increases and decreases in different land use types from 1992 to 2014. For a

certain land use and land cover type, the green cells mean during that period, the LULC type

of a cell is transferred from another LULC type into that specific LULC type. In contrast, the

red cells mean that the certain land use type of LULC transferred out to other types. Fig 7 dem-

onstrates the mutual transformation of different land use types from 1992 to 2014. In Fig 7,

each color represents one kind of transformation.

From 1992–2003, the net changes in water area and farmland area are relatively large, at

more than 30%. The amount of water area and farmland area that converts to other land use

types are 6.32 km2 and 30.20 km2, accounting for 44.58% and 53.50%, respectively. The
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percent of other land use types that transfer into water and farmland are 19.35% and 32.77%,

respectively. According to the remote sensing images and the material, sand excavation and

mine exploration existed around Jinxi River, which flowed through Jiangle County; therefore,

Jinxi River became narrower. Farmland transfers into construction land and bare land under

the affection of urbanization process. According to the Table 4, construction land area has a

net increase of 9.21 km2, accounting for 17.05%. In addition, the percent of this construction

land that transfers to other land use types is 57.55%, and the amount of area that transfers into

construction land is 63.74%. The net increase in bare land is 19.33 km2, accounting for 27.08%

of the area, and the percent of area that transfers into and from bare land are 76.26% and

Fig 4. The classification map.

https://doi.org/10.1371/journal.pone.0200493.g004
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69.93%, respectively. The net increase in area of woodland is 7.98 km2, accounting for 0.4% of

the area. The amount of area that transfers into and from woodland are 3.26% and 2.87%,

respectively. Because of forest maturity and economy development, the increasing percent of

the bare land area is relatively high in this period.

Of the area that changes during 2003 to 2014, water has the largest change, at 45.34%, with

a net increase in area of 6.29 km2. The percent of area that transfers from water into other land

use type is 9.42%, and the percent of area that transfers into water is 37.68%. According to

Jinagle County annals, the water area increases sharply because of a series of improvements,

sand cleaning, a decrease in sand excavation, etc., which were part of dredging the Jinxi River.

The area of farmland increases by 28.93% compared with that of 2003, with a net area increase

of 19.6 km2. The percent of area that transfers into farmland and from farmland are 65.08%

and 55.08%, respectively. Construction land area increased slowly, with a net increase of 5.86

km2, accounting for 9.27%. The percent of area that transfers into and from construction land

are 56.31% and 55.08%, respectively. The area of bare land and woodland both decrease. Bare

land area decreases 8.86 km2, accounting for 9.77%. The percent of area that transfers into and

from bare land area are 66.80% and 70.08%, respectively. Woodland area decreases 22.88 km2,

accounting for 1.13%. The percent of area that transfers into and from woodland area are

2.72% and 3.81%, respectively.

According to the changes from 1992 to 2014, the water area is flat, and the changes from

1992 to 2003 and from 2003 to 2014 demonstrate dynamic changes due to improvements to

the Jinxi River. Generally, the construction area increased from 54.01 km2 to 69.08 km2,

accounting for 27.09% of the increasing area. The percent of the area that transfers into and

from the construction are 66.06% and 56.57%, respectively. The bare land area increases from

71.36 km2 to 81.83 km2, accounting for 14.67%, and the percent of area that changed into and

from bare land are 87.72% and 85.98%, respectively, and these changes are the result of

Table 2. Area statistics for 1992, 2003 and 2014.

LULC Classes 1992 2003 2014

Area/km2 Area (%) Area/km2 Area (%) Area/km2 Area (%)

Water 20.18 0.89 13.87 0.61 20.15 0.89

Construction 54.01 2.39 63.22 2.80 69.08 3.06

Bare land 71.36 3.16 90.69 4.02 81.83 3.63

Woodland 2012.78 89.21 2020.76 89.56 1997.88 88.55

Farmland 97.94 4.34 67.74 3.00 87.34 3.87

Total 2256.28 100.00 2256.28 100.00 2256.28 100

https://doi.org/10.1371/journal.pone.0200493.t002

Table 3. Classification accuracy verification values.

