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ABSTRACT: A variety of computational screening methods
generate similarity-based compound rankings for hit identi-
fication. However, these rankings are difficult to interpret. It is
essentially impossible to determine where novel active
compounds might be found in database rankings. Thus,
compound selection largely depends on intuition and
guesswork. Herein, we show that molecular networks can
substantially aid in the analysis of similarity-based compound
rankings. A series of networks generated for rankings provides
visual access to search results and adds chemical neighborhood
and context information for reference compounds that are not
available in rankings. Network structure is shown to serve as a
diagnostic criterion for the likelihood to successfully select active compounds from rankings. In addition, comparison of different
networks makes it possible to prioritize alternative similarity measures for search calculations and optimize the enrichment of
active compounds in rankings.

1. INTRODUCTION
Many computational (virtual) compound screening approaches
yield database rankings.1−4 These include most ligand-based
screening methods that make use of the concept of molecular
similarity.4 Database compounds are then ranked in the order of
decreasing similarity to reference compounds used as search
templates.3,4 Numerical similarity measures, such as the well-
known Tanimoto coefficient (Tc),4,5 a gold standard in the field,
are applied to generate such compound rankings. Not all ligand-
based methods yield database rankings. Exceptions include
pharmacophore approaches6 that detect local similarity between
compounds and can be used as screens to search for a
pharmacophore match.6 In addition, assessment of substruc-
ture-based similarity, i.e., detecting the presence or absence of a
given substructure in test compounds, also yields binary (yes/
no) similarity decisions.4 Similarity searching using molecular
fingerprints (i.e., bit or feature set representations of molecular
structure and properties),7 shape queries,8 or sets of numerical
descriptors is a primary approach to ligand-based virtual
screening that produces database rankings relative to reference
compounds.9,10 Although this approach is well established,
compound rankings have black box character. Simply put, it is
essentially impossible to predict or determine where novel active
compounds might occur in rankings. Of course, compounds that
are structurally most similar to search templates will be top
ranked and if these compounds are close structural analogues,
there is a good chance that one or the other might also be active.
However, similarity searching always yields a ranking even if only
remotely similar database compounds are available. Moreover,
one typically does not look for analogues in similarity searching,
which are easily identified by a substructure search, but new

active compounds exhibiting at least some degree of structural
novelty. Importantly, on the basis of similarity-based ranking,
selection of such compounds is impossible to rationalize.4 This is
the case because activity itself is not used as a parameter in
similarity searching (or other standard virtual screening
approaches), but indirectly inferred from calculated structural/
property similarity,4 following the fundamental similarity
property principle (i.e., similar compounds should have similar
properties).11 Accordingly, similarity searching relies on the
premise that there will be an enrichment of active compounds
among high database ranks. However, where such compounds
might be found can essentially only be guessed. Therefore, in
practical virtual screening applications, a variety of candidate
compounds will typically be tested on the basis of a database
ranking to identify one or the other new hit.
In light of this situation, any approach that aids in the

interpretation of database rankings and compound selection is
highly desirable. To these ends, we have, for the first time,
attempted to analyze similarity search rankings in molecular
network representations. We have reasoned that similarity-based
compound networks, in which nodes represent molecules and
edges pairwise similarity relationships,12 add chemical neighbor-
hood13 and context information to similarity searching that is not
contained in database rankings. If applied in concert with
similarity searching, network analysis provides visual access to
similarity search results. This makes it possible to analyze
chemical neighborhoods of reference compounds and similarity
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relationships in detail and should help to better understand
where active compounds might preferentially be found. In
addition, network analysis of compound rankings can be applied
to distinguish between alternative similarity measures and best
enrich active compounds at higher rank positions. In the
following, we present our approach combining similarity
searching and network analysis and the results of a proof-of-
concept investigation.

