
Extracting Compound Profiling Matrices from Screening Data
Martin Vogt, Swarit Jasial, and Jürgen Bajorath*

Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische
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ABSTRACT: Compound profiling matrices record assay results for compound
libraries tested against panels of targets. In addition to their relevance for exploring
structure−activity relationships, such matrices are of considerable interest for
chemoinformatic and chemogenomic applications. For example, profiling matrices
provide a valuable data resource for the development and evaluation of machine
learning approaches for multitask activity prediction. However, experimental
compound profiling matrices are rare in the public domain. Although they are
generated in pharmaceutical settings, they are typically not disclosed. Herein, we
present an algorithm for the generation of large profiling matrices, for example,
containing more than 100 000 compounds exhaustively tested against 50 to 100
targets. The new methodology is a variant of biclustering algorithms originally
introduced for large-scale analysis of genomics data. Our approach is applied here
to assays from the PubChem BioAssay database and generates profiling matrices of
increasing assay or compound coverage by iterative removal of entities that limit
coverage. Weight settings control final matrix size by preferentially retaining assays or compounds. In addition, the methodology
can also be applied to generate matrices enriched with active entries representing above-average assay hit rates.

1. INTRODUCTION

The practically elusive goal of chemogenomics is accounting for
interactions between all biological targets and all potential small
molecular ligands.1 This idea naturally leads to the concept of
compound profiling. In such experiments, compound libraries
are tested against panels of targets, in different assays or the
same assay format. Experimental profiling yields assay-
compound matrices in which rows represent assays and
columns represent small molecules. These entries (matrix
cells) account for systematically assessed target−ligand
interactions and represent a basic data structure for chemo-
genomics. If raw screening data are used, such matrices record
binary active versus inactive annotations. If chemical
optimization data are considered, quantitative activity measure-
ments can be utilized, which typically limits the matrix size. In
practice, profiling matrices often focus on individual target
families such as kinases.2 Profiling data is often incomplete,
with only a fraction of all possible target−ligand interactions
accounted for.3 For instance, the kinase SARfari version 6.0,
curated by ChEMBL,4 contains 989 kinase domains, 54 189
active compounds, and 532 155 bioactivity data points, yielding
a global coverage of only around 1% of all possible kinase−
ligand interactions, given the number of targets and
compounds.
Data-driven computational chemogenomics approaches, for

instance, the investigation of compound promiscuity and
selectivity or the prediction of activity profiles, rely on the
availability of matrices capturing interactions between targets
and collections of small molecules.2 Given data sparseness,3 one
of the tasks of computational chemogenomics is the prediction
of missing interactions in target−ligand matrices.2 Of course,

matrices combining experimental results and predictions are of
intrinsically limited accuracy. Ideally, complete experimental-
only profiling matrices are desirable for practical applications
and also the evaluation of machine learning approaches for
activity profile prediction.
Herein, we introduce a methodology for generating large

profiling matrices from experimental screening data, using
PubChem as a data source.5 This approach was primarily
developed to compensate for the lack of available profiling
matrices covering diverse targets. Exemplary matrices reported
herein have also provided the basis for a follow-up study
exploring a variety of machine learning methods for matrix
modeling and activity prediction.6

A heuristic approach is developed for iteratively generating
submatrices of increasing density by stepwise removal of assays
or compounds. Thus, these matrices contain a steadily
decreasing proportion of “empty” cells until, ultimately, a
matrix with complete coverage is obtained. The newly
introduced algorithm is suitable for processing large data sets.
It is applied to generate matrices comprising large numbers of
assays and test compounds. For such arrays of assays, initial
data coverage (i.e., matrix density) is very low, that is, only 10−
20%, thus representing sparse matrices not suitable, for
example, for multitask machine learning.
The algorithmic task of associating a set of assays with a set

of compounds such that all compounds are tested in all, or
nearly all, assays is accomplished by considering the biclustering
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concept.7 Biclustering is an NP-hard computational problem
equivalent to finding the maximum edge biclique in a bipartite
graph.8,9 It has been of special interest for the analysis of large-
volume genomics data for grouping genes with similar
expression level patterns. In basic applications, biclustering
algorithms attempt to identify submatrices with constant values.
Biclustering methods of binary data (i.e., when only two values
are distinguished) can also be applied to so-called “frequent
item set mining”, which originates from market basket analysis
and aims to identify sets of common items in collections of
transactions.10 In the case of a compound profiling matrix, the
clustering task corresponds to finding submatrices in which the
entries indicate that a compound is tested in a given assay.
We introduce an algorithm for identifying such profiling

