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ABSTRACT: Early detection of cancer plays a crucial role in disease Mouse Comelid AFM FM

. . 9nQ . . Height Fluorescence
prognosis. It requires the recognition and quantification of low antibody nanobody Ilncraase signal
amounts of specific molecular biomarkers, either free or transported P L
inside nanovesicles, through the development of novel sensitive » )
diagnostic technologies. In this context, we have developed a - » 4

nanoarray platform for the noninvasive quantification of cancer s ( 3 «
biomarkers circulating in the bloodstream. The assay is based on DNAvbmdelsJ AN ' ’

molecular manipulation to create functional spots of surface- "% Q t t éaiomarker
immobilized binders and differential topography measurements. It 85 ¢ g es ;

is label-free and requires just a single binder per antigen, and when it ”DTAXSK(@W > Wﬁ/ e X‘?g

is implemented with fluorescence labeling/readout, it can be used for DNA-directed immobilization Girculating biomarkers

epitope mapping. As a benchmark, we focused on the plasma release of binders recognition

of Her2 extracellular domain (ECD), a proposed biomarker for the

progression of Her2-positive tumors and response to anticancer therapies. By employing robust, easily engineered camelid
nanobodies as binders, we measured ECD-Her2 concentrations in the range of the actual clinical cutoff value for Her2-positive
breast cancer. The specificity for Her2 detection was preserved when it was measured in parallel with other potential biomarkers,
demonstrating a forthcoming implementation of this approach for multiplexing analysis. Prospectively, this nanorarray platform
may be customized to allow for the detection of promising new classes of circulating biomarkers, such as exosomes and
microvesicles.

B INTRODUCTION and circulating cells) directly in the bloodstream of patients to
The past decade has witnessed the development of diagnostic monitor early stage tumor occurrence as well as its evolution
devices based on diverse physical principles for the highly during therapy.

sensitive, noninvasive, and fast detection of disease-related We propose here an atomic force microscopy (AFM)-based
biomolecules.' ™ In this assorted framework, nanotechnological miniaturized bioaflinity test for the quantification of blood-
breakthroughs in terms of integration and miniaturization of circulating protein biomarkers. This approach capitalizes on

the various bioassays” have pushed beyond the limitations of other studies performed by our group”™’ and is based on the

conventlona} approaches. Notable examples are miniaturized precise confinement of high-affinity antigen-binding molecules
electrochemical and surface plasmon resonance (SPR)-based frce b ¢ AEM i £ sinel ded
sensors, functional nanoparticles, and protein/DNA nanoarrays on a surtace by means o nanografting of single-strande

that can offer enhanced precision and significantly faster DNA (ssDNA) and DNA-directed immobilization (DDI) of

measurements than those achieved with current technolo- conjugated binders, following the scheme in Figure 1.
gies.4_7 Miniaturized, integrated, and multiplexed strategies
would be of particular utility when moving in the direction of Received: March 10, 2017
noninvasive “liquid biopsy”, ie. the detection of reliable Accepted:  April 28, 2017
biomarkers (proteins, nucleic acids, nano- and microvesicles, Published: June 13, 2017
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Figure 1. Schematic representation of the DDI strategy to immobilize antibodies on a microsized DNA-based biosensor.

In particular, we focused our attention on the detection of
the blood-released portion of human epidermal growth factor
receptor 2 (Her2). Her2 is a member of the epithelial growth
factor receptor (EGFR/ErbB) family, which is involved in
many biological processes, such as signal transduction,
regulation of cell adhesion, regulation of transcription, positive
regulation of cell growth/proliferation, and negative regulation
of apoptosis.'” It is normally expressed at low levels in the
epithelial cells of many tissues, whereas gene amplification and
overexpression of Her2 are observed in many types of cancer,
such as breast, lung, ovarian, and ga.stric.11 In breast cancer, this
amplification defines a subtype of cancer (Her2-positive
cancers) with a unique gene signature that is maintained
during progression.'”"” The ability to reveal this “signature” at
extremely low concentrations may be used for early stage
cancer detection and/or to monitor and follow cancer
progression to tune personalized drug treatments.

The increase in membrane concentration (crowding) of
Her2 induced by receptor overexpression might be the leading
cause of aberrant, ligand-independent homodimerization or
heterodimerization with other ErbB receptors, which in turn
causes proteolytic cleavage of the Her2 extracellular domain
(ECD), known as shedding,14 and downstream signaling
activation.">'® Anti-Her2-positive cancer therapies based on
humanized antibodies, such as trastuzumab and pertuzumab,
are focused on blocking Her2 dimerization and/or shedding
and/or Her2-dependent signals.'” Although it is strongly
discussed in the clinic, the lack of suitable technologies to
detect circulating ECD-Her2 prevents this molecule from being
considered a proper biomarker at present. A precise
quantification of the level of ECD-Her?2 released and circulating
freely in the bloodstream or as nanovesicle (exosome) cargo
might boost the ability to detect Her2-positive tumors early in
their development after diagnosis and allow tumor response to
Her2-targeted therapy to be monitored.

