
Application of a New Scaffold Concept for Computational Target
Deconvolution of Chemical Cancer Cell Line Screens
Ryo Kunimoto, Dilyana Dimova, and Jürgen Bajorath*

Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische
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ABSTRACT: Target deconvolution of phenotypic assays is a
hot topic in chemical biology and drug discovery. The ultimate
goal is the identification of targets for compounds that produce
interesting phenotypic readouts. A variety of experimental and
computational strategies have been devised to aid this process.
A widely applied computational approach infers putative targets
of new active molecules on the basis of their chemical similarity
to compounds with activity against known targets. Herein, we
introduce a molecular scaffold-based variant for similarity-based
target deconvolution from chemical cancer cell line screens that
were used as a model system for phenotypic assays. A new
scaffold type was used for substructure-based similarity
assessment, termed analog series-based (ASB) scaffold.
Compared with conventional scaffolds and compound-based
similarity calculations, target assignment centered on ASB scaffolds resulting from screening hits and bioactive reference
compounds restricted the number of target hypotheses in a meaningful way and lead to a significant enrichment of known cancer
targets among candidates.

1. INTRODUCTION

Drug discovery research is experiencing a renaissance of
phenotypic approaches.1,2 Especially high-content and pheno-
typic screening assays have become a hot topic in recent
years.3,4 It is generally thought that phenotypic screens might
produce leads that are more relevant for addressing complex
biology in vivo than other compounds identified in target-based
assays. Whether or not such expectations might generally be
true remains to be determined. Be that as it may, phenotypic
discovery is challenged by the need to identifyor at least
narrow downcellular targets for compounds with interesting
phenotypic readouts, a process often referred to as target
deconvolution.5,6 For compound selection and optimization as
well as late-stage preclinical evaluation, target knowledge
continues to be required in many cases, regardless of how
candidate compounds have originally been identified. In
addition, there is strong scientific interest in identifying
target(s) whose inhibition in cellular environments might
result in interesting functional effects.
For target deconvolution from phenotypic screens, different

experimental approaches have been developed or adapted,5−7

including, among others, various proteomics techniques and the
use of small molecular probes with confirmed activity against
selected targets. Moreover, target identification has also become
an attractive task for computational analysis using different
methods. For example, drug-target networks8,9 establish
compound-based links between targets and help to better

understand complex interactions involving multiple compounds
and targets. For drugs, new targets can often be proposed on
the basis of network representations that might rationalize side
effects.9 Such networks can also be generated for bioactive
compounds other than drugs and can be computationally
analyzed. Furthermore, machine-learning models combining
small molecule and target information (e.g., chemical
descriptors and protein sequences) have been generated to
predict novel compound-target pairings.10,11 Moreover, targets
of novel active compounds are often inferred from molecular
similarity between these compounds and known actives.12−14

For similarity calculations, a variety of chemical descriptors and
functions exist.15,16 Target hypotheses for new chemical entities
can be derived not only by molecular similarity calculations
producing numerical values but also by assessing substructure
relationships between compounds as a measure of similarity.
For example, targets can be predicted for new active
compounds by identifying structural analogues and comparing
their target annotations17 or on the basis of molecular
scaffolds,18 which are generated to capture core structures of
compounds.19 As such, scaffolds often represent a series of
known active compounds sharing the same core. A systematic
scaffold analysis provides a structural organization scheme, and
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target annotations of compounds containing the same scaffold
can be assigned to each scaffold.19 This approach generates
activity-annotated scaffold libraries to which new active
compounds without known targets can be mapped. If scaffolds
of new actives match the existing ones, target hypotheses can be
inferred. The classical way of defining scaffolds for medicinal
chemistry applications is according to Bemis and Murcko,
which gave rise to BM scaffolds.20 These scaffolds are obtained
from compounds by the removal of all R-groups while retaining
the ring systems and linker fragments connecting the rings.20

Various extensions of the BM scaffold concept such as the
Scaffold Tree21 have been introduced. The Scaffold Tree
decomposes BM scaffolds along tree branches according to
chemical rules until only individual rings remain and thereby
establishes structural relationships between the scaffolds.21

Herein, we report the application of a new scaffold concept
termed analog series-based (ASB) scaffold22 to computationally
assign potential targets to hits from cancer cell line screens,
which are a major resource for phenotypic discovery.23

