Skip to main content
. 2016 Nov 16;1(5):923–929. doi: 10.1021/acsomega.6b00247

Table 2. Performance Measures in Predicting Pgp Inhibitors by Using the Data Set of Broccatelli et al10.

method parameters accuracy sensitivity specificity κ coverage
Traininga
v-NN HC (h = 0.2; d0 = 1.0)b 0.85 0.86 0.84 0.70 1.00
v-NN HA (h = 0.2; d0 = 0.6) 0.91 0.93 0.88 0.81 0.67
FLAP/VolSurf+   0.88 0.84 0.91 0.75 1.00
Internal Test
v-NN HC (h = 0.2; d0 = 1.0) 0.84 0.84 0.83 0.67 1.00
v-NN HA (h = 0.2; d0 = 0.6) 0.89 0.88 0.91 0.78 0.66
FLAP/VolSurf+   0.85 0.82 0.87 0.69 1.00
External Test
v-NN HC (h = 0.2; d0 = 1.0) 0.76 0.81 0.67 0.48 1.00
v-NN HA (h = 0.2; d0 = 0.6) 0.88 0.91 0.80 0.71 0.53
FLAP/VolSurf+   0.86 0.90 0.80 0.70 1.00
Randomized Training Datac
v-NN HC (h = 0.2; d0 = 1.0) 0.55 0.41 0.67 0.08 1.00
v-NN HA (h = 0.2; d0 = 0.6) 0.53 0.41 0.67 0.08 0.67
a

Performance of 10-fold cross validation.

b

v-NN parameters (smoothing factor, h, and Tanimoto-distance threshold, d0).

c

Training set compounds for Pgp were randomly assigned as substrates or nonsubstrates.