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ABSTRACT: Ligand docking into homology models of G-protein-coupled receptors
(GPCRs) is a widely used approach in computational compound screening. The
generation of “double-hypothetical” models of ligand−target complexes has intrinsic
accuracy limitations that further complicate compound ranking and selection compared to
those of X-ray structures. Given these uncertainties, we have explored “fuzzy 3D similarity”
between hypothetical binding modes of known ligands in homology models and docking
poses of database compounds as an alternative to conventional scoring schemes. Therefore,
GPCR homology models at varying accuracy levels were generated and used for docking.
Increases in recall performance were observed for fuzzy 3D similarity ranking using single
or multiple ligand poses compared to that of conventional scoring functions and
interaction fingerprints. Fuzzy similarity ranking was also successfully applied to docking
into an external model of a GPCR for which no experimental structure is currently
available. Taken together, our results indicate that the use of putative ligand poses, albeit
approximate at best, increases the odds of identifying active compounds in docking screens
of GPCR homology models.

1. INTRODUCTION

Docking of small molecules into binding sites of target proteins
continues to be the major approach to computational ligand
identification.1,2 Although high-resolution X-ray structures are
generally preferred as docking templates, homology models are
also frequently used in the absence of experimental structures.3−5

Although protein models are less accurate than X-ray structures
from which they are derived, they are also capable of enriching
active compounds in database rankings from docking screens and
identifying new active compounds in prospective applications.6

G-protein-coupled receptors (GPCRs) are a growth area for
molecular docking, due to stellar advances in the structural
biology of these highly complex membrane receptor systems
over the past decade.7−9 The increasing number of exper-
imentally determined GPCR structures has deepened our
understanding of binding-site features and provided unprece-
dented opportunities for structure-based compound screening
and ligand design.10 At the same time, structural coverage across
the GPCR superfamily is still sparse compared to that of other
popular therapeutic targets. Accordingly, homology models of
GPCRs continue to play an important role for docking,11,12

yielding impressive results in some applications.6 In fact, with
each new GPCR X-ray structure that is becoming available, the
knowledge base for homology modeling further increases
compared to that of earlier days when the X-ray structure of
bovine rhodopsin was for long the only available template for
GPCR modeling.13,14

Despite incremental advances made over the years, force field-
based scoring of ligand poses still represents a major limitation of

hit identification via docking.15−17 Difficulties in reliably ranking
active compounds on the basis of force field energy functions
have triggered the exploration of alternative scoring approaches
tailored toward different targets or families, including
GPCRs.18−20 In this context, synergies between docking and
ligand-based computational screening methods can also be taken
into consideration,21,22 for example, the inclusion of molecular
similarity23 in evaluating docking poses. However, only few
studies have so far attempted to combine ligand-based similarity
assessment and docking, for example, through sequential
calculations24,25 or data fusion.26

As a step toward integration of molecular similarity and
docking calculations, we have previously reported amethodology
combining the generation of docking poses with 3D similarity
comparison to experimentally determined ligand-binding
modes.27 Accordingly, instead of applying scoring functions,
docking poses and reference ligands were compared and 3D
similarity values calculated to generate database rankings, which
frequently yielded significant improvements in compound recall
over conventional scoring or the use of protein−ligand
interaction fingerprints (PLIFs) for pose prioritization.27,28 In
addition to other targets, the utility of this approach was also
demonstrated for GPCRs.28 However, given the dependence of
the 3D similarity-based approach on crystallographic ligand
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binding modes, its application was principally limited to targets
for which complex X-ray structures were available.
Herein, we explored 3D similarity-based compound ranking

for docking into homology models of GPCRs, which continue to
be widely used in virtual screening. This might appear to be
counterintuitive at a first glance because 3D similarity ranking
was conceptually based on crystallographic ligand-binding
modes. The probability to correctly prioritize docking poses
was expected to increase with the increase in the accuracy of the
reference information. However, given that docking into
homology models yields “double-hypothetical” ligand−target
complexes29 with principally limited accuracy, we were interested
in investigating whether “fuzzy similarity” between the modeled
reference and database compounds might also suffice to guide
compound selection. Therefore, different strategies were
evaluated for ranking on the basis of fuzzy similarity, including
single or multiple reference poses. As reported herein, these
strategies produced higher compound recall for GPCR
homology models than force field energy scoring or PLIFs,
thus further extending the potential of model-based compound
selection.