2. RESULTS AND DISCUSSION
2.1. ASB Scaffold Concept and Substructure-Based

Similarity Assessment. Figure 1 compares the generation of

ASB and BM scaffolds. Compared with conventional scaffolds,
ASB scaffolds were designed to further increase the medicinal
chemistry relevance by (i) omitting a formal hierarchical
distinction of ring systems, linkers, and substituent; (ii)
representing a series of analogues (rather than individual
compounds); and (iii) incorporating reaction rules.22 The
definition of ASB scaffolds is thus more inclusive and restrictive

than compound-based scaffold concepts. From an ASB scaffold,
all analogues of the corresponding series can be regenerated
following retrosynthetic rules. The ASB scaffold contains all
substructures that are conserved within a series and a consensus
substitution site where R-groups distinguish different analogues
comprising the series.
For a substructure-based similarity assessment, all com-

pounds represented by the same (BM or ASB) scaffold were
assigned to the scaffold and classified as similar. For a
compound-based similarity evaluation, pairwise Tanimoto
coefficient values for the chosen reference (ChEMBL) and
query compounds (from NCI screens) were calculated and a
similarity threshold was applied.

2.2. Analysis Concept and Protocol. A major goal of our
analysis was the evaluation of a new scaffold concept for the
assignment of potential targets to hits from cancer cell line
screens. This setup served as a model system for target
deconvolution from phenotypic assays. The underlying idea
was that structurally very similar active compounds are likely to
share targets (which is well-appreciated in medicinal chem-
istry). Therefore, analog series were systematically extracted
from combined screening and ChEMBL compounds to
comprehensively capture structural relationships, and the
resultant ASB scaffolds were collected. ASB scaffolds
representing both screening hits and ChEMBL compounds
were prioritized, and known target annotations of ChEMBL
compounds were assigned to hits sharing the same ASB
scaffold. Then, target annotations were collected for each cell
line. The analysis was centered on ASB scaffolds to ensure that
only close structural analogues were considered for target
transfer from known bioactive compounds to hits. As such, ASB
scaffolds provided a “meta structure” for target deconvolution.
The analysis protocol that was systematically applied to all 73
cell line screens is illustrated in Figure 2.
The approach is conceptually based on molecular similarity

to derive compound-target hypotheses, specifically on sub-
structure-based similarity; that is, compounds are classified as
similar if they are represented by the same scaffold.
Accordingly, we have compared ASB scaffolds and conventional
BM scaffolds in the same analysis context and, in addition,
carried out conventional similarity searching as another
reference calculation. In the latter case, screening hits were
used as templates for similarity searching in ChEMBL. If similar
compounds were identified, their target annotations were
assigned to the hits.
For our analysis, many properties assigned to scaffolds such

as promiscuity, selectivity, or privileged substructure character-
istics that are often discussed in medicinal chemistry19 are not
relevant. Neither do we need to consider relative contributions
of core structures and R-groups to biological activity. Rather, in
the context of our analysis, the use of scaffolds for the structural
organization of active compounds becomes critically important,
which is only one of many aspects often considered in the
scaffold-based analysis of compound activity data.19

2.3. Scaffold and Compound Statistics. Our analysis
protocol identified 99 unique ASB scaffolds shared by screening
hits and ChEMBL compounds, 927 shared BM scaffolds, and
25 390 ChEMBL compounds classified on the basis of
similarity searching as being similar to screening hits (Table
1). Hence, there were many more compound-based BM than
ASB scaffolds and many more similar compounds than
scaffolds. For shared ASB and BM scaffolds, 7−40 and 56−
388 scaffolds were obtained per cell line screen, with a mean of

Figure 1. Generation of ASB and BM scaffolds. For a compound series
(A−C), the generation of ASB and BM scaffolds is illustrated. Two
unique BM scaffolds were isolated from these compounds by removing
substituents. RECAP-MMP cores of compounds A−C are shown. The
core shared among all compounds (highlighted in orange) represents
the ASB scaffold.
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18.8 and 209.7, respectively (Table 1). Thus, many scaffolds
were detected multiple times in different cell line screens. In

addition, the number of similar compounds per cell line ranged
from 962 to 9465, with a mean of 4883.
Exemplary shared ASB scaffolds are shown in Figure 3

together with the compound series from which they originated.
These examples illustrate another important aspect of the ASB
scaffold analysis. In these cases, close screening compound
analogues were detected that were either active or inactive in
the cell line screen, thus providing immediate opportunities for
reassessing assay results by retesting selected hits and/or
inactive compounds, prior to the target analysis. In many other
instances, shared ASB scaffolds represented only active
compounds, as illustrated in Figure 2.