2. MATERIALS AND METHODS

2.1. Similarity Searching. Similarity search calculations
were carried out using the extended connectivity fingerprint with
bond diameter 4 (ECFP4)14 and the Tanimoto coefficient (Tc).5

For each reference compound, a database ranking was generated
and the 500 top-ranked compounds were selected and divided
into four overlapping subsets comprising at rank 1−200, 101−
300, 201−400, and 301−500, respectively. For each subset,
similarity search hits (i.e., correctly detected active compounds)
were determined. Similarity search performance was also
evaluated using receiver operating characteristic (ROC) curves.
Rankings for the top 500 compounds were then recalculated
using the Tanimoto coefficient based on the maximum common
substructure (TcMCS) similarity measure (described in detail in
Section 2.3.1 below).
2.2. Test Compounds. As reference compounds for

similarity searching, approved small molecule drugs with activity
against single or multiple human targets and a molecular mass of
more than 350 and less than 500 Da were selected from
DrugBank version 5.15 Drugs were only selected if 30 or more
compounds with activity against the same target and high-
confidence activity data were available in ChEMBL version 23.16

These bioactive compounds served as hits for target-based
similarity searching using individual drugs as reference
molecules. On the basis of these criteria, 25 drugs were selected
from DrugBank, for which sets of other bioactive compounds
were available for each drug target. These 25 drugs were
annotated with 44 unique targets, yielding a total of 66 drug-
target pairs. For each drug-target pair, a set of similarity search
hits was assembled, providing the basis for an individual search
trial. In addition to potential hits, background database
compounds were selected from ChEMBL, applying the same
criteria for high-confidence activity data. Accordingly, com-
pounds with direct interactions (type “D”) with human targets at
the highest assay confidence level (confidence score 9) were
identified, and only equilibrium constants (Ki values) or IC50

values were considered as potency measurements. Approximate
measurements (e.g., “>” or “∼”) were discarded. On the basis of
these criteria, a total of 244 625 ChEMBL compounds were
selected as a screening database. All compounds were stand-
ardized with the aid of the OEChem toolkit.17

2.3. Chemical Space Networks. 2.3.1. Network Design
and Comparison. In chemical space networks (CSNs),12

originally introduced for charting biologically relevant chemical
space,12 nodes represent compounds and edges similarity
relationships. Two CSN variants were adopted for our analysis.
In the first, similarity relationships were established on the basis
of ECFP4 Tc values, representing a “Tc-CSN”.18 In the second,
similarity relationships were determined by calculating Tc values
based on the maximum common substructure (MCS) of pairs of
compounds, yielding TcMCS values and resulting in the
“TcMCS-CSN”.19 The TcMCS was calculated as follows:
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where Ab and Bb are the number of bonds present in molecules A
and B, respectively, and MCS(A, B)b is the number of bonds in
the MCS of A and B.17 Using the number of bonds instead of
heavy atoms leads to an increase in TcMCS values for MCSs
consisting of rings over equally sized MCSs with rings and
aliphatic substructures because rings contain more bonds than
aliphatic substructures. By design, TcMCS is a hybrid similarity
function combining numerical and substructure-based similarity,
emphasizing substructure relationships, if present.
Tc-CSNs and TcMCS-CSNs were generated by adjusting the

similarity threshold value to yield a constant network edge
density of 0.05 (5%), thus enabling direct comparison of these
CSN variants.16,17 Edge density provides the fraction of all
possible edges that are present in a given network. Nodes were
color coded by compound class (i.e., reference drugs, similarity
search hit, and database compound with other activity) and
scaled in size according to their degree (see below). An exception
was made for reference drugs whose nodes were drawn in a
constant size to highlight them in CSN representations.
CSNs were generated using in-house Python code and Gephi

software.20 The layout of CSNs was calculated using the
Fruchterman−Reingold algorithm21 that organizes similar
objects in clusters and separates disjoint clusters in a force-
directed manner for visualization.