LULC Classes 1992 2003 2014

Producer’s accuracy (%) User’s accuracy (%) Producer’s accuracy (%) User’s accuracy (%) Producer’s accuracy (%) User’s accuracy (%)

Water 87.54 89.97 83.13 99.74 88.74 89.48

Construction 71.26 85.02 74.24 83.05 79.91 90.76

Bare land 90.47 88.01 93.48 83.54 93.81 79.92

Woodland 96.44 97.3 98.96 97.94 95.45 97.49

Farmland 97.24 83.8 97 67.69 89.55 59.86

Overall Accuracy

(%)

92.05 92.54 91.33

Kappa Coefficient 0.8808 0.8793 0.8625

https://doi.org/10.1371/journal.pone.0200493.t003
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economic development and forest cutting. The farmland area decreases from 97.94 km2 to

87.34 km2, accounting for 10.82% of the decreasing area. The percent of area that transfers

Fig 5. Comparison of land use increases and decreases from 1992–2003, 2003–2014, 1992–2014.

https://doi.org/10.1371/journal.pone.0200493.g005

Table 4. Table of changes in area from 1992 to 2003, 2003 to 2014, 1992 to 2014.

LULC Classes 1992–2003 2003–2014 1992–2014

Area/km2 Area (%) Area/km2 Area (%) Area/km2 Area (%)

Water -6.32 -31.29 6.29 45.34 -0.03 -0.14

Construction 9.21 17.05 5.86 9.27 15.07 27.90

Bare land 19.33 27.08 -8.86 -9.77 10.47 14.67

Woodland 7.98 0.40 -22.88 -1.13 -14.91 -0.74

Farmland -30.20 -30.83 19.60 28.93 -10.60 -10.82

https://doi.org/10.1371/journal.pone.0200493.t004
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into and from farmland area are 54.13% and 59.18%, respectively, and these changes are the

comprehensive results of forest cutting and economic development. The percent of the wood-

land area changed little at 0.74%.

Analysis of change rate between two different models

Table 5 and Table 6 are the statistical tables of the land use dynamic changes in Jiangle in

1992–2003 and 2003–2014. The fastest change rate from 1992 to 2003 is bare land, which is

15.17 km2.a-1, and its transfer rate and gain rate are 6.36 km2.a-1 and 8.82 km2.a-1, respectively.

The bare land dynamic index is 6.36 km2.a-1. The second fastest change rate is construction

land area, which is 12.01 km2.a-1. Construction land area transfer rate and gain rate are 5.23

km2.a-1 and 6.78 km2.a-1, respectively, and the construction land dynamic rate is 5.23 km2.a-1.

Change rates for water and farmland are low, namely, 5.26 km2.a-1 and 6.92 km2.a-1, respec-

tively. However, their dynamic rates are the highest, namely, 4.05 km2.a-1 and 4.86 km2.a-1,

respectively. The change rate and dynamic rate of woodland are lowest, namely, 0.56 km2.a-1

and 0.26 km2.a-1, respectively. For the period of 2003–2014, farmland has the fastest change

rate, which is 12.64 km2.a-1, and its transfer rate and gain rate are 5.01 km2.a-1 and 7.64 km2.a-1,

respectively. The farmland dynamic rate is 5.01 km2.a-1. The next fastest change rate is for bare

land, which is 11.86 km2.a-1. The transfer rate and gain rate of bare land are 6.37 km2.a-1 and

Fig 6. Map of the increases and decreases in different land use types from 1992 to 2014.

https://doi.org/10.1371/journal.pone.0200493.g006
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5.48 km2.a-1, respectively. The bare land dynamic rate is 6.37 km2.a-1. The construction land

change rate is 10.34 km2.a-1, and its dynamic rate is 4.75 km2.a-1. The change rates of water and

woodland are lower, which are 5.84 km2.a-1 and 0.59 km2.a-1, respectively. Their dynamic rates

are 0.86 km2.a-1 and 0.35 km2.a-1, respectively.

The following conclusions can be drawn: the rate of change is larger than the dynamic rate.

During these two periods, the transfer rate, gain rate, rate of change and the dynamic rate are

all relatively large, meaning that the LULC change is intense. However, the rate of change is

significantly larger than dynamic rate, so the single land use dynamic rate cannot properly

describe the dynamic changes of the LULCC. For the whole area, the dynamic rate is the same

as the rate of change.