2.4. Target Assignment. 2.4.1. Global Target Distribu-
tion. For each cell line screen, the union of targets associated
with shared scaffolds was determined. The 927 shared BM
scaffolds yielded a total of 1130 unique targets across all cell
lines, with a range of 595 to more than 1000 targets per line, as
reported in Table 1. Thus, on the basis of BM scaffolds,
approximately 70% of all investigated human targets were
assigned to screening hits as potential targets. Similarity
searching suggested a larger number of unique 1249 targets
of screening hits. However, when ranges of targets over cell line
screens were consideredinstead of total numbers of unique
targetsBM scaffold analysis yielded more targets than
similarity searching, with an average 925 versus 756 targets
per cell line, respectively (Table 1). Thus, on the basis of
compound similarity, individual targets were much less
frequently detected than on the basis of shared BM scaffolds.
For similarity searching, the number of similar compounds and
the resultant targets might be reduced by further increasing the
similarity threshold value. Regardless, the control calculations
showed that generally applied compound similarity criteria
would not be suitable for target assignment across cell line
screens. At face value, implicating approximately 70% or more
of all preselected targets in activity signals from cell line
screenson the basis of BM scaffolds or compound
similaritywas considered not realistic, despite variations
observed across different cell lines. By contrast, the structurally
more conservative ASB scaffold approach involving multiple
compounds significantly reduced the number of target
assignments. On the basis of 99 identified shared ASB scaffolds
(approximately an order of magnitude less than shared BM
scaffolds), a total of 232 unique targets were assigned, with a
mean of 74 targets per cell line. Thus, shared ASB scaffolds
implicated only approximately 14% of all targets in cell line
screens and also controlled the number of targets per line.

2.4.2. Cancer Targets. To specifically focus observed
differences in target distributions on the cancer cell line
screening, the assignment of known cancer targets was
analyzed, which represented a subset of all monitored targets.
ASB scaffolds, BM scaffolds, and similarity searching identified
108, 330, and 366 known cancer targets, respectively, as
potential targets for screening hits across all cell lines, with
ranges of 14−62 (ASB), 197−303 (BM), and 147−311
(similarity) cancer targets per line (Table 1). With one
exception (macrophage colony stimulating factor receptor;
CSF1R; ChEMBL TID 1844), the set of targets identified on
the basis of ASB scaffolds overlapped with the other sets. Table
S2 reports the cancer targets assigned on the basis of ASB
scaffolds to each cell line screen.
ASB scaffolds assigned approximately one-third of cancer

targets compared with BM scaffolds and similarity searching,
although the number of all targets differed by more than one

Figure 2. Analysis scheme. For a given cell line, screening compounds
(hits, colored in blue; inactive compounds, pink) and bioactive
compounds from ChEMBL (green) were pooled. From this
compound pool, analog series were extracted (depicted as clusters)
and series yielding ASB scaffolds (orange) identified. ASB scaffolds
resulting from series containing screening hits and ChEMBL
compounds (i.e., ASB3 and ASB4) were determined. Target
annotations of all bioactive compounds represented by the shared
ASB scaffolds were assembled and the union of these targets (i.e., T1,
T2, and T3) was assigned to screening hits of this cell line.

Table 1. Scaffold and Similarity Search Statisticsa

per cell line

MIN−MAX AVG TOTAL

ASB Scaffolds
# shared ASB scaffolds 7−40 18.8 99
# targets 30−119 73.7 232
# cancer targets 14−62 26.5 108
cancer target rate (%) 23.3−59.8 36.4 46.6

BM Scaffolds
# shared BM scaffolds 56−388 209.7 927
# targets 595−1030 925.1 1130
# cancer targets 197−303 275.9 330
cancer target rate (%) 29.0−34.0 30.0 29.2

Similarity Search
# similar ChEMBL CPDs 962−9465 4883 25 390
# targets 393−972 756.8 1249
# cancer targets 147−311 264.1 366
cancer target rate (%) 31.1−39.5 34.8 34.1

aThe table reports statistics for scaffold analysis and similarity
searching. For ASB and BM scaffolds, ranges (MIN−MAX), averages
(AVG), and total numbers (TOTAL) of scaffolds from screening hits
and scaffolds that were shared with ChEMBL reference compounds,
corresponding targets, and cancer targets are provided across all 73 cell
lines. For similarity search calculations, ranges, averages, and total
numbers are reported for similar compounds, all targets, and cancer
targets.

