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ABSTRACT: This article describes an unsupervised machine learning method
for computing distributed vector representation of molecular fragments. These
vectors encode fragment features in a continuous high-dimensional space and
enable similarity computation between individual fragments, even for small
fragments with only two heavy atoms. The method is based on a word
embedding algorithm borrowed from natural language processing field, and
approximately 6 million unlabeled PubChem chemicals were used for training.
The resulting dense fragment vectors are in contrast to the traditional sparse
“one-hot” fragment representation and capture rich relational structure in the
fragment space. The vectors of small linear fragments were averaged to yield
distributed vectors of bigger fragments and molecules, which were used for
different tasks, e.g., clustering, ligand recall, and quantitative structure−activity
relationship modeling. The distributed vectors were found to be better at
clustering ring systems and recall of kinase ligands as compared to standard
binary fingerprints. This work demonstrates unsupervised learning of fragment chemistry from large sets of unlabeled chemical
structures and subsequent application to supervised training on relatively small data sets of labeled chemicals.

1. INTRODUCTION

Chemical fragments are building blocks of chemical structures
and useful in modeling biological or physicochemical properties
of chemicals.1 Fragments can be generated algorithmically, and
they are intuitive to medicinal chemists and useful in under-
standing target selectivity and activity prediction.2 Because of
their extensive use in cheminformatics, finding better computa-
tional representation of molecular fragments is important.
Traditionally, fragments were handled as discrete symbols,3,4

e.g., as arbitrary indices in a list of unique fragments. Essentially,
the ith fragment is an N-dimensional “one-hot” vector, where N
is the number of unique fragments in the fragment vocabulary.
Only the ith element of the vector would be nonzero (Figure 1a).
However, such a representation provides no clue about possible
relationship between individual fragments themselves, for
example, there is no simple way to calculate similarity between
the fragments −CH2−Br and −CH2−Cl. In other words,
molecules can be compared to each other by counting fragments
that are common between them, but it is not straightforward to
do the same for the fragments themselves.
One-hot representation of fragments are traditionally used for

building fingerprints (FPs) that encode chemical structures.3,4

Such fingerprints are usually composed of a series of binary digits
(bits) indicating the presence/absence of certain fragments in
the molecule, as shown in Figure 2. Similarity between two
molecules can be computed using Tanimoto similarity measure.
However, the number of unique fragments (fragment vocabulary
size) from a set of chemicals is usually large and the fingerprints
are much smaller (128, 256, 512 bits, etc.), resulting in more than
one fragments competing for the same bin; this is called bit
collision. A combination of hashing and random number

generation is used to determine the bit position for a fragment;
therefore, fragments that are chemically different can end up in
the same bin.
The one-hot fragment representation is responsible for certain

issues associated with the fragment-based quantitative struc-
ture−activity relationships (QSARs) and group contribution
models,1,5 in which fragment counts of training chemicals are
used as descriptors. The X matrix of the training data becomes
sparse and quite large, imposing restrictions on the domain
applicability of test chemicals. The number of a test chemical’s
neighbors that are more similar to a chosen cutoff becomes fewer,
restricting the model’s applicability domain. This problem
becomes particularly serious for smaller training sets.5

Distributed representations, on the other hand, characterize
symbols in a continuous high-dimensional vector space, where
similar symbols are positioned near each other. Distributed
representations are widely used in natural language processing
(NLP) applications6 and referred to as word embeddings. The
vectors are learned automatically by a neural network with
training on a large corpus of actual text while being tasked to
predict the next word in the sequence from the context of earlier
words.7−9 The hypothesis that words sharing similar contexts
have similar meaning is central to this process and it is driven by
an unsupervised training, i.e., the input data are unlabeled. In
addition, it does not require any prior expert knowledge. Success
of the distributed representations was replicated in other fields,
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e.g., in bioinformatics, notably Asgari and Mofrad’s10 application
of word embeddings for biomolecular sequences.
Within the context of distributed representation of symbols,

the present work has two main objectives: (1) to explore the
possibility of extending the word embedding methodology of
NLP to the analysis of fragments of organic molecules and (2) to
compare distributed vector representations of molecules with
standard binary fingerprints. Principles of linguistics have been
applied on organic molecules in past, e.g., Cadeddu et al.11

showed that linguistics-based analysis is well suited to the analysis
of structural and reactivity patterns of organic molecules, and a
natural language and organic chemistry have the same structure
in terms of the frequency of text fragments and molecular
fragments. Another study by Jaeger et al.12 based on a similar
concept appeared after submission of the present work for
publication. It differs in the employed molecule fragmentation
scheme and in the empirical and comparative analyses presented.
Both the present work and that of Jaeger et al. demonstrate the
usefulness of the linguistics-based analysis in chemistry.