2. METHODS AND MATERIALS

2.1. Receptor Structures and New Homology Models.
An X-ray structure of the β2 adrenergic (β2) receptor bound to
the antagonist carazolol (PDB code 2RH130) was taken from the
Protein Data Bank. The structure was prepared for docking using
Molecular Operating Environment (MOE) 2014.09.31 Bound
ions, organic solvent, and water molecules were removed from
the receptor ligand-binding domain used as a template for
docking. Other preparation steps included the addition of
hydrogen atoms, computation of protonation states and
tautomers (calculated at pH 7), assignment of partial charges,
and limited energy minimization (structural relaxation) using the
Amber10 force field until a root mean square (RMS) gradient of
0.1 kcal/mol/Å2 was reached.
Two homology models of the β2 receptor were built using the

structure of β1 adrenergic (β1) receptor (PDB code 4BVN)32

from turkey (Meleagris gallopavo) and human adenosine A2A
(A2A) receptor (PDB code 4EIY)33 as templates, respectively. In
addition, a homology model of the A2A receptor was generated
using the β2 receptor, 2RH1, as a template. The modeling
protocol detailed in the following was consistently applied.
Initial sequence alignments were generated with Clustal

Omega.34 For homology modeling, the alignments were
manually edited to appropriately place insertions and deletions
in variable regions. In each case, MODELLER version 9.1735 was
used to build 500 initial models, and the one with the most
favorable DOPE energy score was selected. Selectedmodels were
prepared for docking as described above for the X-ray structure.
A known antagonist was flexibly docked into the binding site of
each selected model to refine binding site coordinates and
provide a reference binding mode. Ligands included
ZM24138533 (for A2A) and carazolol30 (for β2). To adjust side
chain positions of the residues in the modeled binding sites in a
ligand-assisted manner, the induced-fit docking protocol of
MOE31 was applied, permitting side chain flexibility within 6 Å of
the placed ligand. In each case, 100 of 100 000 initially generated
docking poses were retained and scored with the GBVI/WSA dG
function implemented in MOE using default parameter settings.
As a reference for RMSD calculations, crystallographic binding
modes of reference ligands were transferred into the models

following α carbon atom superposition of the X-ray structures
and corresponding models.

2.2. External GPCR Model. A homology model of the 5-
hydroxytryptamine 6 (5-HT6) receptor was extracted from the
GPCRdb.36 This database includes various models of human
GPCRs generated by fragment assembly from different templates
for backbone construction combined with position-specific
rotamer side chain modeling.37 The 5-HT6 receptor model was
prepared for docking as described above.

2.3. Compound Sets. A benchmark set for the A2A receptor
was extracted from the DEKOIS 2.0.38 The selected data set
included 37 antagonists and 1100 corresponding decoys. To
focus the study on the ranking of antagonists, the only three
known agonists (BDB50085666, BDB50085668, and
BDB50309479) present in the benchmark set were removed
together with 100 decoys selected by the developers of the
DEKOIS database to match physicochemical properties of these
agonists. Activity annotations were confirmed on the basis of the
corresponding BindingDB39 records. For β2, no functional
designation (agonist or antagonist) was provided for a number of
ligands in DEKOIS. Therefore, 23 known antagonists were taken
from the IUPHAR/BPS Guide to Pharmacology database
(GtoPdb).40 These compounds were found to correspond to
15 different Bemis−Murcko (BM) scaffolds, indicating structural
diversity. For these antagonists, 1150 decoys were generated via
the DUD-E web server.41 For the external GPCR model, a set of
35 5-HT6 antagonists (containing 32 unique BM scaffolds) was
extracted from GtoPdb40 and 2350 decoys were generated using
DUD-E.41

For each compound, an initial low-energy conformation was
generated with MOE and protonation states and partial charges
were assigned on the basis of its AM1-BCC implementation
following a previously reported protocol,42 which was also
applied to prepare crystallographic ligands for docking.

2.4. Docking and Scoring. All docking trials were carried
out using the Dock module of MOE.31 The triangle matcher
function was used to generate 1000 docking poses for each
ligand, and the top 30 poses on the basis of the London dG
scoring function were preselected and further refined by
rescoring using the GBVI/WSA dG scoring function to produce
final ranking. In previous studies,27,28 this combination of the
London dG and GBVI/WSA dG functions was the consistently
best performing force field-based scoring scheme.