ACS Omega Article

DOI: 10.1021/acsomega.7b00215
ACS Omega 2017, 2, 1463−1468

1465

http://pubs.acs.org/doi/suppl/10.1021/acsomega.7b00215/suppl_file/ao7b00215_si_001.xlsx
http://pubs.acs.org/doi/suppl/10.1021/acsomega.7b00215/suppl_file/ao7b00215_si_001.xlsx
http://dx.doi.org/10.1021/acsomega.7b00215


order of magnitude. This corresponded to a significant
enrichment of cancer targets among all assigned targets, as
illustrated in Figure 4. Although the application of ASB
scaffolds resulted in comparably low numbers of assigned
targets (Figure 4a), the ratio of cancer targets relative to all
targets was higher for ASB than for BM scaffolds and similarity
searching (Figure 4b). Given that absolute target numbers were
more realistic for ASB than BM scaffolds and similarity
searching, the observed enrichment of cancer targets for ASB
scaffolds was considered a significant finding. The corroborat-
ing evidence for cancer target assignment was provided by the
frequent occurrence of established cancer targets across
different cell lines, which was clearly evident for ASB scaffolds,
given the reduced “target background”. For example, on the
basis of ASB scaffolds, well-known cancer targets such as P-
glycoprotein 1 and tyrosine-protein kinases Fyn and Src were
implicated in 73, 62, and 66 cell line screens, respectively. In
total, for ASB scaffolds, 46.6% of all assigned targets were
cancer targets, with an average of 36.4% per cell line.

3. CONCLUSIONS

In this work, we have investigated a substructure-based
similarity approach to computationally deconvolute targets
from 73 chemical cancer cell screens used as a model system for
phenotypic assays. Assigning targets on the basis of ligand
similarity is a major approach to target identification in
phenotypic discovery. The analysis was focused on a recently
introduced molecular scaffold definition, ASB scaffolds,
designed to further increase the medicinal chemistry relevance
of scaffolds as core structure representations. Calculations on
the basis of conventional BM scaffolds and whole-molecule
Tanimoto similarity served as references. ASB scaffolds are
structurally more comprehensive and conservative than other
molecular representations for similarity assessment, given their
default dependence on compound series. As a consequence,
ASB scaffolds produced fewer target hypotheses than BM
scaffolds and similarity searching, thereby counteracting the
“target inflation” observed for ligand similarity-based target
prediction. Moreover, for ASB scaffolds, a significant enrich-
ment of known cancer targets among candidates assigned to
screening hits was observed, suggesting that the ASB scaffold

Figure 3. Shared ASB scaffolds. Examples of shared ASB scaffolds (orange background) are shown for (a) SNB-75 (CNS cancer) and (b) HT-29
(colon cancer) cell lines together with corresponding hits (blue box), inactive compounds (pink), and ChEMBL compounds (green). R-groups
distinguishing these analogs are shown in red.

Figure 4. Target distribution. For ASB scaffolds (orange), BM scaffolds (cyan), and similarity searching (SIM, magenta), boxplots report the
distribution of (a) all targets and (b) the percentage of cancer targets for all 73 cell lines. Boxplots show the smallest value (bottom), first quartile
(lower boundary of the box), median value (red line), third quartile (upper boundary of the box), largest value (top), and outliers (blue dots).
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approach provides a promising addition to current computa-
tional target deconvolution methods.