This paper consists of the following parts:

i. Computation of distributed representations for 2-, 3-, and
4-atom linear fragments. These simple fragments were
treated as building blocks for bigger, more complex
fragments and molecules.

ii. Display of various physicochemical and chemical proper-
ties of the fragments on two-dimensional (2D) t-
distributed stochastic neighbor embedding (t-SNE)
plots to determine if the vectors captured meaningful
features of the fragments.

iii. Computing distributed vectors for bigger fragments, e.g.,
ring systems, and comparison with traditional bit-based
binary fingerprints.

iv. Computing distributed vectors for molecules and using
them for QSAR modeling and screening of bioactive
chemicals and comparing with traditional binary finger-
prints.

Figure 1. Two different representations of molecular fragments: (a) traditional sparse and one-hot representation and (b) distributed and dense
representation developed in the present work. N = size of fragment vocabulary; k = number of elements in the fragment vectors (adjustable, e.g., 100 in
the current work).

Figure 2. Computation of molecular fingerprints using traditional one-hot fragment representations. N = size of fragment vocabulary; m = number of
fragments generated by breaking up the molecule in question.
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2. RESULTS AND DISCUSSION

2.1. Evaluating Distributed Vectors of the 2-, 3-, and 4-
Atom Linear Fragments. The Word2vec9 algorithm was used
to compute fragment vectors, as described in the Materials and
Methods section. The algorithm had no access to atom-type
makeup of the input fragments; therefore, it is important to
determine if the resulting vectors captured meaningful
information related to the fragments’ atoms. The following
exercises were performed in this respect:

i. Similarity search among the 2- to 4-atom linear fragments
and visual inspection of the results.

ii. Displaying fragments with selected atom types on t-SNE
plots.

iii. Quantitative evaluation of the distribution of log P and
molar refractivity (MR) values of fragments in vector
space.

2.1.1. Fragment Similarity. Every simple fragment was
searched against all other fragments with same heavy atom
count, and cosine similarity values were computed for each pair.
A visual inspection of the results revealed that fragments with
high cosine similarity (>0.7) also appear to be chemically similar.
For instance, Table 1 lists five closest neighbors for three query
fragments. Most similar fragments to N3−C3H2−C3H2−Cl, as
listed in Table 1, show that the algorithm correctly identified the
equivalency between Cl, F, Br, and I atoms. Computing similarity
between such fragments with traditional binary fingerprints using
Tanimoto measure is meaningless because they are already too
small and simple, and their fingerprints will have too few bits

turned “on”. Distributed fragment vectors, on the other hand, are
dense and yield meaningful similarity values.

2.1.2. t-SNE Visualization of Fragments with Selected Atom
Types. The 4-atom linear fragments were selected for this
purpose because they pose more challenge than the 2- or 3-atom
fragments. Vectors of these fragments were subjected to t-SNE
projection to two dimensions, and fragments with the following
atom types were highlighted on the resulting 2D plot:

i. Fragments with one or more aromatic nitrogen, aromatic
oxygen, or aromatic sulfur atoms.

ii. Fragments with metalloid atoms (B, Si, As, Te, Ge, and
Sb).

The plots are shown in Figure 3. Clusters for each class of
fragments can be seen in each plot. t-SNE projection preserves
relational structure that exists in the high-dimensional fragment
vector space. Majority of the aromatic nitrogen-, oxygen-, and
sulfur-containing fragments are located in the upper left part of
the plot (Figure 3a). However, fragments with substantially
different chemistries are located away from the main group. For
example, fragments of cluster #1 (highlighted in Figure 3a)
contain a secondary aliphatic nitrogen (−N3H) bonded with the
aromatic nitrogen and for cluster #2, the aromatic nitrogen is
bonded with a carbon in a three-membered ring (−[C3^H]), as
listed in Table 2. Fragments with metalloids also exhibit similar
clustering behavior as shown in Figure 3b.

2.1.3. Distribution of Physicochemical Properties in Frag-
ment Vector Space.Octanol−water partition coefficient (log P)
and molar refractivity (MR) were considered. The objective is to
perform a quantitative test to check if close neighbors in the

Table 1. Results of Similarity Search for Three Example Query Fragmentsa

N3−C3H2−C3H2−Cl (query fragment) [n+]:cH:[c.] (query fragment) C2H−Br (query fragment)

closest fragments similarity closest fragments similarity closest fragments similarity

N3−C3H2−C3H2−F 0.731 cH:[n+]:[c.] 0.756 Cl−C2H 0.799
N3−C3H2−C3H2−Br 0.718 [n+]:c:[c.] 0.752 I−C2H 0.635
N3−C3H2−C3H2−I 0.682 cH:[n+]:cH 0.722 F−C2H 0.587
N3−C3H2−C3H2−N3 0.656 cH:cH:[n+] 0.702 I−C2 0.578
OH−C3H2−C3H2−N3 0.646 C3H3−c:[n+] 0.686 C2H−C1 0.565

aN3 - sp3 nitrogen; C3 - sp3 carbon; C2 - sp2 carbon; C1 - sp carbon; [c.] - aromatic carbon at a ring joint; H2 - two hydrogens.