So far, enzyme-linked immunosorbent assays (ELISAs)
constitute the only FDA-approved clinical method to evaluate
the amount of circulating ECD-Her2 in the serum of gatients
with both primary breast cancer and metastatic disease'® and to
monitor their response to therapeutic treatments.'®'” With this
method, ECD-Her2 has been found in 30% of primary breast
tumors and 50% of metastatic ones.”> However, ELISA bears
some limitations, such as the use of expensive labels and the
need for multiple antibodies for the same analyte, in addition to
the difficulty of implementing it in multiplexing analysis. This
last point is crucial, given that other soluble forms of ECD-
Her2 could derive from alternative splicing (e.g,, herstatin and
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pl00). The ability to detect multiple biomarkers is strongly
required to unequivocally correlate these quantitative measure-
ments with tumor status and progression.

In this specific context, we propose to exploit the full
potential of our innovative nanoarray platforms. To move
toward clinical applications, we pushed their sensitivity for
antigen detection, exploiting different binders with different
affinity/recognition epitopes. With respect to ELISA, AFM
nanoarrays enable multiplexing, require no labeling, and entail a
single type of binder for analysis. In particular, we used two
different mouse IgG monoclonal antibodies (Abs) selected for
their high binding affinity to regions outside the epitope
recognized by trastuzumab, which makes them suitable for
monitoring the disease during therapeutic drug treatment.
Then, we explored alternative binders such as high-affinity
single-domain nanobodies (VHH) (12—15 kDa) selected to
bind epitopes in the Her2 hinge region.”"”> With respect to
antibodies, nanobodies are more stable and can be easily
engineered with specific tags and fusion partners to meet
diagnostics needs, contributing to an overall reduction in the
cost of the device.””** Moreover, nanobodies can be selected to
avoid cross-reaction with the human anti-mouse antibodies
(HAMA) that are present in human serum and could limit the
efficacy of antigen quantification.

Nanoarray detection performance was tested for a broad
range of Her2 concentrations in buffer and then in standardized
human serum. To demonstrate the multiplexing capabilities of
this approach, we evaluated the simultaneous recognition of
Her2 and urokinase plasminogen activator (uPA), which
participate in cell migration, angiogenesis, embryogenesis,
tumor cell dissemination, and metastasis in many tumors.
Increased levels of uPA have been reported in primary breast
cancer patients and correlate with tumor aggressiveness.”* To
prove the reliability to our method, we validated the AFM
nanoarray with SPR and fluorescence microscopy (FM)
measurements. We also used different combinations of available
Her2 binders to build a sandwich assay to identify, via
combined AFM and FM measurements, the epitope involved in
the specific binding interaction.

B RESULTS
Her2 Detection with MGR2 and MGR3 Antibodies.

Initially, we used two mouse monoclonal antibodies, MGR2
and MGR3, for to set up and validate the nanoarray. Both
antibodies recognize ECD-Her2 with high specificity and have
been thoroughly characterized in immunoprecipitation experi-
ments and by immunohistochemistry using Her2-overexpress-
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Figure 2. ECD-Her2 nanoarray detection by MGR2 (A—C) and MGR3 (D—F) Abs. (A, D) AFM images across the nanopatches after DNA
immobilization, antibody loading via DD], and binding of the antigen. (B, E) Relative topographic line profiles from the AFM images in panels A and
D (light blue, DNA nanografting; red, Ab-conjugate immobilization via DDI; green, 10 nM ECD-Her2 binding). (C, F) Mean and SD values of the
patch heights measured from the line profiles across the nanopatches, which correspond to the colored areas in images A and D at each step of the

experiment.
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Figure 3. ECD-Her2 binding curves for MGR2—DNA (left) and MGR3—DNA (right) conjugates immobilized on the nanoarray. Average values of
the variation in height (Ah) detected on the nanopatches (n = 4) are plotted versus ECD-Her2 concentration. Data were analyzed using the Hill

equation with sigmoidal fitting, and K}, values were determined.

. L2526 T .
ing cell lines. A competitive immunoassay as an epitope

binning experiment demonstrated that MGR2 and MGR3 bind
to independent epitopes on the ECD-Her2 protein surface,
which in turn differ from the epitope bound by trastuzumab.”

Toward the realization of the nanoassay, we first conjugated
the two antibodies with ssDNA by means of a commercial click
chemistry kit that exploits amine groups available on the surface
of an antibody to covalently anchor the DNA. Such a
bioconjugation method is a highly efficient (>80% of the
protein is conjugated), three-step procedure in which both
protein and DNA are first modified with specific chemical
groups that “click” together. The produced conjugate is
extremely stable, and the degree of DNA—protein functional-
ization is then quantifiable by UV spectrophotometry. To avoid
multiple strands attached to a single Ab, sterically limiting the
binding affinity to the target, we optimized the original
conjugation protocol, obtaining two—three strands per protein,
on average, and never more than four.

2620

For nanoscale functionalization, we combined DNA nano-
grafting, fine-tuning the process to optimize the density of
patterned biomolecules,” and the immobilization of semi-
synthetic Abs—DNA conjugates through DDI with high
efficiency, site-selectivity, and reversibility.””*® We then
capitalized on AFM topographic imaging to visualize any
change in the surface topography of the nanopatches occurring
upon interaction with the antigen, with subnanometric
resolution, and to quantify the number of biorecognition
events, as successfully demonstrated in previous work published
by our group."®*”***° The height of the patch is measured at
each step of the fabrication (i.e,, ssDNA nanografting, DDI of
Abs—DNA conjugates, antigen binding) with respect to the
surrounding self-assembled monolayer (SAM) of biorepellent
alkanethiols through topographic AFM images. The unchanged
roughness over the SAM throughout the entire process is an

indication of SAM antifouling action.” >’
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Figure 4. Detection of ECD-Her2 on the nanoarray. Images of nanopatches on the gold surface (A) and their topographical profiles (B). (C) Mean
and SD values of the height measured across the nanopatches at each step of the experiment (light blue, grafting of ssDNA; red, hybridization of

VHH-DNA conjugate; and green, 1 nM ECD-Her2 incubation).