2.3.2. Network Comparison. CSNs were compared using
different statistical concepts and properties from network
science:22

(i) Node degree is defined as the number of edges connecting
it to its neighbors.

(ii) Clustering coefficient of a node is defined as the likelihood
that two neighboring nodes are connected to each other.
Thus, it is a measure of the degree of local connectivity in a
network. The global clustering coefficient of a network is
calculated as the mean of the clustering coefficients of all
nodes.

(iii) Modularity is a measure of the cluster structure of a
network. High modularity is due to the presence of dense

Figure 1. Similarity search hits in subsets of compound rankings.
Boxplots show the distribution of hits in overlapping subsets
representing the 500 top-ranked compounds across all 66 search trials.
Boxplots report the smallest value (bottom), first quartile (lower
boundary of the box), median value (thick red line), third quartile
(upper boundary), and largest value (top).
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connections between nodes within the same cluster and
sparse connections between nodes in different modules.
Thus, modularity accounts for the cluster structure of a
network.

All network properties were calculated using the iGraph R
library.23

3. RESULTS AND DISCUSSION
3.1. Similarity Searching. Similarity search calculations

were conducted using 25 drugs as individual reference

compounds. Of course, other bioactive compounds could have
also been chosen as search templates. A subset of these drugs was
annotated with multiple human targets giving rise to 66 drug-
target combinations. For each combination, a compound data set
was generated. Hence, a total of 66 similarity search trials were
carried out using ECFP4 as a molecular representation. The
screening database contained more than 240 000 ChEMBL
compounds, originating from medicinal chemistry sources.
Compounds with different bioactivities are typically more
difficult to distinguish from each other in search calculations

Figure 2.Network properties. Boxplots report the distributions of different network properties of Tc-CSNs (left) and TcMCS-CSNs (right) generated
for subsets of the 500 top-ranked compounds across all search trials. Network properties include the (a) clustering coefficient, (b) modularity, and (c)
degree of drug nodes. The representation of boxplots is according to Figure 1.
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than a given activity class from randomly selected organic
molecules, which motivated the assembly of our ChEMBL-based
screening database. For each search trial, a Tc-based ranking was
generated and the top 500 compounds were selected and divided
into four overlapping subsets of 200 compounds each. Division
into subsets provided a basis for continuous visualization of
similarity search results using CSNs, as further discussed below.
Figure 1 shows distributions of similarity search hits over
different subsets for all 66 search trials. These distributions
yielded median values of on average 8.5, 6.5, 5.0, and 5.0 hits in
subsets 1−4, respectively. Thus, there was detectable enrichment
of hits among the 500 top-ranked database compounds.
3.2. Chemical Space Networks and Statistical Proper-

ties. For each subset resulting from a search trial, two CSN
variants were constructed; first, a Tc-CSN, in which similarity
relationships were accounted for using the same (Tc) similarity
metric as in the search calculations; second, a TcMCS-CSN, in
which similarity relationships between compounds from each
subset were established using an alternative similarity measure.
For this purpose, pairwise TcMCS similarity relationships
between compounds comprising each subset were recalculated.
First, statistical properties of corresponding subset CSNs were

determined. Figure 2a,b shows the distribution of clustering
coefficients and modularity of subset CSNs from all search trials.
Both clustering coefficients and modularity decreased for
networks containing progressively lower ranked compounds.
These findings indicated that database compounds were not only
decreasingly similar to the reference drug, as captured by the
ranking, but also decreasingly similar to each other. Overall, the
distributions were comparable for both Tc-CSNs and TcMCS-
CSNs. This was in contrast to distributions of the degrees of drug
nodes reported in Figure 2c. In this case, node degrees in subset
TcMCS-CSNs were consistently larger than in Tc-CSNs,
indicating that application of the TcMCS similarity measure
further increased the number of structural neighbors of reference

drugs relative to the Tc metric. The latter observations suggested
the presence of differences in the distribution of similarity
relationships and local network structure, as further discussed in
the following.