Figure 3. t-SNE plots highlighted with 4-atom fragments with (a) aromatic N, S and O (b) metalloid atoms. Each plot contains 37013 fragments. A
sampling of the fragments of the clusters #1 and 2 in (a) is shown in Table 2.
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fragment vector space have similar physicochemical properties,
but not to build a high-performance model for predicting log P or
MR. Experimental log P values of small fragments are not found
in scientific literature; therefore, contributions of various atom
types were first estimated by a least-square fitting with
experimental log P/MR values of whole molecules (using log P
and MR data sets). Regression coefficients of the atoms of a
fragment and the intercept term were added to compute log P/
MR of the fragment. The log P of only 26 285 fragments out of
37 013 4-atom fragments could be calculated because of the
inability to estimate contributions of all of the atom types due to
the small size of the log P training set. Similarly, MR of only 19
192 fragments out of 37 013 could be calculated. The computed
log P and MR values are displayed on t-SNE plots in Figure 4.
Several clusters with more or less uniform color can be seen in
Figure 4, but they do not give any quantitative estimate.
Therefore, log P/MR of individual fragments were predicted
using the computed property values of 5 of its closest neighbors
in the 100-dimensional vector space; the results are shown in
Figure 5. A clear positive trend can be seen even though the r2 of
the predictions are not high.
2.2. Evaluating Distributed Vectors ofMolecules. In this

part, 300-element distributed vectors of molecules were

computed by utilizing the vectors of their component 2-, 3-,
and 4-atom fragments (as described in the Materials and
Methods section). These vectors were evaluated by clustering
small ring systems and ligand recall from decoys and by building
QSARs. For every task, the distributed vectors (DIS-
TRIB_FP_300) were compared with two standard binary
fingerprints (FPs):

a. 1024-b i t f ragment -based binary fingerpr in ts
(FRAG_FP_1024): these FPs were built from 2- to 4-
atom linear fragments (path lengths of 1 to 3 bonds)
hashed to a 1024-bit binary array.

b. 881-bit substructure key-based CACTVS fingerprints
(CACTVS_881): the bits indicate the presence/absence
of various atom counts, ring types, atom pairs, simple and
detailed atom neighbors, and various SMARTS patterns.13

2.2.1. Clustering of Small Ring Systems. Ring systems with
10 or less heavy atoms were extracted from the set of 100 000
PubChem chemicals by removing their acyclic parts. For each of
the resulting 1638 ring systems, three types of fingerprints were
computed. k-means clustering was applied to the full feature
space of the DISTRIB_FP_300 fingerprint to partition the data
points into 15 groups. Then, the fingerprint sets were subjected
to t-SNE projection and the clusters from the high-dimensional
feature space of DISTRIB_FP_300 were mapped onto the t-
SNE plots, and the results are shown in Figure 6. The 15 clusters
of Figure 6a were rendered with different colors and mapped to
Figure 6b,c. This was done to determine the relative positions of
the ring systems in the plots of DISTRIB_FP_300,
FRAG_FP_1024, and CACTVS_881. By visual comparison,
the t-SNE clusters from the distributed FPs are quite distinct and
compact as compared to both the standard FPs. Sometimes, a
single cluster found by the k-means in the full feature space is
broken down in smaller groups by t-SNE procedure, e.g., cluster
#6 and 11. Also, the relative positions of the clusters of different
ring systems differ substantially among the fingerprints, e.g., ring
systems that belong to cluster #4, 13, and 15 of the
DISTRIB_FP_300 are well separated from others but not for
FRAG_FP_1024 and CACTVS_881. Ring systems closest to
the centroids of the 15 clusters of DISTRIB_FP_300 are listed in
Table 3.