2.5. Similarity Calculations. Similarity to reference binding
modes was quantified using a property density function-based
3D similarity measure43 that was consistently applied in our
previous studies for 3D similarity evaluation of docking
poses.27,28 In addition, interaction similarity was assessed on
the basis of the PLIF implementation of MOE.31 In the former
case, normalized overlap of property density functions (ranging
from 0 to 1) was calculated as a measure of 3D similarity.43

Accordingly, both conformational and translational differences
(e.g., different orientations in a binding site and/or positional
displacements) were taken into account. In the latter case,
receptor−ligand contacts were assigned to six categories of
interactions including side chain-mediated hydrogen bonds
(donor and acceptor), backbone-mediated hydrogen bonds
(donor and acceptor), ionic interactions, and surface inter-
actions. PLIFs were calculated with default settings and
compared using the Tanimoto coefficient.44 For each similarity
measure, compound rankings were calculated.
The reference ligands used for similarity calculations were

overall characterized by relatively low similarity to the docked
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antagonists. Only one to two antagonists in each data set had a
two-dimensional (2D) similarity value of greater than 0.8
calculated using MACCS fingerprint compared to that of the
reference compounds.
2.6. Performance Evaluation. Receiver operator character-

istic (ROC) plots were generated to evaluate compound
rankings. ROC curves monitor the percentage of known active
compounds retrieved at each position of the ranking. The area
under the ROC curve (AUC) was calculated as a measure of the
enrichment of active compounds in a ranking applying the
composite trapezoidal rule. AUC values of 0.5 correspond to the
random distribution of active compounds and decoys in
rankings, whereas increasing AUC values greater than 0.5 further
indicate increasing enrichment of active compounds at high-rank
positions. Accordingly, an AUC value of 1 would be produced by
a ranking in which all active compounds would be ranked higher
than the best scoring decoys. In addition, to specifically assess
early enrichment of active compounds, the enrichment factor for
10% of the ranked database (Ef10%) was also computed.45 The
maximum theoretical Ef10% for all three data sets was 10.
For the external homology model, the performance was also

assessed by calculating Ef1% values. The maximum theoretical
Ef1% for this data set was 68.6. Furthermore, Rocker46 was used
to calculate BEDROC47 values with α = 20.0.

3. RESULTS AND DISCUSSION
3.1. Study Concept. Previously, we have ranked docking

poses on the basis of 3D similarity to crystallographic ligand-
binding modes as an alternative to conventional force field
scoring.27,28 These were the first attempts to calculate 3D
similarity for compound ranking from docking screens, which
represents, by definition, a knowledge-based approach. The
ability of 3D similarity calculations to enrich active compounds at
high-rank positions was attributed to the use of well-defined
experimental ligand-binding modes as references that many
active compounds were anticipated to resemble. In fact, core
fragments of crystallographic ligands were in some instances
already sufficient to effectively guide compound ranking.28

Herein, we have investigated the question whether approximate
ligand poses might also be useful. For example, in cases in which
no complex structures are available, known active compounds
might be docked into X-ray structures of targets to provide
reference poses. If modeled poses would at least be
approximately correct, they might serve as a surrogate or
alternative for scoring. We also reasoned that the use of
approximate ligand-binding modes might be particularly suitable
if the docking template itself was approximate, that is, a
computational model instead of a refined X-ray structure.
Hence, we essentially asked the question whether the odds of
docking into approximate models might be further improved by
adding one or more hypothetical compound-binding modes as a
basis for compound ranking. However, propagating inaccuracies
resulting from modeling of targets and complexes might also
compromise similarity-based ranking. In any event, the use of
double-hypothetical models inevitable introduces fuzziness into
3D similarity assessment, which is not due to the similarity
calculations (which are the same as for crystallographic
references) but rather to the use of approximate reference states.
Fuzziness of these calculations might be further increased by
using alternative binding poses instead of a single one. Because
the assessment of fuzzy similarity for compound ranking was the
main motivation for our current study, the analysis was
deliberately focused on homology models of GPCRs, which

continue to be popular docking targets. Owing to advances in
GPCR crystallography, homology modeling of GPCRs has
experienced a renaissance in recent years.