Analysis of land use change matrices

Table 7 and Table 8 are the land use change matrix and transfer matrix, respectively. Markov’s

transfer matrix reveals different types of transfer probabilities while quantitatively demonstrat-

ing the land use transfer process. The rows of the table signify the land use status and

Fig 7. Changes in land use types from 1992 to 2014.

https://doi.org/10.1371/journal.pone.0200493.g007

Table 5. The rate of land use change in Jiangle County during 1992–2003.

LULC Classes Unchanged area Transfer Gain Rate of change /(km2.a-1) Dynamic degree/%

Area /km2 Transfer rate /(km2.a-1) Area /km2 Gain rate /(km2.a-1)

Water 11.18 9.00 4.05 2.68 1.21 5.26 4.05

Construction 22.93 31.09 5.23 40.29 6.78 12.01 5.23

Bare land 21.47 49.89 6.36 69.22 8.82 15.17 6.36

Woodland 1954.81 57.97 0.26 65.95 0.30 0.56 0.26

Farmland 45.54 52.40 4.86 22.20 2.06 6.92 4.86

Total 2055.93 200.35 0.81 200.35 0.81 39.93 0.81

https://doi.org/10.1371/journal.pone.0200493.t005
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transferring out situation in the preliminary state t1 of land use change, while the columns of

the table represent the land use status and transferring in situation in the final state. As is

shown in the tables, the highest proportion of net increase in area is bare land, whose net

increase area is 19.33 km2, and its net increase area accounts for 27.08%. The main reason for

the increase is the transfer from woodland and farmland, and the amounts of their transfer

areas are 35.51 km2 and 23.93 km2, respectively, with state transition probabilities of 0.1065

and 0.2761, respectively. The second highest proportion of net increase in area is construction,

which accounts for 17.05% of the net increasing area, with a net increased area of 9.21 km2.

The net increase area of construction land is mainly from woodland transfer-in and farmland

transfer-in, and their transfer-in areas are 19.61 km2 and 12.99 km2, respectively, with state

transition probabilities of 0.2263 and 0.0393, respectively. The woodland net increase area is

7.98 km2, and it has the lowest net increase percent at 0.40%. The woodland net increase area

is mainly from bare land transfer-in, whose transfer-in area and transfer probability are 43.37

km2 and 0.6472, respectively. Water and farmland areas both decrease. Water area decreased

6.32 km2 and has a decrease proportion of 31.29%. Water mainly transfers into construction

land, whose transfer-out area is 4.52 km2 with a probability of 0.0266. Farmland transfer-out

area is 30.20 km2, accounting for 30.83%. Farmland mainly transfers into bare land and con-

struction land, whose areas are 23.93 km2 and 19.6 km2, respectively, with state transition

probabilities of 0.1065 and 0.0393, respectively.

Table 9 and Table 10 are the land use change transfer matrix and transition probability

matrix, respectively. The preliminary stage and the final state of changes are 2003 and 2014

with an 11-year interval. As can be seen from the table, water has the highest net area percent

for the land use changes during 2003–2014. The net increase area is 6.29 km2, with a propor-

tion of 45.34%. The net increase area mainly comes from construction, which is 3.77 km2, and

the state transition probability is 0.0677. The second highest net area percent is farmland,

which accounts for 29.93%. The farmland increase area is 19.60 km2, which mainly comes

Table 6. The rate of land use change in Jiangle County during 2003–2014.

LULC Classes Unchanged area Transfer Gain Rate of change /(km2.a-1) Dynamic degree /%

Area /km2 Transfer rate /(km2.a-1) Area /km2 Gain rate

/(km2.a-1)

Water 12.56 1.31 0.86 7.59 4.98 5.84 0.86

Construction 30.19 33.03 4.75 38.89 5.59 10.34 4.75

Bare land 27.12 63.56 6.37 54.70 5.48 11.86 6.37

Woodland 1943.52 77.23 0.35 54.35 0.24 0.59 0.35

Farmland 30.43 37.31 5.01 56.91 7.64 12.64 5.01

Total 2043.83 212.44 0.86 212.44 0.86 41.27 0.86

https://doi.org/10.1371/journal.pone.0200493.t006

Table 7. Area transfer matrix for 1992–2003 (km2).