Table 2. Some of the Aromatic Nitrogen-Containing
Fragments from the Clusters #1 and 2 from Figure 3aa

fragments of cluster #1 fragments of cluster #2

N3H-n:cH:n C3H2-c:n-[C3^H]
cH:n-N3H−C2 cH:n-[C3^H]−[C3^]
n-N3H−C2-c n:cH:n-[C3^H]
OC2−N3H-n n-C3H2−[C3^]−[C3^H2]
N3H-n:c-C3H3 cH:n-[C3^H]−[C3^H2]
N3H-n:c:cH cH:n-C3H2−[C3^]
n-N3H−C2−C3H2 n-[C3^H]−[C3^H]−[C3^H]
N3H2-c:n-N3H [C3^H]−[C3^H]-n:[c.]
N3H-n:[c.]:[c.] [C3^]−[C3^H]-n:[c.]
N3H-n:n:n n-[C3^H]−[C3^H]−C3H2

aN3 - sp3 nitrogen; C3 - sp3 carbon; C2 - sp2 carbon; C1 - sp carbon;
[c.] - aromatic carbon at a ring joint; [C3^] - sp3 carbon in a three- or
four-membered ring; H2 - two hydrogens.

Figure 4.Values of computed log P andMR contributions of 4-atom fragments displayed on t-SNE plots. (a) Dots for 26 285 fragments and (b) dots for
19 192 fragments.
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2.2.2. Kinase Ligand Recall from Decoys. The directory of
useful decoy (DUD-E) data (as described in the Materials and
Methods section) include data sets for 26 different kinase targets,

each with a very small percentage of active ligands and a large
number of random druglike decoys. The structures of the
crystallographic ligands of the kinase targets, which are included

Figure 5. Prediction of log P and MR contribution (vertical axis) of 4-atom linear fragments using five closest fragments in the high-dimensional vector
space (from skip-gram (SG) method). The horizontal axis represents computed log P/MR (sum of contributions of the four heavy atoms of the
fragments).

Figure 6. t-SNE projection of 1638 small ring systems using three different fingerprints. The 15 clusters in (a) were obtained by applying k-means
clustering on the full feature space of DISTRIB_FP_300. The color of each dot (ring system) in (a) is mapped to the dot corresponding to the same ring
system in (b) and (c).
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in the DUD-E directory, were used as queries to screen the
ligands from the decoys. The three types of FPs were calculated

for each of the 26 query ligands, active ligands, and decoys.
Cosine similarity for the DISTRIB_FP_300 and Tanimoto

Table 3. Examples of Ring Systems from each of the 15 Clusters Shown in Figure 6a Using the Distributed Fingerprints Developed
in this Work
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similarity for the FRAG_FP_1024 and CACTVS_881 between
the query ligand and the database structures were used for the
ligand recall. The recall plots for the 26 targets are included in the
Supporting Information. Percent recall (PR) of active ligands at
three different percentages of screened database are presented in
Table 4. Best values in each category are highlighted in bold. Out
of the 26 targets, the DISTRIB_FP_300 was among the highest
in at least one of the percent recall values (PR1%, PR5%, or PR10%)

for 17 targets. It did not come out on top for nine targets, i.e.,
abl1, braf, csf1r, egfr, kit, lck, mapk2, rock1, and vgfr2. In
comparison, FRAG_FP_1024 produced at least one best value
for 12 targets and CACTVS_881 gave best values for 13 targets.

2.2.3. Binary Classification of Biological Activity. The ability
of the distributed fingerprints to classify biologically active and
inactive chemicals was evaluated for the mutagenicity and the
anti-HIV data sets. Similar to the previous two tasks, three types

Table 4. Percentage of Recalled Kinase Ligands, Using the Three Different Fingerprints, at 1, 5, and 10% of Total Screened
Databasea