3.3. Network Comparison. Going beyond statistical
evaluation, network analysis of rankings produced with
alternative similarity measures made it possible to further
analyze neighborhoods of reference drugs and differentiate
between these measures. Subset networks were compared
graphically for four representative similarity search sets with
different reference drugs, as summarized in Table 1. The four
drugs were active against different receptors and the top-ranked
500 database compounds contained varying number of hits
distributed over the ranking, ranging from 33 to 103. Figure 3a
compares subsets Tc-CSNs and TcMCS-CSNs for similarity
searching using cabozantinib as a reference drug, which acts on
hepatocyte growth factor receptor. In this case, both CSN
variants revealed a clear cluster structure. However, cabozantinib
was not connected to other database compounds in Tc-CSNs,
even in the network of the most similar subset (1−200). Thus, at
the given level of network edge density, the reference drug had
no structural neighbors in Tc-CSNs. By contrast, at constant
edge density, cabozantinib was extensively connected to clusters
of hits in TcMCS-CSNs, in particular, in the networks of the first
three subsets. Similar observations were made for search
calculations using iloperidone as a reference, shown in Figure
3b. In this case, Tc-CSNs had a more extensive cluster structure
than TcMCS-CSNs. However, in the latter networks, limited but
dense compound clustering was observed and found to mostly
involve hits and the reference drug; a favorable scenario for
compound selection and hit identification. By contrast, for
reference drug tolvaptan in Figure 3c, subset Tc-CSNs displayed
essentially no cluster structure but extensive formation of
similarity relationships between the drug and compounds having
different activities (i.e., false-positives in similarity searching).

Table 1. Exemplary Similarity Search Setsa

aThe table summarizes the composition of four similarity search sets, for which subset CSNs are shown in Figure 3. In each case, the structure of the
reference drug is shown, the drug target is given, and the number of similarity search hits (with activity against the drug target) per subset is reported.
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Figure 3. Exemplary CSNs. For four exemplary similarity search sets reported in Table 1, Tc-CSNs (top) and TcMCS-CSNs (bottom) of overlapping
subsets representing compound rankings are compared at a constant edge density of 5%. Nodes are color coded as follows: red, reference drug; green,
hits with activity against the drug target; blue, database compounds with different activities. Drug nodes have constant size whereas nodes of hits and
other database compounds are scaled in size according to their degrees. CSNs are shown for similarity searching using (a) cabozantinib, (b) iloperidone,
(c) tolvaptan, and (d) sorafenib as reference drugs.
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However, in TcMCS-CSNs, preferential clustering of hits and
compounds with other activities was observed and the reference
drug was connected to clusters of both hits and false-positives; a
more difficult scenario for hit identification. In this case, TcMCS-
CSNs of progressively lower ranked subsets clearly displayed
decreasing numbers of hits and the networks indicated that hit
identification was most likely for the first two subsets comprising
300 database compounds. Furthermore, Figure 3d visualizes
search results for sorafenib. In this case, limited clustering was
observed for both types of CSNs. However, clustering of hits was
much more extensive in TcMCS-CSNs, also involving the
reference drug, thus providing an improved basis for hit
identification. Taken together, the results in Figure 3 illustrate
the utility of network-based analysis and CSN comparisons for
the evaluation of compound rankings.
3.4. Implications for Similarity Searching. Compound

rankings do neither provide neighborhood information for
reference compounds nor information about similarity relation-
ships between database compounds, both of which are of critical
importance for the outcome of similarity search calculations. For
example, if similarity relationships are evenly distributed among
reference compounds, hits, and false-positives, no preferential
enrichment of hits over other database compounds can be
expected in rankings. However, such information cannot be
extracted from compound rankings. Rather, it is provided by
networks revealing neighborhoods of reference compounds and
distributions of similarity relationships among hits and other
database compounds. These characteristics make CSN analysis
and similarity searching complementary approaches. Impor-
tantly, CSNs do not need to be constructed for entire compound