LULC Classes 2003

Water Construction Bare land Woodland Farmland Total

1992 Water 11.18 4.52 0.77 2.26 1.44 20.18

Construction 1.21 22.93 9.01 11.81 9.06 54.01

Bare land 0.15 3.17 21.47 43.37 3.19 71.36

Woodland 0.96 12.99 35.51 1954.81 8.51 2012.78

Farmland 0.36 19.61 23.93 8.50 45.54 97.94

Total 13.87 63.22 90.69 2020.75 67.74 2256.28

https://doi.org/10.1371/journal.pone.0200493.t007
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from woodland and bareland with transferring areas of 26.47 km2 and 18.27 km2, respectively,

and with transition probabilities of 0.0628 and 0.2127, respectively. Construction land has a

net increase proportion of 9.27% and its net increase area is 5.86 km2. Construction land

increases mainly come from the transfer-in of woodland and farmland, and their transfer-in

areas are 21.14 km2 and 10.51 km2, respectively, with state transition probabilities of 0.0501

and 0.1744, respectively. For the bare land, the net decrease proportion is 9.77%, with a net

decrease of 8.86 km2. Bare land mainly transfers into woodland, farmland and construction

land, with transfer-out areas of 38.57 km2, 18.27 km2 and 6.10 km2, respectively, and transition

probabilities of 0.4538, 0.2127 and 0.0718, respectively. The woodland net area change propor-

tion is the lowest, with a decrease proportion of 1.13%. However, woodland net area change

amount is the highest, at 22.88 km2. Woodland mainly transfers into bare land, farmland and

construction land, whose areas are 28.01, 26.47 and 21.14 km2, respectively. The correspond-

ing transition probabilities are 0.0657, 0.0628 and 0.0501, respectively.

Results validation (observed LULC of 2014, simulated LULC of 2014)

The state transition area matrix and state transition probability matrix are created according

to land use maps in 1992 and 2003, which can be obtained by running the CA-Markov model

in IDRISI software based on the suitability atlas that has already been created. The predictive

results map for 2014 is obtained with a 5×5 contiguity filter, whose running cycle is 11 years.

Fig 8 is the predicted map of 2014. The next step is to use the CROSSTAB module in IDRISI.

Predictive results are analyzed by overlaying the land use map of 2014 that is truly classified.

Commonly, if the Kappa index is less than or equal to 0.4, then the land uses changed greatly

and with poor consistency between the two images. If the Kappa index is 0.4–0.75, then there

are general consistencies and obvious changes between the two images. Otherwise, there is

high consistency between two images[58]. Usually, the Kappa values range from 0 to 1. Values

of 0.61–0.80 means substantial, while 0.81–1 means almost perfect[68, 69]. Here, the Kappa

index between the predicted map and the observed map of 2014 is 0.8128, which is above 0.75,

illustrating that the results are reliable. There is high consistency between the actual observed

Table 8. Probability matrix of land use transfer from 1992 to 2003 (×10−2).

LULC Classes 2003

Water Construction Bare land Woodland Farmland

1992 Water 47.11 26.6 4.53 13.31 8.46

Construction 2.49 36.08 18.51 24.28 18.64

Bare land 0.23 4.73 25.56 64.72 4.76

Woodland 0.29 3.93 10.65 82.56 2.57

Farmland 0.41 22.63 27.61 9.81 39.53

https://doi.org/10.1371/journal.pone.0200493.t008

Table 9. Area transfer matrix for 2003–2014 (km2).

LULC Classes 2014

Water Construction Bare land Woodland Farmland Total

2003 Water 12.56 1.14 0.02 0.07 0.08 13.87

Construction 3.77 30.19 8.74 8.44 12.09 63.22

Bare land 0.63 6.10 27.12 38.57 18.27 90.69

Woodland 1.62 21.14 28.01 1943.52 26.47 2020.76

Farmland 1.59 10.51 17.94 7.27 30.43 67.74

Total 20.15 69.08 81.83 1997.88 87.34 2256.28

https://doi.org/10.1371/journal.pone.0200493.t009
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results and predictive results. The precision for correct predictions is relatively high; therefore,

this method can be used to predict the results in 2025 and 2036.