DISTRIB_FP_300b FRAG_FP_1024 CACTVS_881

kinase target # ligands # decoys PR1% PR5% PR10% PR1% PR5% PR10% PR1% PR5% PR10%

abl1 182 10 749 4.4 17.6 41.2 10.4 27.5 44.0 6.6 38.5 61.5
akt1 293 16 439 27.6 78.5 86.3 10.2 54.6 66.6 16.7 40.6 65.5
akt2 117 6900 28.2 70.1 79.5 22.2 59.8 74.4 19.7 42.7 66.7
braf 152 9950 11.2 16.4 35.5 34.9 51.3 63.8 12.5 29.6 40.8
cdk2 474 27 846 7.2 21.5 34.2 4.6 13.9 25.5 5.3 16.0 28.9
csf1r 166 12 149 16.3 39.2 50.0 33.1 51.8 66.3 15.7 31.9 41.0
egfr 542 35 049 45.6 76.6 82.7 50.9 79.3 86.0 27.7 63.8 75.1
fak1 100 5350 41.0 94.0 96.0 37.0 86.0 91.0 30.0 68.0 90.0
fgfr1 139 8700 11.5 32.4 51.8 0.0 10.8 25.2 9.4 36.0 45.3
igf1r 148 9300 17.6 58.8 79.1 23.6 39.2 59.5 20.9 43.9 66.9
jak2 107 6498 30.8 62.6 73.8 22.4 36.4 49.5 23.4 44.9 56.1
kit 166 10 450 5.4 7.8 10.2 3.6 22.9 38.0 6.6 20.5 31.3
kpcb 135 8697 56.3 67.4 68.9 52.6 68.1 70.4 55.6 68.1 71.9
lck 420 27 396 27.4 49.0 64.8 22.1 40.0 52.9 28.3 61.0 74.5
mapk2 101 6145 23.8 38.6 40.6 34.7 35.6 38.6 40.6 65.3 75.2
met 166 11 250 50.6 70.5 75.9 54.8 70.5 78.9 31.9 70.5 75.9
mk01 79 4547 57.0 73.4 79.7 57.0 69.6 72.2 46.8 77.2 86.1
mk10 104 6600 2.9 6.7 6.7 1.9 6.7 6.7 1.0 1.0 1.9
mk14 578 35 850 12.5 36.9 56.9 8.7 26.0 43.1 8.8 33.0 50.0
mp2k1 121 8148 24.0 31.4 37.2 19.8 23.1 39.7 19.8 21.5 28.1
plk1 107 6800 13.1 32.7 56.1 1.9 10.3 14.0 13.1 44.9 59.8
rock1 100 6300 0.0 0.0 0.0 2.0 6.0 16.0 4.0 9.0 11.0
src 524 34 494 31.7 61.8 73.1 13.2 27.9 38.2 17.2 33.6 46.4
tgfr1 133 8500 49.6 82.0 91.7 47.4 82.7 95.5 43.6 85.0 92.5
vgfr2 409 24 949 20.0 43.3 57.7 12.2 31.3 41.1 28.1 52.6 69.4
wee1 102 6149 61.8 90.2 90.2 61.8 91.2 92.2 61.8 90.2 91.2

aBold entries indicate best values for each category of percent recall (PR). bDISTRIB_FP_300 were computed by averaging fragment vectors
obtained from skip-gram architecture.

Figure 7. Significance levels (p-values) at different threshold values of similarity coefficients. Cumulative distribution functions for the three fingerprints
were generated by randomly selecting 100 reference compounds and calculating their similarity with the rest of chemicals from a set of 100 000
PubChem chemicals.
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of fingerprints, DISTRIB_FP_300, FRAG_FP_1024, and
CACTVS_881, were calculated for the chemicals of the two
data sets. A chemical is excluded if all of its 2-, 3-, and 4-atom
fragments are not part of the three-fragment vector libraries. For
mutagenicity and the anti-HIV data sets, nine and two chemicals,
respectively, had to be excluded (the list is included in the
Supporting Information). All such chemicals happened to be
containing only two heavy atoms.
For a quantitative comparison of the predictive performance of

the three fingerprints, a 10-fold cross-validation was conducted
using the k-nearest neighborhood method. In every cycle of the
validation process, 10% chemicals were taken out and their
activity class was estimated from the labels of five nearest
neighbors from the rest 90% target chemicals. A query chemical
was classified to be active if majority of the five neighbors are
active. As an additional condition, a neighbor was allowed to be
counted only if it has a similarity equal to or higher than a set
threshold. A prediction is excluded from consideration if equal
number of positive and negative neighbors or no neighbors were
returned. To derive threshold values that indicate statistically
significant levels of similarity, similarity value distributions for the
three fingerprints (cosine similarity was used for DIS-

TRIB_FP_300 and Tanimoto similarity for FRAG_FP_1024
and CACTVS_881) were generated as described by Maggiora et
al.14 This also helps in comparing the prediction performance at
different thresholds across different fingerprints. A set of 100
randomly chosen reference chemicals from the 100 000
PubChem chemical set were used for generating search profiles.
Figure 7 shows p-values as a function of similarity thresholds for
the three fingerprints. It is apparent that the profiles of the
fingerprints are very different from each other, particularly the
DISTRIB_FP_300 in combination with the cosine similarity
measure gives statistically significant similarities only at very high
similarity values and allows only a small range of similarity values
(0.9−1.0) to work with.
Similarity thresholds corresponding to five p-values (1.0, 0.1,

0.05, 0.01, and 0.005) for the three fingerprints were derived
using the distributions, and the cross-validation results for the
mutagenicity and the anti-HIV data sets are presented in Tables 5
and 6, respectively. In general, sensitivity and specificity increase,
and coverage decreases at lower p-values. Also, similar perform-
ance can be achieved from all of the three fingerprints at
statistically significant threshold values. The binary bit-based
fingerprints give more room to increase the similarity threshold

Table 5. Performance of the Three Fingerprints in 10-Fold Cross-Validation Exercise for PredictingMutagenicity Using k-Nearest
Neighborhood Method