3.2. Docking into the X-ray Structure of the β2
Receptor. As a reference calculation, 3D similarity scoring was
initially applied to the X-ray structure of the β2 receptor
complexed to the antagonist carazolol. Three alternative rankings
were generated on the basis of 3D similarity to the bound
antagonist carazolol, PLIF-based similarity, and the preferred
scoring function. The results are summarized in Table 1 and

graphically represented in Figure 1A. Both scoring and 3D
similarity calculations resulted in a high enrichment of known
antagonists with an AUC of 0.80 and 0.83, respectively, and an
Ef10% of 6.09 for both methods. By contrast, PLIF-based
similarity only resulted in an AUC of 0.62. Figure 2 shows that
PLIF-based ranking was very sensitive to correct posing. When
docked antagonists departed from the binding of carazolol, even
if only in part, ligand−receptor interaction details were
modulated, thereby reducing PLIF similarity and leading to
low ranks. In contrast, 3D similarity calculations weremuchmore
robust and yielded comparably high ranks for antagonists as long
as the docking poses were at least approximate and parts of
ligands correctly aligned. Importantly, 3D similarity calculations
quantify whole-molecule resemblance by comparing atomic
property density functions but are insensitive to interaction
differences, which provided an advantage in this case. For the A2A
receptor in which ligand−receptor key interactions were mainly
formed by a large rigid aromatic ring system, posing was more
stable than observed for the β2 receptor herein and central
interactions often conserved, leading to more successful PLIF-
based ranking of known antagonists A2A.

28 In the presence of
approximate poses, 3D similarity assessment was clearly more
effective.

3.3. Docking into Homology Models. For the next step,
three homology models were built, including two of the β2 and
one of the A2A receptor (Table 2). The two β2 models were
constructed to represent different accuracy levels. The first
model was built using the structure of the β1 adrenergic (β1)
receptor from turkey as a template. This model is referred to as
β2(β1). The β1 template and β2 receptors shared high sequence
identity and conserved binding site residues, yielding an overall
accurate model (RMSD 1.72 Å; magenta in Figure 3A). The
alternative model was obtained using the structure of the human
A2A receptor as a template, referred to as β2(A2A). Although β1,
β2, and A2A belonged to class A (rhodopsin-like) GPCRs, β2
shared much lower sequence identity with A2A than with β1
(Table 2). The β2(A2A) model was thus overall less accurate
(RMSD of 3.06 Å; orange in Figure 3A), including the ligand
binding that was only partly conserved in β1 and A2A (Figure 3B).
In addition, an approximate homology model of the A2A receptor

Table 1. Docking Screen of the β2 Receptor Structure
a

protocol reference pose AUC Ef10%

FF scoring none 0.80 6.09
3D similarity X-ray 0.83 6.09
PLIF similarity X-ray 0.62 4.35

aCompounds were docked into the β2 receptor structure (PDB code
2RH1) and ranked on the basis of force field (FF) energy scoring and
3D similarity as well as the PLIF similarity to the X-ray structure of a
bound ligand. Recall of active compounds is reported. Results for the
best performing methods are in bold.
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was also generated using the β2 receptor as a template, referred to
as A2A(β2) (RMSD 3.62 Å; pink in Figure 3C). Overall, A2A(β2)
was the least accurate homologymodel, and binding site accuracy
of this model was also only limited (Figure 3D), as expected.
Induced-fit docking was used to generate reference binding

modes of carazolol for the β2 models and of ZM241385 for the
A2A models. For β2, the accuracy of the modeled binding modes
of carazolol correlated with the accuracy of the models. Thus, in
β2(β1), the pose was close to the experimental binding mode
(RSMD 1.2 Å; magenta in Figure 3B), whereas the pose was
displaced in β2(A2A) with only partial structural overlap (RMSD
5.7 Å; orange in Figure 3B). For ZM241385A, a pose was
obtained that also displayed a partial displacement but was
overall well aligned with the experimental binding mode (RMSD
1.8 Å; Figure 3D). In the case of β2(β1) and β2(A2A), the pose

with the lowest RMSD value generated by the induced-fit
docking protocol did not correspond to the one with the best
score that was selected as a reference. A pose with an RMSD
value of 0.5 Å was obtained for β2(β1) and another with an
RMSD of 3.5 Å for β2(A2A). For consistency with our validation
study, these poses were not selected as a reference.
For the three homology models, docking screens were carried

out using specifically assembled sets of antagonists and decoys.
For β2(β1) and β2(A2A), AUC values of 0.69 and 0.61 were
obtained, respectively (Table 3), whereas for A2A(β2), the least
accurate model, the recall of known antagonists on the basis of
scoring, was close to a random selection (Table 3). Hence,
compound recall for homology models was lower than for the
corresponding X-ray structure and dependent on the accuracy of
the models, consistent with our expectation.