The binding of 10 nM ECD-Her2 over MGR2 and MGR3
antibody nanostructures is reported in Figure 2. Images of the
nanopatches (Figure 2A,D) show that the height increases at
each step of the assay until antigen binding (the brighter the
color, the higher the nanoassembly height versus the reference
SAM). Relative height variations are visualized that show the
topographic line profiles (Figure 2B,E) and are reported as
absolute values (Figure 2C,F).

In both cases, the average height of the ssDNA nanopatches
(Figure 2B,E, blue lines) is close to 3.0 nm. This experimental
value is in agreement with the expected output due to the “low-
density” nanografting conditions (S/A = 0.3—0.6), in which the
vertically standing thiolated DNA molecules are below the
highest packing limit (around $ nm>*) and are therefore not
fully vertically stretched by repulsive electrostatic forces.*® This
DNA density has been previously identified as the optimal one
to accommodate the steric hindrance of the subsequently
immobilized antibodies and to make their binding site easily
accessible to the analyte in solution (Figure S4).

Immobilization of the DNA—antibody conjugate provides a
height increase of roughly 4—S nm (Figure 2B,E, red lines).
The further increase in the height after incubation with ECD-
Her2 (Figure 2B,E, green lines) clearly indicates the efficient
antibody-dependent capture of the antigen.

Next, the nanodevice was assessed for its ability to
quantitatively measure the target. We calculated the affinity
calibration curve for both MGR2 and MGR3, with the
assumption that the variation in height across the nanopatches
is proportional to the amount of analyte bound to the ligand.
Variations in height were plotted versus ECD-Her2 concen-
tration (ranging from 200 pM to 100 nM in the case of MGR2
and from 1 to 300 nM in the case of MGR3; Figure 3).

The sigmoidal distribution of data is in agreement with the
saturable binding isotherm for a receptor—ligand binding
equilibrium and was fitted with the Hill equation,® obtaining
a dissociation constant Kp, in the low nanomolar range for both
MGR2 (Kp = 3.3 + 0.9 nM) and MGR3 (K, = 17.0 + 10.7
nM). From Figure 3, we determined a limit of blank (LoB)
value of about 1 nM for the higher affinity MGR2 and 3 nM for
MGR3.

To validate the nanoarray results, we set up a standard ELISA
assay in which different concentrations of Abs were added to
ECD-Her2-coated wells (Figure S6). The dissociation constant
values found with this assay (MGR2: K, = 2.3 + 1.3 nM;
MGR3: Kp, = 23.0 + 6.2 nM) were in very good agreement
with those found with the nanoarray (confidence level (CL) =

2621

0.74 and 0.69, respectively). SPR experiments were also
performed to evaluate whether functionalization affects an
antibody’s affinity for its antigen. The immobilization
conditions used on the nanoarray were reproduced by attaching
biotinylated ssDNAs to a streptavidin-modified dextran matrix.
The Ab conjugated with the complementary DNA was then
linked by DDI to the matrix, and then the ECD-Her2 analyte
was fluxed. We tested the conjugate with the higher affinity Ab,
MGR?2, and found that the K, was in the low nanomolar range
(17.1 + 1.1). The different experimental setup explains the
much higher Ky value obtained with SPR with respect to the
nanoarray and ELISA; nonetheless, the low nanomolar Ky
value confirms that efficient antigen recognition is enabled in a
nanoarray-like configuration.

Her2 Detection with EM1 Nanobody. As an alternative
to conventional antibodies, we exploited camelid nanobodies,
which are recombinant molecules that can be easily engineered
at precise and unique residues to avoid multiple and
heterogeneous labeling and loss of activity. Moreover, due to
their reduced dimensions, nanobodies can be used to prepare
functional surfaces with higher ligand densities compared to
that with conventional antibodies, which simultaneously
increases the active detection surface and avoids steric
hindrance. In particular, we recently showed the advantage of
producing nanobodies specialized for ECD-Her2 biorecogni-
tion with a free C-terminal cysteine available for single-point
maleimide functionalization.”” This approach enables function-
alization using residues not involved in the Ab paratope, which
consequently prevents modifications of the Ab—antigen
binding features. The llama nanobody EM1 was selected in
vitro from a naive library™® using the same strategy reported in
Djender et al.”” It binds to an ECD-Her2 epitope close to the
one recognized by trastuzumab. EM1 was expressed with a free
C-terminal cysteine and covalently linked with a maleimide—
ssDNA construct. We first measured the binding properties of
1:1 EM1—ssDNA conjugates by SPR, finding a Ky, of 3.4 + 0.3
nM. We then proceeded with nanobody—DNA conjugate
nanoscale immobilization on a gold surface with the same DDI
approach used for the MGR2 and MGR3 antibodies.