submatrices. This approach is conceptually related to the
biclustering algorithm of Cheng and Church,11 a greedy
algorithm for generating a bicluster of near constant values
from a matrix by iteratively removing either rows or columns.
Our method is based on iteratively removing assays or
compounds of low coverage from an initially generated sparse
matrix containing all possible assays and compounds. The
algorithm generates matrices of increasing density until a matrix
with complete coverage remains. Although the principal aim of
the approach is retaining a matrix of maximal size, that is, with
the largest possible number of entries, it is also applicable to put
increasing emphasis on either retaining assays or compounds at
the expense of overall matrix size. To this end, a weight
parameter is used to preferentially retain assays or compounds.
In addition, a variant of the algorithm is introduced to penalize
the removal of active entries, hence aiming to generate a matrix

representing above-average hit rates. Hence, the matrix
generation algorithm detailed in the following is not only
capable of generating complete profiling matrices but also
capable of balancing compound and assay coverage for specific
applications.

2. RESULTS AND DISCUSSION
The starting point for the analysis is a collection of assays with
overlapping sets of screening compounds. This is a typical
output of high-throughput screening (HTS) campaigns using
related compound libraries, for example, those that are shared
and further expanded by publicly funded screening centers.
Such a collection of assays yields a sparse matrix in which test
results for multiple targets and varying numbers of compounds
are reported. Sparse matrices provide the input for our
methodology that is presented in detail in the Materials and
Methods section below. A primary goal is the iterative removal
of a minimum number of compounds or assays to convert a
sparse matrix into a complete matrix. Alternatively, dense
matrices with varying assay or compound composition or an
enrichment of hits can be generated, as mentioned above.

2.1. Assembly of Sparse Matrices. Initial collections of
primary and confirmatory assays with overlapping screening
compounds were separately assembled from PubChem
applying the protocol described in the Materials and Methods
section. Primary and confirmatory assays contained compounds
tested against 476 and 625 different single protein targets,
respectively. For 476 primary assays, the sparse matrix
contained 767 895 compounds. For 625 confirmatory assays,
the corresponding matrix contained 422 105 compounds. Initial

Figure 1. Assay and compound distribution. For selected and filtered PubChem assays, histograms report the number of assays each compound has
been tested in (left) and the number of compounds tested in each assay (right). On the left, assay numbers are binned. The upper bound of each bin
is given on the x-axis. The y-axis reports the percentage of compounds corresponding to each bin. On the right, assays are organized according to the
number of tested compounds collected in bins. The upper bound of each bin is given on the x-axis. In (a), histograms are shown for primary and in
(b) for confirmatory assays.
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coverage (density) of the matrices was 0.24 for primary and
0.11 for confirmatory data. Hence, 24% and 11% of all possible
assay/compound combinations were tested in the sparse
matrices. Of those entries, 0.67% (primary) and 1.15%
(confirmatory) represented activity, yielding an activity density
(i.e., the fraction of active entries in the whole matrix) of 0.24 ×
0.67% = 0.16% for the primary assay matrix and 0.11 × 1.15% =
0.13% for the confirmatory assay matrix. Figure 1 shows the

histograms reporting the number of assays per compound and
the number of compounds per assay for these sparse matrices.
More than 50% of the compounds from the primary assays was
tested in 20 or fewer assays. However, approx. 40% of the
compounds was screened in more than 200 assays. On the
other hand, more than 50% of the assays contained more than
200 000 compounds. The distributions for confirmatory assays
differed significantly. Here, the majority of compounds were

Figure 2. Assays and compounds as a function of matrix density. The curves show the effect of iterative removal of assays and compounds from the
original matrix as a function of matrix density. Left, the number of assays and right, the number of compounds for matrices from (a) primary and (b)
confirmatory assays.