Figure 1. ROC plots for alternative ranking schemes. Orange curves represent the results for the London dG scoring function and yellow curves for 3D
similarity to the crystallographic binding mode of carazolol (panel A), a docking pose of carazolol (panels B and C), or a docking pose of a fragment of
ZM241385 (consisting of the triazolotriazine core and the furan ring) (panel D). Green curves represent the results for PLIF-based compound ranking
by using the same reference poses as before, and the blue lines provide a reference for random compound selection.
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Next, docking trials were carried out using the induced-fit
docking poses of carazolol and ZM241385 described above as
reference bindingmodes. In the case of ZM241385, only the core
fragment composed by the triazolotriazine core and furan ring
was considered, which dominated the 3D similarity calculations
on X-ray templates.28 For all three models, an increase in
compound recall and early enrichment was observed for 3D
similarity ranking compared to that of scoring, as reported in
Figure 1B−D and Table 3.

For the β2(β1) and β2(A2A) models, the use of induced-fit
docking poses as a reference for 3D similarity calculations
resulted in AUC values of 0.70 and 0.79, respectively, and even
for A2A(β2) a value of 0.65, although scoring was in this case not
better than random selection. By contrast, PLIF scoring only
produced an enrichment for β2(β1), with an AUC value of 0.63,
but was below random selection in the other cases, which further
illustrated the difficulties to score approximate interactions; a
ranking strategy we consider unsuitable for models. In contrast,
3D similarity calculations were successful. Even ligands displaced

Figure 2. 3D similarity vs PLIFs. Superposition of co-crystallized carazolol (green) and four representative docked antagonists (magenta) are shown. In
panel A, propranolol essentially matches all structural features of carazolol and hence forms comparable interactions with the receptor. In panel B, NIP
also aligns well with carazolol, but the protonated amine is too far away from Asp113 for forming a salt bridge. In panel C, a salt bridge between CGP
12177 and Asp113 is present, but the hydroxyl group is displaced and the aromatic ring system is found in a head-to-tail orientation compared to that of
carazolol. In panel D, metoprolol only partly overlaps with carazolol and does not form well-defined interactions. For each antagonist, 3D similarity
scores and percentage rank positions (in parentheses) are reported.

Table 2. In-House Homology Modelsa

model template
sequence identity

(%)
template PDB

code
template resol.

(Å)
model RMSD

(Å)
pocket RMSD

(Å)
docked ligand RMSD

(Å)
DOPE
score

β2 β1 52.9 4BVN 2.1 1.7 0.5 1.2 −41 854.8
β2 A2A 30.4 4EIY 1.8 3.1 2.3 5.7 −39 094.1
A2A β2 30.4 2RH1 2.4 3.6 3.6 1.8 −38 530.9

aFor two GPCRs with known X-ray structures, homology models were generated using different templates. All template structures were from Homo
sapiens, except β1, which was from M. gallopavo. For templates and targets, sequence identity is reported. For template structures, the crystallographic
resolution is also given. In addition, RMSD values are provided for comparison of each model with the corresponding X-ray structure, residues
forming the binding pocket, and docked ligands and their crystallographic binding modes (after superposition of the model and X-ray structure).
DOPE scores computed by MODELLER to assess model quality are also reported.
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in homology models relative to their crystallographic binding

modes, as shown in Figure 2, were sufficient to guide compound

selection on the basis of 3D similarity and achieve better

enrichment than energy scoring. Thus, as long as the orientation

of a reference ligand within the binding site was at least

approximately correct, 3D similarity calculations were robust and

tolerant to limited inaccuracies when using homology models
and hypothetical complexes.

3.4. Multiple Reference Poses. In light of the positive
results obtained for individual ligand poses, we also asked the
question whether the use of multiple poses might further
improve compound ranking. Taking inherent accuracy limi-
tations into account, multiple poses further increase the degree of