The first two preliminary steps (grafting ssDNA and
hybridizing the DNA—nanobody conjugate) were optimized
according to the small dimensions (2 X 2 X 3 nm?* ~1S kDa)
of VHHs. Notably, the density of grafted ssDNA sequences has
a great impact on the hybridization of the conjugate and
consequently on the detection of Her2. Whereas low DNA
densities are needed to avoid steric hindrance effects in the case

DOI: 10.1021/acsomega.7b00284
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of full antibodies, voids should not be left in the nanografted
DNA SAM for nanobodies; the nanobody itself could hide in
such voids, becoming unavailable to interact with the analyte.
On the contrary, at high DNA density, the nanostructures are
well packed and the binder stands up over the surface DNA
layer in the right configuration. This explains why, as shown in
Figure S$, the conditions for high-performance target detection
were reached only at high density. Tuning the DNA density
and DDI conditions, depending on the dimensions and the
specific characteristics of the binder, to optimize detection
performance in the immunoassay is a unique feature of AFM
nanografting.

Having optimized the immobilization conditions, we
performed ECD-Her2 detection with EM1 conjugate nano-
structures, following the same experimental procedure as that
used for the Abs (ssDNA grafting, DDI-driven conjugate
immobilization, and target binding). As a representative case,
we report the results related to the detection of 1 nM ECD-
Her2 (Figure 4).

The measured height of the “high-density” grafted ssDNA is
45 + 02 nm, a value that describes the highest packing
nanopattern in which the thiolated DNA molecules stand
vertically.**

As provided for the MGR2 and MGR3 Abs, we determined
the EM1—ECD-Her2 binding affinity curve with different
analyte concentrations ranging from 200 pM to 10 nM (Figure

S).

K,=1.8 0.6 nM

40F T T T |

3.0 B

2.0 B

A Height [nm]
i

ECD-Her2 [nM]

Figure S. Binding curve of ECD-Her2 and EM1 nanobody conjugate
immobilized on the nanoarray surface. Average changes in height (A
height) values on nanopatches (n = 8) are plotted versus ECD-Her2
concentration; the data were analyzed with the Hill using equation
sigmoidal fitting, and K, values were determined.

We fitted data with the Hill equation in this case as well,
determining a dissociation constant of K, = 1.8 + 0.6 nM,
which is lower than that for MGR2. The S/N ratio improves
substantially upon moving from antibody to nanobody binders,
probably because the higher density DNA layer underneath
increases the mechanical robustness of the device; the read-out,
in fact, is based on a mechanical probe, which still reflects the
mechanical resistance of the surface even though it is operated
at minimum force. Overall, the limit of sensitivity (LoB)
decreases to about 200 pM, pushing the nanoarray’s sensitivity
to a level comparable to the cutoff value of 15 ng/mL that is
commonly used in the clinic for Her2-positive breast cancer
assessment. """
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Her2 Detection in Standardized Human Serum. As an
intermediate step toward using this approach for detection in
blood serum samples, we tested the capability of the nanoarray
to recognize the target of interest in human serum. We chose to
work with standardized human serum first, which mimics the
serum of human patients in terms of protein content (IgG
antibody and albumin). First, we assessed nonspecific protein
binding to the functionalized patches and/or to the
surrounding thiol carpet. As shown in Figure 6A, we observed
a negligible increase in the patch height (about 0.2 + 0.4 nm)
upon moving from PBS to standardized human serum. Also,
the roughness of the biorepellent SAM carpet did not change
significantly (rms = 0.23 and 0.25 nm before and after serum
incubation, respectively). Instead, upon addition of 1 nM ECD-
Her2 to the serum, we observed a relevant patch height
increase of 1.3 nm (Figure 6A). This value is the same as the
differential height increase (Ah) extracted for an ECD-Her2
concentration of 1 nM from the calibration curve obtained with
the recombinant protein in buffer solution. This proves that our
nanoarray is capable of filtering the background noise of a
biological sample and recognizing a specific biomarker of
interest.

Multiplexed Detection. To further challenge the capability
of the nanoarray and to prove its validity for use in clinical
practice, we performed a preliminary multiplex analysis, testing
the simultaneous detection of ECD-Her2 and uPA, another
relevant breast cancer biomarker. As shown in Figure 7, we
grafted ssDNA SAM nanopatches of two different DNA
sequences (SH-cF9 and SH-cFS) in serial order, enabling the
immobilization of two binders (VHH EM1 and auPA Ab)—
each of them conjugated by means of its complementary
ssDNA (F9 and FS)—specific for independent antigens. We
then performed a selective detection of the different targets,
adding each of them in sequence to the solution.

The profile across the grafted SH-cFS and SH-cF9 ssDNA
patches was acquired first (black profiles in Figure 7B, left and
right, respectively). Then, we inserted the VHH-F9 conjugate
(red curves in Figure 7B), observing that only the patches on
the right show a height increase, whereas across the patches on
the left, the red profile almost overlaps with the previously
acquired black curve. This demonstrated the specificity of the
DDI process. Similarly, after adding the uPA Ab-FS (blue
curves in Figure 7B), we see a height increase corresponding to
the cFS patches (panel B, left) but not corresponding to the
cF9 patches (panel B, right). Finally, the loading of uPA was
sensitively measurable only across the uPA Ab-FS patches
(green profiles in Figure 7B), and the last incubation with
ECD-Her2 was detectable only across the VHH-F9 patches
(yellow profiles in Figure 7B), completing the demonstration of
the specificity of our nanoarray.