Table 1. Size and Compound and Assay Coverage of Profiling Matricesa

profiling matrix (primary assays)

weight 1 weight 4

matrix density matrix size assay coverage CPD coverage matrix size assay coverage CPD coverage

0.75 330 × 346 368 0.17 0.17 352 × 317 322 0.39 0.029
0.90 270 × 307 224 0.58 0.58 322 × 194 924 0.74 0.30
0.95 229 × 305 944 0.66 0.66 294 × 191 440 0.84 0.49
0.99 210 × 267 419 0.92 0.93 272 × 172 204 0.92 0.74
1.00 171 × 225 550 1.00 1.00 254 × 93 317 1.00 1.00

profiling matrix (confirmatory assays)

weight 1 weight 4

matrix density matrix size assay coverage CPD coverage matrix size assay coverage CPD coverage

0.75 101 × 381 858 0.20 0.25 115 × 308 741 0.30 0.0076
0.90 88 × 304 509 0.63 0.63 100 × 236 778 0.76 0.36
0.95 75 × 284 486 0.80 0.81 98 × 152 594 0.91 0.71
0.99 56 × 189 513 0.96 0.97 93 × 35 435 0.98 0.93
1.00 53 × 110 636 1.00 1.00 91 × 12 341 1.00 1.00

aFor five different matrix density levels and weights of 1 and 4, the size and assay/compound (CPD) coverage of profiling matrices extracted from
primary (top) and confirmatory PubChem assays (bottom) are reported. Assay coverage refers to the minimum fraction of assays covered by a single
compound and CPD coverage to the minimum fraction of compounds covered by a single assay.
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tested in 100 or more assays. However, only approx. 15% of the
assays contained more than 100 000 compounds.
2.2. Generation of Dense and Complete Matrices.

Next, the algorithm was applied to the sparse primary and
confirmatory assay matrices. Three weights of 1, 2, and 4 were
applied to increasingly prioritize the number of assays in
matrices at the expense of compound numbers. The iterative
nature of the algorithm yielded matrices of decreasing size but
with increasing density by either eliminating assays or
compounds. Figure 2 reports the number of assays and
compounds as a function of matrix density and monitors the
progression of matrices toward dense and ultimately complete
matrices. Following the curves from the left to the right
illustrates the progression. Depending on the initially assembled
assay data, the order in which assays and compounds are
removed from the matrix may vary when different weight
settings are applied. The initial sparse primary assay matrix only
contained relatively few assays with small compound numbers.
As can be seen in Figure 2a, these assays were removed at early
stages of algorithmic progression. Then, the compounds with
low assay coverage were removed until a matrix density of
approx. 75% was achieved. These progression characteristics
varied slightly depending on the weights (1, 2, or 4), that is,
increasing preference to retain assays over compounds.
Notably, a larger number of primary assays were only removed
during the latter stages of algorithmic progression when the
density increased beyond 95%. In Table 1, sizes of the resulting
matrix are reported for weights of 1 and 4 and different matrix
densities. Compared to nearly complete matrices with 95−99%
coverage, the complete matrix contained considerably fewer
assays and compounds. Thus, if small amounts of missing data
can be tolerated, preference might be assigned to nearly
complete (dense) matrices over a complete matrix, given their
larger size. In this context, it is important to consider the
minimum assay coverage for all compounds and the minimum
compound coverage for all assays, as also reported in Table 1.
For the matrices generated using weight 1, the minimum
percentage of assays covered by a single compound and the
minimum percentage of compounds covered by a single assay
were very similar; a desirable characteristic of the algorithm. For
90% density, the minimum coverage was approx. 58% in both
instances, which further increased to 66% for the 95% dense
matrix and to greater than 92% for the 99% dense matrix. A
common concept in machine learning, known as “imputation”,
is the replacement of missing data with substituted values such
as the median.12 For screening assays, the median would almost
certainly correspond to an inactive data point. Because of the
low coverage imputation on sparse screening matrices would
make only little sense. By contrast, imputation would be
applicable to dense matrices generated with our algorithm,
which retain more assays and compounds than complete
matrices.
Figure 2b shows the corresponding results for confirmatory

assay matrices. The initial set of confirmatory assays contained
many assays with only small numbers of compounds that were
removed during the early stages. Consequently, the majority of
compounds was only removed at later stages and higher matrix
densities. Notably, the number of assays remained fairly
constant (approx. 100) at higher densities. However, there
was a sharp decrease in the number of compounds when the
matrices became complete. For weight 1, compared to the 95%
dense matrix, the complete matrix contained 70% of the assays
but only less than 40% of the compounds, as reported in Table

1. By contrast, the minimum assay and compound coverage was
greater than 80% for the 95% dense matrix. Thus, the 95%
dense matrix contained much more experimental information
than the complete matrix. These comparisons illustrate the
ability of the algorithm to effectively balance assay and
compound coverage with matrix density, an important feature.