Figure 3. Structures and binding modes. Panel A shows the superposition of the X-ray structure of the β2 receptor (green) and two homology models
based on the β1 (magenta) and the A2A (orange) receptor, respectively. In panel B, binding site details are displayed including co-crystallized carazolol
(green) andmodeled bindingmodes. Panel C shows the superposition of the X-ray structure of the A2A receptor (cyan) and the β2 receptor-based model
(pink). In panel D, binding site details are shown including co-crystallized ZM241385 (cyan) andmodeled binding modes. Panel E shows the homology
model of the 5-HT6 receptor from GPCRdb. In panel F, binding site details are displayed including three different docking poses of Ro 04-6790.
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fuzziness underlying similarity calculations. If multiple poses
were used, it would be possible to select for each docked
compound the pose yielding the highest 3D similarity values and
use this value for compound ranking. This scenario corre-
sponded to a nearest-neighbor (1-NN) search in the pose space.
Accordingly, it might be possible to balance inaccuracies
associated with single putative binding modes.
To test this hypothesis, preferred binding modes were

collected for the reference ligands carazolol and ZM241385
using rigid receptor docking into the models and two alternative
sets of three poses each were assembled as references for 1-NN
calculations. The first set consisted of the three best-scoring
binding modes (Top 3 S.), regardless of their structural
relationships, and the second set consisted of the three poses
with the largest RMSD values among the precomputed binding
modes (Top 3 Dif.) The idea underlying the generation of the
second set was further increasing binding site coverage with
poses for 1-NN calculations.
Ranking by 3D similarity to these pose sets produced different

results. Whereas the use of the Top 3 S. sets did not lead to a
further improvement in compound ranking compared to that of
the individual ligand-binding modes, the use of Top 3 Dif. sets
resulted in a notable improvement for β2(β1) and A2A(β2), as
reported in Figure 1A−C and Table 3. For β2(A2A), recall
performance remained essentially constant when using single or
multiple ligand poses. For β2(β1) and A2A(β2), large AUC values
of 0.82 and 0.76 were obtained, respectively, together with large
early enrichment factors (5.45 and 4.72, respectively). Hence,
overall, the use of Top 3 Dif. pose sets was the preferred strategy
for compound ranking.
These results suggest that an enhanced conformational

sampling of reference poses may be beneficial for compound
ranking. A potential extension of this approach may include the
generation of reference poses via molecular dynamics or Monte
Carlo simulations. This would also enable sampling different
conformations of both the ligand and the receptor, thus partly
accounting for protein flexibility.
3.5. Docking Screen of an External Model. To further

assess the use of multiple ligand-binding modes for compound
ranking, we also applied the preferred Top 3 Dif. strategy to an
externally derived homology model of a GPCR. For this purpose,
a model of the 5-HT6 receptor was selected (Figure 3E), another
topical drug target.48,49 Structures of two other subtypes of the 5-
HT receptor, including 5-HT1B and 5-HT2B, were reported in
complex with agonists,50,51 but the structure of 5-HT6 is
currently unknown. In addition, compared with our in-house
homology models, the 5-HT6 model was generated from
multiple templates using a different computational protocol.37

Given the absence of an X-ray structure, the accuracy of this
model remained unknown.
For 5-HT6, a set of 35 antagonists and 2350 decoys was

assembled and used for docking into the putative binding pocket
of the model. Reference binding modes were obtained by
generating Top 3 Dif. docking poses of the known antagonist, Ro
04-6790 (Figure 3F), one of the first 5-HT6 selective antagonists
that was discovered.52 Three-dimensional similarity-based
ranking resulted in an AUC of 0.75 and Ef10% of 3.53 (Table
4). As a control, force field-based scoring performed surprisingly

well for this model (in fact, better than that observed for the other
GPCR models), with an AUC of 0.77 and Ef10% of 3.14, hence
yielding overall comparable results (Table 4). This trend was
reflected by the equivalent BEDROC values measured for the
two approaches (Table 4). Nonetheless, 3D similarity
calculations resulted in higher enrichment of known antagonists
within the first third of the ranking (Figure 4D).

3.6. Control Calculations. As additional control calcula-
tions, each of the 23 antagonists in the β2 data set was docked into
the β2 X-ray structure and homology models and used as a
reference for single-pose 3D similarity calculations. A consistent
enrichment of active compounds was observed, with average
AUC values over all of the 23 trials ranging from 0.60 for β2(β1)
to 0.78 for β2 X-ray structure. Thus, these calculations
demonstrated that 3D similarity calculations did not depend
on individual antagonists used as references. However, inverting
the orientations of reference binding modes within the binding
site in a “head-to-tail” manner by 180° mostly abolished the
enrichment of active compounds, demonstrating that at least
approximately correct ligand orientations were essential for fuzzy
3D similarity calculations.
A correlation analysis was carried out between the 3D

similarity measured for all of the compounds docked into the
β2 X-ray structure by taking the crystallographic binding mode of