4. MATERIALS AND METHODS
4.1. Scaffolds. Conventional BM scaffolds were generated

from active compounds by the removal of all R-groups while
retaining ring systems and linker fragments connecting rings.20

Furthermore, new ASB scaffolds22 were isolated from
compounds. To generate ASB scaffolds, analog series were
first systematically identified by applying the matched
molecular pair (MMP) approach.24 An MMP is defined as a
pair of compounds that are distinguished only by a chemical
change at a single site.24 As such, an MMP consists of a
conserved MMP core structure and a pair of exchanged
substituents. MMPs were generated by applying an algorithm
that systematically fragments molecules at exocyclic single
bonds and stores resulting cores and substituent fragments in
an index table from which MMPs are enumerated.25

Retrosynthetic (RECAP) rules26 were applied to fragment
source compounds in which exchanged fragments conform to
chemical reactions (thereby replacing random fragmentation
steps), yielding RECAP-MMPs.27 From all RECAP-MMPs of
active compounds, a network was computed in which nodes
represented compounds and edges pairwise RECAP-MMP
relationships.28 In this network, each disjoint cluster contained
a unique series of analogs28 from which ASB scaffolds were
isolated.22 A series of analogs often yielded multiple MMP
cores. Therefore, for each series, a computational search was
carried out for a core that matched all MMP relationships
within the series. If identified, the largest qualifying core then
represented the ASB scaffold of the series.22 The generation of
ASB scaffolds is computationally efficient as it relies on effective
MMP enumeration. Therefore, ASB scaffolds can be generated
for large data sets comprising millions of compounds (such as
the entire ChEMBL database).22 The generation of BM and
ASB scaffolds is schematically illustrated in Figure 1. BM
scaffolds were calculated with an in-house implementation
using the OpenEye toolkit.29

4.2. Similarity Calculations. As a control for scaffold-
based similarity assessment, similarity search calculations were
carried out using the extended connectivity fingerprint with
bond diameter 4 (ECFP4)30 and a similarity threshold of 0.4
for the Tanimoto coefficient.16 This threshold value is often
used for ECFP4 in virtual compound screening.16

4.3. Cell Lines and Screening Data. The human tumor
cell line growth inhibition assay data from the National Cancer
Institute (NCI)31 were extracted from PubChem.32 Only
compounds screened in confirmatory assays originating from
NCI Developmental Therapeutics Program (DTP/NCI) were
considered. In total, 2 396 398 assay compounds were screened
in 73 cell lines representing 10 different neoplasia (including
breast, CNS, colon, leukemia, melanoma, nonsmall cell lung,
ovarian, prostate, and renal cancers). Table 2 reports screening
statistics for each neoplasia type. Details for all cell lines are
provided in Table S1. Assay compounds were designated as
active or inactive on the basis of PubChem records. In the
following, active compounds are also referred to as hits.
4.4. Reference Compounds. For the scaffold-based

similarity analysis, reference compounds were assembled from
ChEMBL version 22.33 Only compounds for which high-
confidence activity data were available were considered.
Therefore, compounds with direct interactions (type “D”)
with human targets at the highest confidence level (ChEMBL

confidence score 9) were selected. Only assay-independent
equilibrium constants (Ki values) and assay-dependent IC50
values were considered as potency measurements. Approximate
measurements (e.g., “>” or “∼”) were discarded. If multiple Ki
or IC50 values were available for the same compound, their
geometric mean was calculated as the final potency annotation,
provided all values fell within the same order of magnitude.
Otherwise, the measurements were discarded. Applying these
selection criteria, a total of 224 532 unique compounds were
obtained with activity against human 1687 targets.

4.5. Targets. The set of 1687 ChEMBL targets (in the
following referred to as targets) was used to assign targets to
screening compounds. The subset of known cancer targets was
determined. Therefore, known cancer targets were collected
from the Therapeutic Target Database,34 and targets implicated
in malignant neoplasm were identified on the basis of the ICD-
10 code.35 The 1687 ChEMBL targets were found to contain
429 cancer targets.
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Table 2. Cancer Cell Lines and Screening Dataa

neoplasia
cell
lines

assayed
CPDs

active
CPDs

inactive
CPDs

1 breast 6 161 953 10 031 151 922
2 CNS 8 265 511 13 865 251 646
3 colon 9 310 533 17 070 293 463
4 leukemia 8 231 398 20 082 211 316
5 melanoma 10 360 686 18 693 341 993
6 nonsmall cell

lung
11 378 082 19 683 358 399

7 ovarian 7 242 571 12 446 230 125
8 prostate 2 56 284 3195 53 089
9 renal 10 324 513 16 244 308 269
10 small cell lung 2 27 527 1882 25 645

aThe table provides statistics for the 10 neoplasia types and
corresponding screening data. For each neoplasia, the name and
number of cell lines are given. In addition, the total number of assayed
compounds (CPDs) and the number of active and inactive
compounds are reported.
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