Results prediction

The state transition area matrix and state transition probability matrix are created by land use

maps for 2003 and 2014, and the results for 2025 and 2036 are predicted by the same method

Table 10. Probability matrix of land use transfer from 2003 to 2014 (×10−2).

LULC Classes 2014

Water Construction Bare land Woodland Farmland

2003 Water 76.99 20.02 0.29 1.27 1.44

Construction 6.77 40.59 15.71 15.18 21.75

Bare land 0.74 7.18 25.44 45.38 21.27

Woodland 0.38 5.01 6.57 81.76 6.28

Farmland 2.63 17.44 29.71 12.04 38.18

https://doi.org/10.1371/journal.pone.0200493.t010

Fig 8. The predicted land use classification of Jiangle County in 2014.

https://doi.org/10.1371/journal.pone.0200493.g008
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(Fig 9). For the prediction of 2025, the interval time is 11 years, while for the year of 2036, the

interval time is 22 years. Table 11 is the statistical table based on the predictive results in 2025

and 2036. In general, in 2025 and 2036, the woodland area decreased greatly, and the remain-

ing land area increased by a certain amount, especially in 2036, and the area of woodland

decreased significantly. Therefore, to consider ecology, the protection of woodland is necessary

in planning.

Conclusion

In recent years, with economic development and the impact of human activities, the county’s

land use has experienced substantial changes since the 1990s. In this study, Landsat5 TM and

Fig 9. Predicted results of 2025 (left) and 2036 (right).

https://doi.org/10.1371/journal.pone.0200493.g009

Table 11. Statistics for 2025 and 2036.

LULC Classes 2025 2036

Area/km2 Area (%) Area/km2 Area (%)

Water 26.81 1.19 48.67 2.16

Construction 153.27 6.79 268.71 11.91

Bare land 188.81 8.37 341.03 15.11

Woodland 1696.30 75.17 1255.73 55.65

Farmland 191.32 8.48 342.38 15.17

Total 2256.52 100.00 2256.52 100.00

https://doi.org/10.1371/journal.pone.0200493.t011

Monitoring and predicting land use and land cover changes in the Jiangle hills of China

PLOS ONE | https://doi.org/10.1371/journal.pone.0200493 July 13, 2018 18 / 23

https://doi.org/10.1371/journal.pone.0200493.g009
https://doi.org/10.1371/journal.pone.0200493.t011
https://doi.org/10.1371/journal.pone.0200493


Landsat8 OLI image data were used to obtain land use maps for 1992, 2003 and 2014. Then,

the land use structure of the study area was simulated and predicted based on the CA-Markov

model.

According to the results of the classification, the forest coverage rate of Jiangle County was

high, and the forest areas in 1992, 2003 and 2014 were 2012.78, 2020.76 and 977.88 km2,

respectively. Construction land increased from 1992 to 2014 year by year. Water, bare land,

and farmland area changes were closely related to human activities.

Under the influence of human activities, the land use changes in Jiangle County from 1992

to 2014 were obvious. The water area decreased first and then increased. In 1992–2003, a large

amount of sand mining equipment was built in the Jinxi River, and a large amount of sediment

was deposited on the river bank, so that the water area was drastically reduced. In 2003–2014,

river sand mining equipment had reduced significantly, and the river was cleared, which led to

the gradual restoration of the water area. The woodland area is large in size, although the

changed area is large, and the proportion is small. Changes in the woodland area are mainly

related to timber harvesting and urban expansion. The results showed that in 2025 and 2036,

the area of woodland decreased drastically. Taking into account of the ecological functions of

woodland, we should pay attention to the amount of woodland harvest in planning.

In the experimental process, there were some points that affected the prediction results.

First, there were some difficulties in data acquisition due to the location of the study area. In

addition, the study area is in the hilly area, where the ground changes in altitude, which has a

certain impact on the image pixel value and ultimately leads to inaccuracy of the classification

results. Second, the setting of the suitability data set had some influence on the LULC predic-

tions. Finally, there was some human impacts on the land use types, especially the construction

land changes. Therefore, through improving the quality of the input data and the setting of

related parameters, the accuracy of the predicted LULC scenarios can be increased.
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