Similarity Threshold, Sensitivity %, Specificity %, Coverage %

p-value 1.0 0.1 0.05 0.01 0.005

DISTRIB_FP_300a 0.200, 80, 74, 100 0.878, 83, 75, 90 0.902, 84, 75, 85 0.936, 87, 75, 75 0.948, 88, 74, 69
FRAG_FP_1024 0.006, 79, 73, 100 0.218, 80, 73, 99 0.252, 80, 74, 98 0.332, 81, 74, 95 0.374, 82, 74, 92
CACTVS_881 0.054, 82, 74, 100 0.468, 82, 74, 100 0.504, 82, 74, 99 0.580, 82, 74, 99 0.612, 82, 75, 97

aDISTRIB_FP_300 were computed by averaging fragment vectors obtained from skip-gram architecture.

Table 6. Performance of the Three Fingerprints in 10-Fold Cross-Validation Exercise for Predicting Anti-HIV Using k-Nearest
Neighborhood Method

Similarity Threshold, Sensitivity %, Specificity %, Coverage %

p-value 1.0 0.1 0.05 0.01 0.005

DISTRIB_FP_300a 0.200, 57, 91, 100 0.878, 60, 90, 89 0.902, 64, 90, 81 0.936, 74, 88, 60 0.948, 77, 87, 52
FRAG_FP_1024 0.006, 60, 92, 100 0.218, 60, 92, 99 0.252, 61, 91, 97 0.332, 64, 91, 90 0.374, 67, 91, 83
CACTVS_881 0.054, 58, 92, 100 0.468, 58, 92, 100 0.504, 58, 92, 99 0.580, 59, 91, 95 0.612, 61, 91, 90

aDISTRIB_FP_300 were computed by averaging fragment vectors obtained from skip-gram architecture.

Figure 8. ROCs of the three FPs for mutagenicity and anti-HIV activity classification. Each plot is an average of the 10 cycles from cross-validation
procedure. The orange lines are for DISTRIB_FP_300, blue FRAG_FP_1024, and green for CACTVS_881.
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and consequently to go for lower p-values in comparison to
DISTRIB_FP_300. For example, for the mutagenicity end point,
the performance of DISTRIB_FP_300 at the p-value of 0.005
and similarity threshold of 0.948 can be matched by the two
binary fingerprints at higher threshold values beyond that shown
in Table 5 because, for the p-value of 0.005, FRAG_FP_1024 and
CACTVS_881 are at similarity thresholds of only 0.374 and
0.612, respectively. Prediction performance as a function of
different threshold values (in contrast to p-values) is shown in the
Supporting Information. Performance of the three fingerprints
are also shown as receiver operating characteristic (ROC) plots
in Figure 8. Each plot is an average of the 10 cycles from the
cross-validation procedure at a similarity threshold of 0.0. This
further shows that the performance of the three fingerprints are
almost similar.
2.2.4. Quantitative Activity/Property Predictions. The

distributed fingerprints were tested for their ability to build
QSARs with continuous outcomes. The log P data set and the
Tetrahymena data sets were used for this purpose. For the two
data sets, one and seven chemicals had to be excluded because all
of their 2-, 3-, and 4-atom fragments are not part of the three-
fragment vector libraries. All such chemicals contain only two
heavy atoms; 10 and 20% chemicals were taken out from the
Tetrahymena pyriformis and log P data sets, respectively, and kept
out as test sets. Six QSAR models were built (three sets of
fingerprints for two properties). Ordinary least-square regression
was used for fitting the bins of the fingerprints as independent
(X) variables with continuous response as the dependent variable
(Y). Test set activities were predicted using the generated

models, and the results are shown in Figures 9 and 10 for T.
pyriformis toxicity and log P respectively. On the basis of the
squared correlation coefficient, CACTVS_881 gave the best
performance for both the end points. DISTRIB_FP_300 got the
second position for predicting Tetrahymena toxicity and third
position in the log P predictions.

3. CONCLUSIONS

A methodology is proposed for computing distributed, dense
vector representations of molecular fragments. The fragment
embedding technique is based on an unsupervised machine
learningmethod and requires only unlabeled chemical structures.
The vectors captured meaningful physicochemical properties,
can be easily trained using publicly available software and data,
and need to be computed only once.
The fragment vectors were used for computing distributed

vectors for molecules. The distributed FPs proved to be working
well for a variety of chemistries and bioactivities. Compared to
two traditional FPs, e.g., fragment-based hashed binary FP and
CACTVS binary FP, the distributed FPs showed favorable
properties in ring system clustering and performed better in
kinase ligand recall. It demonstrated similar prediction perform-
ance to binary bit-based FPs in the quantitative prediction of
toxicity against Tetrahymena and predicting log P and in the
classification of mutagenic and anti-HIV compounds.
On the basis of the evidence presented in this paper, the

distributed vector representation of chemical fragments and
molecules seems to have high potential in QSAR and drug
discovery. Future research plans include exploring effects of

Figure 9. Observed vs predicted plots for toxicity against T. pyriformis using QSARs built using the three FPs. DISTRIB_FP_300 were computed by
averaging fragment vectors obtained from skip-gram architecture.