Table 3. Docking Screens of In-House Homology Modelsa

AUC Ef10%

protocol reference pose β2(β1) β2(A2A) A2A(β2) β2(β1) β2(A2A) A2A(β2)

FF scoring none 0.69 0.61 0.49 3.48 1.74 1.08
3D similarity Ind. Fit 0.70 0.79 0.65 5.22 4.35 2.97

Top 3 S. 0.69 0.79 0.50 5.00 4.09 0.83
Top 3 Dif. 0.82 0.76 0.76 5.45 3.18 4.72

PLIF similarity Ind. Fit 0.63 0.47 0.40 3.92 1.74 0.27
Top 3 S. 0.60 0.43 0.52 3.18 1.36 1.94
Top 3 Dif. 0.62 0.50 0.53 1.82 2.73 1.67

aReported is the recall performance for docking into different homology models using alternative ranking schemes. For 3D and PLIF similarity, three
different reference pose schemes are evaluated. “Ind. Fit” stands for induced fit, “Top 3 S.” refers to the three top-scoring ligand docking poses, and
“Top 3 Dif.” to three dissimilar docking poses. Results for the best performing methods are in bold.

Table 4. Docking Screen of the External Homology Model of
the 5-HT6 Receptor

a

protocol reference pose AUC Ef1% Ef10% BEDROC

FF scoring none 0.77 5.71 3.14 0.22
3D similarity Top 3 Dif. 0.75 5.88 3.53 0.22

aRecall performance is compared for docking into the homology
model of the 5-HT6 receptor on the basis of best force field energy
scoring and the preferred “Top 3 Dif.” 3D similarity pose strategy.
Ef1% and BEDROC (α = 20.0) are reported as an additional
performance assessment. Results for the best performing methods are
in bold.
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carazolol as reference and 2D similarity to the same ligand on the
basis of ECFP4 fingerprints. A low correlation coefficient (r =
0.29) was obtained. This finding was consistent with previous
studies, indicating frequent low correlation of 3D and 2D ligand
similarities.27,43

4. CONCLUSIONS
Scoring and compound ranking continue to be limiting factors of
docking screens. While docking algorithms have become
increasingly effective over the years, it continues to be difficult
to separate active from inactive compounds in rankings. As a
consequence, potential alternatives to force field energy scoring
are considered. Among these is the calculation of 3D similarity of
test compounds relative to binding modes of known ligands, for

which proof-of-principle has been established previously.
Although this approach has been firmly rooted in X-ray
crystallography to provide reference binding modes, we have
investigated herein whether it might be further extendable to
docking tasks wherein accuracy is principally limited, that is,
when homology models are used as docking templates. Despite
accuracy limitations, the use of homology models is relevant for
the practice of structure-based virtual screening, especially when
GPCRs are targeted. Perhaps provocatively, we have asked the
question whether putative reference binding modes placed into
homology models might be useful to guide compound ranking
and designed a study to investigate this question in detail.
Therefore, the approach reported herein deliberately introduced
fuzziness into 3D similarity assessment at the level of modeled

Figure 4. ROC plots for ranking based on similarity to three different docking poses. Yellow curves represent the results for compound ranking on the
basis of 3D similarity calculations relative to three different docking poses of carazolol (panels A and B), a fragment of ZM241385 (consisting of the
triazolotriazine core and the furan ring; panel C), or Ro 04-6790 (panel D). For comparison, green curves represent the results for PLIF-based
compound ranking by using the same reference poses as before and orange curves the results for the London dG scoring function. The blue lines provide
a reference for random compound selection.
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binding modes. Success or failure of such calculations was
essentially unpredictable. However, for different GPCR models,
our analysis revealed that fuzzy 3D similarity calculations were
indeed capable of further enriching active compounds at high-
ranking positions compared to that of other scoring schemes, as
long as modeled binding modes and orientations were at least
approximately correct. Moreover, ensembles of multiple
structurally diverse poses in combination with the nearest-
neighbor similarity calculations were overall more effective in
compound ranking than single binding modes, which further
increased the fuzziness of the approach. Taken together, the
findings reported herein indicate that fuzzy binding mode
resemblance can be successfully exploited in docking screens,
even in instances in which no crystallographic information is
available, and suggest the use of pose ensembles for compound
selection from GPCR homology models as an alternative to
scoring.
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