The unchanged roughness of the thiol SAM carpet at each
step further indicated that nonspecific binding over the surface
did not occur, proving again the validity of the TOEG4, SAM
carpet as a reference for height measurements. Two different
antigens were incubated over the surface at the same
concentration (20 nM); the different Ak values (uPA = 2.7
nm; ECD-Her2 = 4 nm) observed can be explained by the
different dimensions of the two proteins (53 and 72 kDa,
respectively).

The high selectivity of the binding of the two Ab—Ag pairs
working in parallel is a promising result that indicates the
possibility of implementing the multiplexing nanoarray under
real conditions.
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Fluorescence Experiments. So far, we have demonstrated the nanoarrays use small volumes and, more importantly,
that our nanoarrays work in a sensitive and antigen-specific require only one binder per antigen. To perform an additional
manner, with clear advantages over ELISA platforms because validation of our nanoarray, we compared the single protein
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Figure 8. Fluorescent visualization of ECD-Her2 captured by the nanoarray. (A) Schematic of the molecular nanoassembly on a gold surface
together with AFM images of the patches at each step of the incubation (sequentially: ssDNA, trastuzumab—DNA conjugate, 200 pM ECD-Her2,
and MGR2) at different densities of grafted ssDNA (indicated with different colors, see the text). Scale bar 2 ym. (B) Fluorescent image of the
patches described in (A) after incubation with anti-mouse Ab labeled with Alexa488 fluorophore. Scale bar 2 ym. (C) Height increase values
recorded with AFM topographic analysis after each incubation step on the patches and fluorescence intensity values measured as pixel counts. The
plot shows fluorescence—AFM topography correlation (number of independent patches: four for each grafted ssDNA density).

binder topographic measurement approach and the conven-
tional nanoarray-based sandwich approach with a fluorescent
readout. The goal is to label the nanostructures with a
fluorescent molecule as unequivocal proof of the presence of
the target bound on the surface.

Moreover, we also aim to demonstrate that a fluorescence-
integrated sandwich nanoarray allows epitope binning of the
binders to be performed by analyzing the pattern of
simultaneous or competitive action of different pairs of binders.

As a first approach, we used an “indirect” sandwich
configuration (Figure 8A), more similar to classical ELISA
setups. We first immobilized the Abs on the surface, and after
ECD-Her2 capture, we added another Ab specific for another
independent epitope. The fluorescent signal was obtained using
a fluorescently labeled secondary a-mouse Ab. From Figure 8,
it can be seen that the match between topographic and
fluorescence data in this indirect nanosandwich approach is
very good.

The successive incubation steps were as follows: (i) ssDNA,
(i) trastuzumab—DNA conjugates, (iii) ECD-Her2, (iv)
MGR2, and (v) secondary a-mouse fluorescent Ab. Notably,
we confirmed, by means of fluorescence measurements, that
even a low topographic height increase (0.2—0.5 nm)
corresponds to a measurable fluorescent signal, validating the
occurrence of binding of target at very low concentrations (200
pM). Moreover, as demonstrated by the values reported in the
tables and in the AFM—fluorescence correlation graph in
Figure 8c, the fluorescence signal scales linearly with the
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topographic signal and with the density of ssDNA grafted on
the surface, which in turn correlates with the binder density and
therefore the total amount of captured target molecules. This
not only validates the quantitative analysis performed through
topographic measurements across the nanopatches of the
nanoarray but also confirms that our single-binder assay retains
all the benefits of ELISA with the advantages of simplicity,
lower cost, and greater efficiency.

In addition, the fluorescence-integrated sandwich-nanoarray
setup might be useful to obtain important information about
protein epitopes recognized by different binders. For this, we
used the same indirect approach described above as well as a
simplified “direct” sandwich approach by exploiting the easy
functionalization of the VHH EM1. As the first binder, we used
a mouse/humanized Ab, whereas the second one was GFP-
conjugated VHH. The two configurations are reported in
Figure 9 together with fluorescence images relative to different
combinations of binders in the sandwich.

We noticed that the fluorescence signal coming from the
secondary antibody is generally sharper compared to the GFP
fluorescent signal on the VHH. This could be related to the
different fluorescence quantum vyield, to the amplification effect
due to the secondary Ab, or to the different dimensions of the
two systems, with VHH being S times shorter than the Abs and
therefore closer to the gold surface, which could partially
quench the fluorescence signal.

With this in mind, we used the VHH-related direct
configuration (Figure 9D—F) to test its relative epitope for
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Figure 9. Fluorescence images obtained with different combinations in the Ab/VHH “sandwich” assay. For images related to the indirect
configuration (A—C), the first Ab of the sandwich is indicated in purple and the second is in blue; for the direct configuration (D—F), the first Ab of
the sandwich is indicated in purple. Next to each fluorescence image is reported the schematic representation of the position of the patches (violet

squares). Scale bar 2 ym.