Figure 10. Observed vs predicted plots for log P using QSARs built using the three FPs. DISTRIB_FP_300 were computed by averaging fragment
vectors obtained from skip-gram architecture.
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various hyperparameters on vector training, e.g., vector length,
various fragmenting schemes, different Word2vec parameters,
and other possible ways to combine fragment vectors to compute
molecular fingerprints.

4. MATERIALS AND METHODS
4.1. Data. A number of chemical data sets were used in this

study. The data sets were curated by removing inorganic salt
parts, neutralizing charges on certain atoms, splitting compo-
nents of mixtures, and processing duplicates:

i. PubChem data sets: one set with ∼6 million (5 983 832)
compounds and another with 100 000 compounds were
obtained from a total of 10 million compounds (from CID
1 to 10 000 000) that were downloaded from PubChem
Download Service.15

ii. Mutagenicity data set: a combined Hansen16 and Bursi17

Ames mutagenicity benchmark data sets with a total of
6771 compounds (3639 mutagenic and 3132 non-
mutagenic).

iii. MR data set: 575 compounds with measured molar
refractivity from the publication of Ghose et al.18

iv. Log P data set: an in-house data set19 of 7000 chemicals
with experimentally measured octanol−water partition
coefficient.

v. Kinase data set: the kinase subset of the enhanced
directory of useful decoys (DUD-E)20 composed of 5665
ligands and 355 205 decoys for 26 kinase targets.

vi. Anti-HIV data set: 6454 compounds (1466 active and
4988 inactive) of the anti-HIV data set from National
Cancer Institute’s Developmental Therapeutics Pro-
gram21 were used.

vii. Tetrahymena data set: 1087 chemicals with toxicity against
T. pyriformis, taken from the paper of Owen et al.22

4.2. Software. Python package Gensim23 was used for the
Word2vec algorithm for learning distributed representation of
chemical fragments. The R package Rtsne24 was used for

generating t-distributed stochastic neighbor embedding (t-SNE)
plots. R was also used for k-means clustering.25

An in-house cheminformatics software library was used for
handling chemical structures, fragmenting chemicals, computing
standard binary fingerprints, QSAR analysis, and all other
operations described in this paper.

4.3. Molecular Fragment Generation. A graph traversing
algorithm was used to generate linear fragments with two to four
heavy atoms from training chemicals. These fragments were then
converted to text strings using atomic and bond symbols, e.g.,
C3H2−C3H2−C3H2−N3H2. The atom symbols are com-
posed of element, hybridization, aromaticity, the number of
attached hydrogens, formal charge, aromatic ring joints,
membership of three- or four-sized rings, etc., e.g., C3H3
denotes an sp3 carbon with three hydrogens, C1 stands for sp
carbons, C2 is for sp2 carbons, [c.] stands for aromatic carbons
located on a ring joint, N_Pl3 stands for trigonal planar
nitrogens, and [N3^] denotes an sp3 nitrogen in a three- or four-
membered ring. Traditional SMILES coding,26,27 which is more
suitable for encoding whole molecules, was not used because the
atom-type details (mentioned above) are lost in SMILES of
isolated fragments.
The fragment strings are paired with unique keys and stored in

dictionaries, e.g., {key = frg_54, fragment = C3H2−C3H2−
C3H2−N3H2}. Three separate dictionaries were constructed
for 2-, 3-, and 4-atom fragments. A total of 2699, 15 263, and 70
890 unique 2-, 3-, and 4-atom fragments were recorded,
respectively.

4.4. Building Fragment Corpus. In NLP, a text corpus is a
large collection of real text data used for statistical analysis or
learning word embeddings. Similarly, in this work, a fragment
corpus was built for computing fragment vectors. The fragment
corpus is essentially a big text file containing a list of so-called
fragment sentences. A chemical was treated as a body of text and
its structural fragments as words. Each sentence is a list of
fragments that are connected (shares at least one atom) to one

Figure 11. Skip-gram neural network architecture for generating fragment vectors. The target fragment is shown in red, and its one-hot vector is fed as
the input. The objective is to get the highest probability for the context fragment (shown in blue) in the softmax output layer.