2.3. Emphasizing Active Matrix Entries. 2.3.1. Increas-
ing Active Entry Density. Given the generally low hit rates in
HTS assay, usually less than 1% for primary assays, one may
want to enrich active entries in profiling matrices for some
applications such as, for example, the comparison of virtual
screening methods. Such enrichments represent a deliberate
departure from experimental reality but are helpful on
occasions, for example, to increase the number of positive
training examples for machine learning. However, such
enrichment also represents a methodological challenge for
matrix design.
At the level of our algorithm, the enrichment of active entries

can be achieved by preferentially retaining such entries at the
expense of the global matrix size. To this end, a modification of
the algorithm was developed. An “active weight” parameter was
introduced to highly weight active matrix entries during
iterative density improvement. The modified algorithm was
applied to the confirmatory assay matrices using weights of 0
(i.e., no additional emphasis on active entries), 50, and 250.
Figure 3 reports the resulting density of active entries for

matrices of globally increasing density (and decreasing size). As
can be seen, for positive active weight settings, the density of
active entries slightly increased until a matrix density of approx.
0.85 was reached. Then, positive active weights led to an in part
very strong increase in the density of actives (weight 250) until
it reached a maximum at a matrix density of approx. 95%,
before dropping off again sharply when the matrices reached
completeness. Table 2 reports the results for different active
weight settings for complete matrices and dense matrices where
the density of actives reached its maximum. The effect of using
an active weight of 50 was moderate, at best reaching a
maximum active entry density of 1.30%, compared to 0.85%
when no activity weight was applied. The number of assays was
reduced from 79 to 62 and the number of compounds by less
than 50% (from 294 912 to 166 255). In contrast, using a
weight of 250 resulted in matrices with a maximum active entry
density of 4.78% at a global matrix density of 98% and of 2.24%
for a complete matrix. However, this significant increase in the

Figure 3. Density of active compounds as a function of matrix density.
The curves report the density of active compounds as a function of
matrix density for increasing “active weight” parameter settings.
Densities are reported for matrices from confirmatory assays.
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density of active entries was achieved at the cost of reducing the
number of assays to 28 and the number of compounds to 72
427 and 41 977 compounds, respectively. Thus, substantial
reductions in matrix size must be accepted if an active entry
density approaching 5% is desired for a given application.
2.3.2. Assay-Based Hit Rates. Figure 4 illustrates the effect

of the algorithm on a per assay basis. The first two box plots

report the distribution of hit rates for 53 assays of the complete
matrix with no active weights. The first plot shows the
distribution of hit rates for the original assays and the second
plot shows the distribution for all compounds per assay
retained in the completely filled matrix. The hit rates in the
complete matrix were slightly reduced. This effect was partly
compensated for by applying an activity weight of 50 to the
complete matrix and reversed for the 98% dense matrix where

the hit rates clearly increased. The effect was much stronger for
the activity weight of 250. In this case, most assays displayed
significantly increased hit rates in the complete matrix and even
more so in the 98% dense matrix with maximal activity density.
Hence, increases in hit rates were achieved across all assays
retained in the modified matrices.

2.4. Conclusions. The lack of large profiling matrices in the
public domain is a limiting factor for many applications in
computational medicinal chemistry and chemogenomics. Here-
in, we have presented an algorithm for the extraction of
complete or nearly complete profiling matrices from screening
data. We emphasize that the method does not involve data
quality control and thus does not compensate for potentially
limited quality of raw or even confirmatory screening data. If
original data from which matrices are extracted are error-prone,
limited data quality will carry over. Hence, one must generally
be aware of potential data quality issues, which might affect the
applicability of computed matrices (and compromise machine
learning), especially if original data for matrix generation are
taken from heterogeneous public sources.
Applying our approach, we have demonstrated how from an