ECD-Her2 recognition. While a fluorescence signal was visible
when it was coupled to MGR2 (Figure 9D) and pertuzumab
(Figure 9F), no fluorescence was observable when it was
coupled to trastuzumab (Figure 9E). This fact indicated that
VHH EMI1 and trastuzumab bind on close/overlapping
epitopes and that these are totally independent from the one
recognized by pertuzumab, as reported in the literature.*”
Concerning MGR2, whose epitope has not been mapped yet,
our preliminary experiments indicate simultaneous binding with
VHH; therefore, MGR2 does not exhibit cross-reactivity with
VHH. Translating the results of Figure 9D,E, we conclude that
MGR?2 and trastuzumab recognize different epitopes. This was
confirmed by results obtained with the indirect configuration
(Figure 9C), where we observed the presence of the
fluorescence signal corresponding to the concomitant binding
of MGR2 and trastuzumab, proving that the MGR2-function-
alized nanoarray is suitable for monitoring a response to
therapeutic treatment with this humanized Ab.

With the indirect assay, we also confirmed the simultaneous
binding of MGR2 and MGR3 (Figure 9A). The data in Figure
9B relative to the sandwich binding of MGR2 and VHH are
apparently in contradiction with the data in Figure 9D, in which
the same binders are used but in reverse order. This could be
explained by the fact that, due to the small dimensions of the
nanobody, the accessibility of the Ab to the analyte would be
limited as a consequence of its proximity to the surface.
Combining the evidence from both the direct and indirect
configurations with these two binders, we can assume that the
binding sites of VHH EM1 and MGR2 on ECD-Her2 are most
likely very close. These experiments demonstrate that nano-
grafting-based nanoarrays, beyond their potential as a detection
tool, can serve as an alternative approach, complementary to
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more conventional methods, for identifying the molecular
determinants of antibody—antigen recognition.

B DISCUSSION

The use of miniaturized devices in liquid biopsy for cancer
biomarker detection and therapy monitoring will ultimately
improve the outcome of early diagnosis and tumor treatment.
Here, we employed a nanoarray based on AFM nano-
lithography and a topographic readout for the detection of
cancer-relevant biomarkers circulating in the bloodstream. We
focused on the detection of ECD-Her2, optimizing the choice
of binders to increase the detection sensitivity and even using it
in multiplexing with uPA, to move toward biomolecular
footprinting of the disease.

In particular, we demonstrated that nanoarrays employing
panning-selected camelid nanobodies can detect ECD-Her2 at
less than 200 pM, which corresponds to the cutoff value of 15
ng/mL currently used in the clinic to discriminate between a
healthy and pathological status. We showed that the high
affinity of nanobodies can be fully exploited by tuning the
surface density of the binders: At variance with classical
antibodies, for which steric hindrance can promote anticooper-
ativity of adjacent binders, higher probe densities can be used
for smaller binders and indeed help to improve the overall
sensitivity of target identification.

We expect that the introduction and optimization of suitable
linkers and in silico engineering platforms exploiting novel
mixed computational—experimental protocols for boosting the
affinity for a cognate antigen® will substantially improve the
use of nanobodies as capture molecules and further decrease
the detection limit to the hundreds of femtomolar/low
picomolar range. In this direction, we plan to identify in silico
customized VHHs for specific (nonimmunogenic) epitopes of
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Her2 fragments by means of computational design®” and/or
high-affinity peptides for chosen epitopes of target proteins by
stochastically exploring their sequence and structure space.

In conclusion, we demonstrated that this simple assay has the
required sensitivity to be operated in the clinic, allowing
detection in small volumes of complex matrices and enabling
continuous noninvasive monitoring of therapy from single
blood droplets. Moreover, at variance with ELISA, our assay
requires a single binder for each biomarker and is label-free,
avoiding false results connected to fluorescence interference
susceptibility and tremendously reducing diagnostic costs while
maintaining high biorecognition specificity and fast readout. On
the basis of the achieved results, we put forward the idea of
implementing a simplified, automated, cantilever-based readout
machine in the clinic for antigen quantification purposes.'

When coupled with frequent, noninvasive monitoring in
single blood droplets, our method might then have a crucial
impact on therapeutic drug monitoring, simultaneously
profiling multiple circulating biomarkers and accounting for
the time evolution of the cancer genome and consequent
resistance to drug treatment. Similar nanoscale platforms can be
generated to anchor selected populations of exosomes, via the
binding of a specific transmembrane protein, and to character-
ize them in terms of other membrane protein components. All
of these features heighten the significance of our nanoarray as
an attractive platform for personalized cancer diagnostic
applications.

Finally, the same nanoarray can serve as a platform for
epitope binning. This, combined with fluorescent assays in
living cell membranes for colocalization of different receptors,
will help to understand the specific functions enabled by
selective binding, paving the way to the modular design of
synthetic receptors.

B METHODS

DNA. ssDNA sequences (SH-cF9: SH-(CH,)¢-S'-CTTCA-
CGATTGCCACTTTCCAC-3', F9: NH,-(CH, )¢5’ -GTGGA-
AAGTGGCAATCGTGAAG-3’, SH-cFS: SH-(CH,)4-5'-
CTTATCGCTTTATGACCGGACC-3’, FS: NH,-(CH,)¢5'-
GGTCCGGTCATAAAGCGATAA-3') were from Biomers
GmbH Ulm, Germany.

