Skip to main content
. 2016 Nov 16;1(5):923–929. doi: 10.1021/acsomega.6b00247

Table 1. Performance Measures in Predicting Pgp Substrates by Using the Data Set of Li et al.16.

method parameters accuracy sensitivity specificity κ coverage
Traininga
v-NN HC (h = 0.3; d0 = 1.0)b 0.71 0.78 0.65 0.42 1.00
v-NN HA (h = 0.6; d0 = 0.6) 0.77 0.78 0.75 0.53 0.60
BC ECFP10 + 8MPc 0.72 0.65 0.79 0.44 1.00
Test
v-NN HC (h = 0.3; d0 = 1.0) 0.76 0.80 0.71 0.51 1.00
v-NN HA (h = 0.6; d0 = 0.6) 0.81 0.82 0.78 0.60 0.70
BC ECFP10 + 8MP 0.73 0.66 0.81 0.47 1.00
Randomized Training Datad
v-NN HC (h = 0.3; d0 = 1.0) 0.50 0.50 0.50 0.01 1.00
v-NN HA (h = 0.6; d0 = 0.6) 0.52 0.50 0.54 0.04 0.65
a

Performance in a 10-fold cross validation.

b

v-NN parameters (smoothing factor, h, and Tanimoto-distance threshold, d0).

c

Bayesian classifier that employs ECFP10 fingerprints and eight molecular properties (MPs).

d

Training set compounds for Pgp were randomly assigned as substrates or nonsubstrates.