ACS Omega Article

DOI: 10.1021/acsomega.7b02045
ACS Omega 2018, 3, 2825−2836

2834

http://dx.doi.org/10.1021/acsomega.7b02045


fragment in a chemical. Fragment sentences were generated from
every training chemical using the following steps:

Randomization of fragments in the second step in the inner
loop was done to prevent introduction of any bias from
numbering of atoms. The underlying fact is that the words in a
meaningful sentence of a natural language, such as English, are
arranged in a unidirectional order, whereas fragments in an
organic molecule are not always arranged in a directional fashion,
that is, some of them are connected to each other.
In the corpus file, every sentence is placed in a separate line.

Following is an example of a typical fragment sentence,
composed of four 4-atom fragments.
C3H−N3H−C2C2 C3H−C3H2−N3H−C2 C3H−

C3H2−N3−C2H C3H−N3H−C2C2
In practice, the keys from the respective fragment dictionary

were used in place of the actual fragments to save memory and
disk space, e.g., the above fragment sentence will be stored as
follows:
frg_102 frg_103 frg_111 frg_104
Three separate fragment corpora were created for 2-, 3-, and 4-

atom fragments, with 48 470 630 (∼48 million), 39 676 240
(∼40 million), and 26 810 441 (∼27 million) sentences,
respectively.
4.5. Generating Vectors for the 2-, 3-, and 4-Atom

Linear Fragments. The Word2vec word embedding algo-
rithm,9 which takes raw text as input and learns distributed
representation of words, was used. Two neural network-based
unsupervised learning architectures are available in Word2vec:
4.5.1. Skip-Gram (SG). In this architecture, given the target

word, the model tries to predict n words before and n words after

it. The training objective is to maximize the conditional
probability of observing the contextual words. Figure 11 shows
skip-gram architecture for generating fragment vectors.

4.5.2. Continuous Bag-of-Words (CBOW). It tries to predict
the target word given n words before it and n words after it. The
training objective is to maximize the conditional probability of
observing the target word. CBOW is several times faster to train
than the skip-gram.
In both, n is the window size that specifies the number of the

contextual words before and after the target word.
In the present work, three separate sets of vectors were

computed for 2-, 3-, and 4-atom fragments. Both CBOW and SG
models were used; however, the CBOW was found to be slightly
underperforming compared to SG in various tasks presented in
later sections. Therefore, only the results from SG are presented
in the paper and the CBOW results are included in the
Supporting Information. The resulting fragment vector size was
set to 100, the window size was kept at 5, negative sample size of
5 was used, and 5 passes were made over the corpus during the
training. A total of 1604, 10 162, and 37 013 fragment vectors
were successfully computed for 2-, 3-, and 4-atom fragments,
respectively. Fragments with less than five occurrences in the
training corpus were excluded by the Word2vec procedure.

4.6. Computing Similarity between Fragment Vectors.
Cosine similarity function (eq 1) was used to compute the
similarity between two distributed vectors. Cosine similarity
measures the similarity of orientation of two vectors and ranges
from 0 to 1, i.e., if the angle between two vectors is 0°, the cosine
similarity is 1.0, and the similarity is 0.0 if the angle is 90°.
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= =
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4.7. Computing Distributed Vectors for Whole Mole-
cules.When vectors of the simple linear fragments of a molecule
are added, the resulting vector represents the combined features
of the whole molecule. In practice, vectors of all of the fragments
of a particular size (2-, 3-, or 4-atom) of the molecule were added

Figure 12.Computing molecular fingerprints using distributed representation of fragments; k = number of elements in the fragment vectors (e.g., 100)
and m = number of fragments of a particular path length generated by breaking up the molecule in question. In the current work, three separate 100-
element molecular vectors were computed (for 2-, 3-, and 4-atom fragments) and then concatenated to give a 300-element molecular fingerprint.
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and the resultant vector was divided elementwise by the total
number of fragments of that size in the molecule, as shown in
Figure 12. Vectors of 2-, 3-, and 4-sized fragments were added
separately, and the three resulting 100-element vectors were
joined end-to-end to give a final 300-element vector. This
computation does not involve hashing, and consequently, two or
more features that are chemically different do not end up in the
same bin of the fingerprint. However, every element is an average
of that particular feature from all of the fragments of the molecule
and may consequently result in loss of information.
4.8. t-SNE Plots. t-Distributed stochastic neighbor embed-

ding28 (t-SNE) was used for creating 2D plots for visualizing the
high-dimensional vectors. In this paper, t-SNE is only used for
visualizations, and all computations of similarity search, nearest
neighborhood calculations, QSAR modeling, and bioactivity
predictions were performed on the high-dimensional vectors
directly.
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