Antibodies and Nanobodies. Monoclonal mouse anti-
bodies MGR2 and MGR3*>*® were produced at Fondazione
IRCCS Istituto Nazionale dei Tumori, Milan. These Abs have
been tested in IHC, immuno precipitation (ColP), and
immunoblot assays.”>*°

Commercial monoclonal human antibodies trastuzumab and
pertuzumab were from Genentech.

Commercial monoclonal auPA antibody was from MyBio-
Source.

Single-domain antibodies (VHH) were isolated and
produced at the University of Nova Gorica as described
previously using a naive nanobody library,*® a differential
panning approach on whole cells, and the cytoplasmic
expression of the nanobodies in the presence of sulfthydryl
oxidase.”

Proteins and Standardized Serum. Recombinant human
ECD-Her2 and uPA were from ACRO Biosystems.

Standardized human serum was from Biseko (Biotest).

Conjugates Production. Antibodies. Conjugation of the
MGR2, MGR3, trastuzumab, and pertuzumab antibodies with
ssDNA sequence F9 and the auPA antibody with FS was
performed using a click chemistry reaction using the
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commercial three-step SoluLink protein—oligo conjugation kit
(Figure S1).

Protein Modification. Antibodies at a concentration of 2.5—
4.0 mg/mL were buffer exchanged into modification buffer
(100 mM phosphate, 150 mM NaCl, pH 8.0) usingZeba desalt
spin columns (Pierce Chemical) before adding 10—20 mol
equiv of HyNic/mol antibody. The reaction was carried out at
room temperature for 1.5 h, and the HyNic-modified antibody
was desalted into conjugation buffer (100 mM phosphate, 150
mM NaCl, pH 6.0).

Oligonucleotide Modification. The oligonucleotide was
desalted into nuclease-free water using a SK MWCO VivaSpin
diafiltration apparatus, and the OD/uL concentration at 260
nm was adjusted to 0.2—0.5 OD/uL. A volume containing 20
equiv S-4FB was added to the oligonucleotide solution and
incubated at room temperature for 2 h. The 4FB-modified
oligonucleotide was equilibrated into conjugation buffer (100
mM phosphate, 150 mM NaCl, pH 6.0).

Protein—Oligo Conjugation. Volumes of the antibody and
oligonucleotide were mixed. One-tenth of the volume of 10X
TurboLink catalyst buffer was added to the conjugation
solution, and the reaction was carried out at room temperature
for 2 h; the amount of the two components used in this step is
strictly related to the concentration and the molar substitution
ratio (MSR) of both HyNic-modified protein and 4FB-
modified oligonucleotide obtained in the previous steps.

The conjugation reaction was visualized spectrophotometri-
cally by determining the absorbance at Ajs, due to the
formation of the chromophoric conjugate bond. The reaction
solution was exchanged with PBS using Zeba columns.

Nanobody. The conjugation of nanobody EM1 with ssDNA
sequence F9 was performed by a maleimide reaction (Figure
S2): the nanobody, containing a free cysteine at its C-terminus,
was diluted to a concentration of 100 #M in Hepes 10 mM pH
7.4 buffer and kept reduced by the addition of TCEP in a 10-
fold molar excess for 20 min at room temperature. F9-
maleimide was dissolved in TE buffer (Tris 10 mM, EDTA 1
mM) pH 8.0 and then added to the nanobody with a
ssDNA:protein molar ratio of 10:1 (250:25 uM:uM). After 2 h
at room temperature, the modified nanobody was separated
from the reactants and reaction byproducts using a G-25
Ilustra microspin column (GE Healthcare Life Science).

Surface Plasmon Resonance. Biacore T100 and Biacore
2000 SPR instruments were used at a constant temperature of
25 °C.

As shown in Figure S3, a biotinylated cF9 sequence (cF9-
biotin, 2 #M in PBS buffer) was immobilized over the Biacore
SA gold chip surface. A continuous flow (S yL/min) of PBS
buffer (running buffer) was maintained during all experiments.
The immobilization through streptavidin—biotin binding was
stopped after reaching a binding level of ~1200 RU,
corresponding to an amount of ssDNA on the surface that
ensured an efficient attachment of the molecules in the
following steps of the experiment. The surface was rinsed twice
with a 1 min pulse of 50 mM NaOH solution to remove
unbound cF9-biotin.** The hybridization was carried out by
incubation with the conjugates at 100 #M in TE buffer with 1
M NaCl until reaching a binding level of ~1200 RU. The
binding affinity of ECD-Her2 was evaluated by injecting two
different concentrations of the protein in running buffer at a
flow rate of 30 uL/min for 3 min (association phase) and
afterward flushing with running buffer for 10 min (dissociation
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phase). Since the dissociation phase allows complete detach-
ment of the protein, no regeneration procedure was required.

Binding affinity parameters were determined using the 1:1
Langmuir model in the BIAevaluation 3.1 software.

AFM Measurements. The tip-assisted AFM-based nano-
lithography used to fabricate DNA nanoarrays and all high-
resolution topographic measurements were performed using an
XE-100 (Park-Systems) with a custom liquid cell at room
temperature. First, a biorepellent SAM of top oligo(ethylene
glycol)-terminated alkylthiols (TOEG4: HS-(CH,),,-
(OCH,CH,)¢-OH, Sigma-Aldrich) was prepared on ultraflat
stripped gold surfaces following a modified version of the
Ulman procedure.” A gold sample was soaked in a 300 uM
solution of TOEGq in ethanol for about 24 h. Then, it was
rinsed with distilled water and ethanol, dried with a gentle
stream of nitrogen, and finally glued inside the AFM liquid cell.