initial collection of more than 450 primary assays and 800 000
tested compounds a complete matrix with 170 assays and more
than 225 000 compounds was extracted. A corresponding
matrix from confirmatory assay data contained 53 assays and
over 110 000 compounds because of the small size of many of
confirmatory assays that were removed algorithmically.
Depending on parameter settings, our algorithm is adaptable
to put more emphasis on retaining assays or compounds in a
matrix and balance its composition. Therefore, the generated
profiling matrices represent a well-defined organization of
experimental screening data accounting for original hit rates.
Furthermore, applying additional active weights makes it
possible to modify matrix composition and enrich active
entries, if so desired. In addition to generating matrices that
cover many diverse targets, which has been our major interest,
the approach is equally applicable to assemble profiling
matrices for individual target families of interest. Such matrices
might contain smaller numbers of assays than contained in
matrices generated in our proof-of-concept investigation but
also large numbers of compounds. Through appropriate
parameter settings, the assay-to-compound ratio of such
matrices can also be modified to tune them for specific
applications. Matrices reported herein will be made publicly
available in an open access deposition. They provide a basis to,
for example, investigate approaches for multitask machine
learning or the prediction of complete matrices representing
the experimental reality, which is of considerable interest to us.

3. MATERIALS AND METHODS
3.1. Assays. Assay data representing chemical screens were

extracted from the PubChem BioAssay database.5 The selected
assays either represented primary screens (reporting the
percentage of activity or inhibition for a single compound
dose) or confirmatory assays for which activity is usually
reported as AC50 determined from dose−response data. Only
assays with single protein targets were considered. For each
qualifying assay, compounds were only selected if they were
designated as “active” or “inactive”; compounds with other
activity attributes such as “inconclusive” or “unspecified”
disregarded. If multiple assays were available for the same
target, only the assay with the largest number of tested
compounds was retained. On the basis of these criteria, 476

Table 2. Size, Compound and Assay Coverage, and Activity
Density of Profiling Matricesa

activity
weight

matrix
density matrix size

assay
coverage

CPD
coverage

activity
density (%)

0 0.94 79 × 294 912 0.73 0.77 0.85
0 1.00 53 × 110 636 1.00 1.00 0.21
50 0.98 62 × 166 255 0.68 0.87 1.30
50 1.00 60 × 77 766 1.00 1.00 0.18
250 0.98 28 × 72 427 0.71 0.90 4.78
250 1.00 28 × 41 977 1.0 1.0 2.24

aFor different activity weights and matrix density, the size and assay/
compound (CPD) coverage and activity density of profiling matrices
are reported. Assay coverage refers to the minimum fraction of assays
covered by a single compound and CPD coverage refers to the
minimum fraction of compounds covered by a single assay.

Figure 4. Hit rates for individual matrix assays. The box plots report
hit rate distributions for confirmatory assays in matrices generated with
increasing “active weight” parameter settings for assays and
compounds. The plot on the left (sparse) reports the hit rate
distribution for the original matrix comprising 53 assays and the
second plot to the right (active weight 0) the distribution for the
complete matrix. The third and fourth plots report hit rates for active
weight 50 for the complete matrix (third) and a matrix with density
0.98 (fourth) when the activity density reaches it maximum. The fifth
and sixth plots show the corresponding distributions for activity weight
250 (fifth, complete; sixth, 98%). The box plots report the first quartile
(lower boundary of the box), median value (thick line) and third
quartile (upper boundary of the box); the whiskers extend to data
points at distance of at most 1.5 interquartile ranges from the bottom
or top line of the box; outliers beyond the whiskers are displayed as
separate points.
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primary and 632 confirmatory assays covering 825 187 and 450
464 unique compounds, respectively, were obtained that were
directed against 476 and 632 unique targets, respectively. The
compounds were screened for pan-assay interference com-
pounds (PAINS),13 potentially causing assay artifacts, using
three public PAINS substructure filters available in RDKit,14