rankings or very large selection sets when the interpretability of
network representations reaches its limits. Instead, CSNs can be
generated for compound subsets across rankings to provide a
progressive view of similarity relationships and chemical
neighborhoods when similarity to reference compounds
decreases.
The graphical analysis of CSNs showed that compound

clustering involving reference compounds in networks is a
necessary but insufficient condition for hit identification. It is not
sufficient because clustering might also include false-positives.
However, if no clustering is observed, similarity relationships are
evenly distributed among hits and false-positives and the
likelihood of identifying hits, which are much less frequent
than other database compounds, is very low. Hence, in the
absence of clustering in subset CSNs, successful hit identification
cannot be expected. Thus, subset CSNs can be calculated as a
first-path diagnostic to evaluate local clustering in compound
rankings when potential hits are unknown.
The comparison of subset CSNs in Figure 3 generated using

the related yet distinct Tc and TcMCS similarity metrics revealed
that TcMCS calculations often led to more extensive local
clustering of hits involving reference compounds. Such insights
are not obtained by statistical network analysis but require visual
inspection.
The prevalence of local clustering involving references and hits

in TcMCS-CSNs suggested the testable hypothesis that the
similarity search calculations reported here should be more
successful when applying the TcMCS instead of the Tc metric.
Therefore, we regenerated the ranking of the top 500
compounds for each of the Tc-based search calculation for the

Figure 4. Similarity search performance. Shown are receiver operating characteristic (ROC) curves for similarity search calculations using (a)
cabozantinib, (b) iloperidone, (c) tolvaptan, and (d) sorafenib as reference drugs. ROC curves compare true-positive and false-positive rates over
compound rankings. In each case, the ROC curves were calculated for the 500 top-ranked compounds on the basis of ECFP4 Tc values (database search,
blue) and after reranking of the top 500 compounds on the basis of TcMCS calculations (red).
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four drugs in Table 1 by calculating pairwise TcMCS similarity
values for reference and database compounds. Figure 4 shows

ROC curves comparing the Tc- and TcMCS-based rankings. In
each case, the area under the curve was substantially larger for the

Figure 5. Top-ranked compounds. Shown are the top three compounds for Tc- (left) and TcMCS-based (right) rankings according to Figure 4 using
(a) cabozantinib, (b) iloperidone, (c) tolvaptan, and (d) sorafenib as reference drugs. Compounds whose ranks are highlighted in green are active
against the drug target. For each of the top three compounds, the rank using the alternative similarity measure (Tc, right; TcMCS, left) is also reported
(in italics).
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TcMCS- than the Tc-based ranking. ROC curves for TcMCS-
based rankings also revealed a consistent early enrichment of hits

at higher rank positions. Taken together, these observations
confirmed the hypothesis formulated above.

Figure 6. Other bioactive compounds related to hits. Shown are the top three database compounds with other activities that are closely connected to
correctly identified hits in TcMCS-CSNs. No. of connections report the total number of relationships formed with hits in the 1−200 subsets. In each
case, themost similar hit is shown andChEMBL targets are reported. Compounds are extracted fromTcMCS-CSN of (a) cabozantinib, (b) iloperidone,
(c) tolvaptan, and (d) sorafenib in Figure 3.
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Comparison of subset CSNs might also help to prioritize
alternative similarity measures for similarity searching, which has
implications for practical applications. For example, considering
the similarity functions used here, it would not be practical to
screen a large compound database applying the TcMCS
similarity measure because MCS calculations are computation-
ally much more expensive than Tc-based fingerprint compar-
isons. However, in light of subset CSN comparisons, an initial
database search using Tc calculations followed by reranking of
top N compounds on the basis of TcMCS calculations would be
considered a promising search strategy. Thus, it is certainly
meaningful to explore alternative similarity measures aided by
network analysis to optimize compound rankings.
Figure 5 shows the top three compounds from corresponding