Multiple nanografting assembled monolayers of thiol-
modified ssDNA SH-cF9 were prepared by serial AFM-based
nanografting inside the TOEG, SAM."**"***® An AFM tip
with sufficient rigidity (MikroMasch NSC 19/no Al, spring
constant 0.6 nN nm™"') was operated at high load (set point/
force &~ 100 nN) on areas of 1 gm X 1 ym in order to locally
displace the TOEG4 SAMs and to facilitate the exchange with
the thiolated ssDNA biomolecules (5 uM in TE buffer 1 M
NaCl) present in the liquid cell.

Antibody/nanobody conjugate immobilization was per-
formed via DDI,*"*® incubating the ssDNA SAM with Abs/
VHH-F9 at 100 nM in TE buffer with 1 M NaCl. ECD-Her2
binding was promoted through the incubation of the antibody/
nanobody nanopatches with a solution containing recombinant
protein at different concentrations in PBS buffer (binding curve
determination and multiplex measurement) or in Biseko
(detection in standardized human serum).

Topographic height variations of the nanopatches at each
step of the experiment were measured with AFM in gentle
contact mode in liquid using a softer AFM tip (MikroMasch
CSC 38/no Al, spring constant 0.03 nN nm™'), at a cantilever
speed of 1 Hz, in buffer solution (TE buffer, Tris 10 mM,
EDTA 1 mM). To minimize perturbations, the applied force
during measurement was the minimum stable value (>0.1 nN).
We already proved that under these conditions nanostructures
can be imaged and their height with respect to the SAM carpet
(Ah) can be measured.”” The AFM topography analysis results
were expressed as mean + SD obtained from measurements
performed on at least four independent patches (n > 4).

The fabrication parameters of the nanografting process were
systematically tuned, consequently modifying the density of
ssDNA molecules adsorbed in the nanopatch.l’g’27 In particular,
it was possible to control the nanoscale DNA surface by
modifying the number of scanning lines during nanografting
over the area, a parameter described by the S/A ratio (where S
is the scanned area and A is the area of the final patch).”

Fluorescence Imaging. Fluorescence measurements were
performed both on direct and indirect sandwich configurations.
Monoclonal IgG antibodies specific for ECD-Her2 (MGR2,
transtuzumab, and pertuzumab) were directly immobilized via
DDI on the surface, incubating the ssDNA nanopatches with
the immunoconjugate at 100 nM in TE buffer 1 M NaCl. ECD-
Her2 binding to immobilized antibodies was obtained by
incubating nanopatches with a solution containing ECD-Her2
at 100 pM (nanoarray validation) or 10 nM (epitope mapping
studies).
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With respect to direct measurements, the EM1—GFP fusion
construct (1 M) was incubated for 1 h over the surface;
indirect measurements were performed using a second Ab
specific for ECD-Her2 at the saturating concentration of 500
nM and then the secondary fluorescent a-mouse_Alexa488 Ab
(Thermo Fisher Scientific) diluted 1:500 in PBS buffer, which
was incubated over the surface for 30 min. After repeated
washing steps with PBS buffer, the gold sample was mounted
on a glass coverslip with Vectashield H-1400 mounting media
(Vector).

Fluorescent images were acquired on an inverted epifluor-
escence microscope (Nikon Eclipse TiU) using 20X (NA =
0.45) and 40X (NA = 0.70) air objectives and a dichroic filter
for FITC (Nikon; excitation: 465—495 nm; DM: 505 nmy;
emission: 515—555 nm). 1600 X 1200 pixel images were
collected using a color digital camera and controller (Nikon
DS-Fi2 and Digital Sight DS-L2) at acquisition times ranging
from 1 to 10 s.

ELISA assay. The indirect ELISA assay was performed first
by coating the ECD-Her2 antigen to a PVC microtiter plate.
The protein was diluted to a final concentration of 100 yg/mL
in carbonate buffer (100 mM, pH 9.6), and 50 uL was used to
coat the wells of the microplate overnight at 4 °C. Then, the
coating solution was removed, and the plate washed three times
with PBS. The coated wells were blocked with 1% BSA in PBS
(blocking buffer) for 2 h at room temperature. The plate was
washed twice in PBS, and serial dilutions (from 100 pM to 1
M) of primary antibody were added. The plate was washed
three times with PBS after a 4 h incubation at 4 °C, and horse
radish peroxidase (HRP)-conjugated secondary antibody
(Sigma) diluted 1:2000 in blocking buffer was added. After
the incubation (1 h at 4 °C), binding was assessed by adding
the substrate 3,3',5,5'-tetramethylbenzidine (TMB, Pierce).
The reaction was stopped with a solution of 1 M HCI after 15
min of incubation at room temperature, and the optical density
was read at 450 nm.

Statistical Analysis. The LoB is the highest measured test
result likely to be observed (typically at 95% certainty) for a
sample containing no analyte. Values above the LoB are not
consistent with the absence of analyte; hence, LoB frequently
replaces the analytical sensitivity of a method. It is calculated as
follows:

LoB = meany,, + 1.645 X (SDyj,i)
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