ChEMBL,4 and ZINC.15 Filtering reduced the number of
compounds to 767 895 and 422 105 for primary and
confirmatory assays, respectively. Thus, for primary and
confirmatory assays, initial assay/compound matrices of size
476 × 767 895 and 625 × 422 105 were formed, respectively.
3.2. Algorithm. A set of assays can be organized as a

profiling (assay/compound) matrix in which rows represent
assays and columns represent compounds. A matrix entry is set
to 0 if the compound was not tested in the assay, set to 1 if the
compound was active, and set to 2 if it was inactive. In the basic
version of the algorithm detailed below, no distinction is made
between active and inactive entries. Rather, the primary goal is
constructing submatrices of decreasing size by removing either
assays or compound entries such that the overall density, that
is, the percentage of nonzero matrix entries (cells), increases
monotonically until a complete (100% dense) matrix is
obtained. In a complete matrix, each compound is tested in
each assay. The basic algorithm follows a greedy approach.

1. Given an initial assay/compound matrix, we first consider
a submatrix S = (sij) consisting of a set A of selected
assays, represented by the rows of S, and a set C of
selected compounds, represented by the columns of S.
Let m = |A| and n = |C| be the number of rows and
columns, respectively. The entry sij is 0 if the compound j
is not tested in assay i, 1 if it tested active, and 2 if it
tested inactive.

2. Initialize A and C to contain all assays and all
compounds, respectively. Hence, C is the union of the
tested compounds originating from all assays.

3. For each assay a in A, determine the density of the tested
compounds for a, that is, the ratio of nonzero entries to

the number of columns n: = ∑ ≠=d a s1( ) [ 0]
n j

n
ajrow

1
1 .

The indicator function 1[p] for a predicate p is defined to
be 0 if p is false and 1 if p is true.

4. For each compound c in C, determine the density of the
tested assays for c, that is, the ratio of nonzero entries to

the number of rows m: = ∑ ≠=d c s1( ) [ 0]
m i

m
iccolumn

1
1 .

5. Select the assay of A with minimum density amin =
argmina∈A(drow(a)) and the compound of C with
minimum density cmin = argminc∈C(dcolumn(c)). If multiple
assays with minimum density or multiple compounds
with minimum density are available, an arbitrary assay or
compound with minimum density is selected.

6. If (cmin)
weight ≤ amin remove cmin from C, that is, C ← C −

{cmin}, else remove amin from A, that is, A ← A − {amin}
and update matrix S accordingly.

7. Stop if S only contains nonzero elements, else continue
with step 3.

The algorithm uses a parameter “weight” that controls the
preferential removal of compounds (weight > 1) or assays (0 <
weight < 1). In effect, the resulting dense matrix preferentially
contains more assays at the cost of the number of compounds
or vice versa. In addition, the overall size m × n of the resulting
matrix is expected to be smaller compared to the case weight =

1 when, in each step, the row or column with the lowest density
is removed.
The hit rates of the assays are usually low and one may also

preferentially retain active compounds in a final matrix at the
expense of the global matrix size. Therefore, a variant of the
algorithm uses an “active weight” parameter to act against the
removal of active compounds or assays with many active data
points. It differs in steps 3 to 6 from the basic algorithm.

3′. For each assay a in A, determine

′ =
∑ ≠ + ∑ =

+ ∑ ≠ + ∑ =
= =

= =

d a
s s

n s s

1 1

1 1

( )

[ 0] active weight [ 1]

[ 0] active weight [ 1]
.j

n
aj j

n
aj

j
n

aj j
n

aj

row

1 1

1 1

4′. For each compound c in C, determine

′ =
∑ ≠ + ∑ =

+ ∑ =
= =

=

d c
s s

m s

1 1

1

( )

[ 0] active weight [ 1]

active weight [ 1]
.i

m
ic i

m
ic

i
m

ic

column

1 1

1

5′. Select the assay of A with the minimum density amin′ =
argmina∈A(drow′ (a)) and the compound of C with the
minimum density cmin′ = argminc∈C(dcolumn′ (c)). If multiple
assays with minimum density or multiple compounds
with minimum density are available, an arbitrary assay or
compound with minimum density is selected.

6′. If (cmin′ )weight ≤ amin′ , remove cmin′ from C, that is, C← C −
{cmin′ }, else remove amin′ from A, that is, A ← A − {amin′ }
and update matrix S accordingly.

In this variant, the condition active weight ≥ 0 applies. If
active weight > 0, active measurements receive an increased
weight when calculating densities d′.
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