Tc and TcMCS rankings and illustrates how differently
calculated similarity relationships can substantially change
relative rank positions of compounds, even for related similarity
functions. Such effects contribute to the difficulty in deducing
activity information from similarity-based rankings, which can be
compensated for by complementary network analysis.
Figure 6 shows the top three database compounds from the

TcMCS-based rankings that are most similar to hits having the
same activity as the reference drug. These structurally closely
related database compounds were frequently active against
related targets or targets that have also been associated with
reference drugs. Thus, close structural relationships correspond
to similar compound activity profiles, as one would expect.

4. CONCLUDING REMARKS
Selecting novel active compounds from database rankings on the
basis similarity values has been and continues to be a conundrum
in ligand-based virtual screening. Given the compound class and
molecular representation dependence of search calculations, it is
essentially impossible to derive activity-relevant similarity
threshold values for practical applications.24,25 Hence, similar-
ity-based compound rankings have black box character and
positions of active compounds can only be guessed, regardless of
the virtual screening algorithms that are applied to generate
rankings. Because a screening database is expected to contain
only relatively few, if any, compounds having a desired biological
activity, this problem is intensified by a needles-in-haystacks
scenario; simply put, most compounds in rankings will be false-
positives. Moreover, employing alternative similarity measures
often significantly changes relative rank positions of active
compounds, which further complicates hit selection. Accord-
ingly, any attempts to aid in the interpretation of database
rankings and compound selection are timely and of relevance to
the field. However, these issues have thus far only been little
investigated. Herein, we have made an attempt in this direction
by combining similarity searching with molecular network
analysis of compound rankings. Tables with compounds selected
from rankings, their structures, and similarity values can be
generated to focus subsequent investigation of potential hits on
different subsets but network analysis adds another dimension to
the analysis of rankings. Network analysis of similarity relation-
ships provides visual access to similarity search results and,
importantly, reveals similarity relationships between reference
molecules and potential hits together with relationships between
other database compounds. This adds chemical neighborhood
and context information to similarity rankings and makes it
possible to estimate the chances of success of a search trial. A
series of CSNs can be conveniently generated from compound
subsets across rankings, which limit network size, support

interpretability, and provide a continuous view of existing
similarity relationships, whereas the similarity of database
compounds to reference molecules gradually decreases.
CSN analysis with known active compounds has shown that

the emergence of local compound clusters is a necessary, albeit
insufficient, condition for detecting active hits on the basis of
molecular similarity. By contrast, an even distribution of
similarity relationships between reference compounds, hits,
and false-positives makes it essentially impossible to successfully
select novel active compounds. To explore distributions of
similarity relationships, subset CSNs can be generated for
rankings using alternative similarity measures and compared. On
the basis of such comparisons, similarity functions can be
prioritized. In our analysis, this was demonstrated by comparing
Tc- and TcMCS-based ranking. It was also shown that reference
compounds in CSNs originating from TcMCS calculations
generally had larger node degrees than reference compounds in
CSNs from Tc-based rankings. Furthermore, although the
distributions of clustering coefficients and modularity of subset
CSNs from TcMCS- and Tc-based rankings were overall
comparable, graphical analysis revealed that TcMCS-based
CSNs often displayed more extensive local clustering of hits vs
false-positives than Tc-based CSNs, resulting in further
improved enrichment of hits in rankings. Taken together, the
results of our analysis suggest that subset networks complement
the analysis of similarity search results and provide additional
insights that could not be obtained from database rankings alone.
Moreover, similarity-based compound rankings might also help
to facilitate network analysis of large compound data sets by
replacing global network representations with series of subset
networks. In this case, rankings might be generated for
compounds of particular interest to select subsets at varying
similarity levels for network display. This also highlights the
complementarity of similarity searching and network analysis.
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