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Germany
‡Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstr. 19, D-91052 Erlangen,
Germany

*S Supporting Information

ABSTRACT: In search for selective ligands for the muscarinic
acetylcholine receptor (MR) subtype M2, the dimeric ligand
approach, that is combining two pharmacophores in one and
the same molecule, was pursued. Different types (agonists,
antagonists, orthosteric, and allosteric) of monomeric MR
ligands were combined by various linkers with a dibenzodia-
zepinone-type MR antagonist, affording five types of
heterodimeric compounds (“DIBA-xanomeline,” “DIBA-
TBPB,” “DIBA-77-LH-28-1,” “DIBA-propantheline,” and
“DIBA-4-DAMP”), which showed high M2R affinities (pKi >
8.3). The heterodimeric ligand UR-SK75 (46) exhibited the
highest M2R affinity and selectivity [pKi (M1R−M5R): 8.84,
10.14, 7.88, 8.59, and 7.47]. Two tritium-labeled dimeric
derivatives (“DIBA-xanomeline”-type: [3H]UR-SK71 ([3H]44) and “DIBA-TBPB”-type: [3H]UR-SK59 ([3H]64)) were
prepared to investigate their binding modes at hM2R. Saturation-binding experiments showed that these compounds address the
orthosteric binding site of the M2R. The investigation of the effect of various allosteric MR modulators [gallamine (13), W84
(14), and LY2119620 (15)] on the equilibrium (13−15) or saturation (14) binding of [3H]64 suggested a competitive
mechanism between [3H]64 and the investigated allosteric ligands, and consequently a dualsteric binding mode of 64 at the M2R.

1. INTRODUCTION

Muscarinic acetylcholine receptors (MRs) belong to the class A
G-protein coupled receptor (GPCR) superfamily and comprise
five receptor subtypes in humans (designated M1R−M5R).

1−4

Whereas the M1R, M3R, and M5R receptors were reported to
couple with Gq proteins, the M2R and M4R receptors bind to
Gi/o proteins.5 MRs represent interesting drug targets, for
instance, for the treatment of Alzheimer’s disease and
schizophrenia.6,7 Because of the high conservation of the
orthosteric (acetylcholine) binding site,8−10 there is lack of
highly subtype selective (orthosteric) ligands, hampering
therapeutic approaches such as the treatment of cognitive
decline by centrally acting selective M1R agonists or M2R
antagonists.11 However, in addition to the orthosteric binding
pocket, MRs were reported to exhibit distinct allosteric binding
sites, which are less conserved and can potentially be exploited
to develop subtype selective ligands.12−17 The M2R was the first
GPCR described to be subjected to allosteric modulation,18−20

and several dualsteric M2R ligands (e.g., 721 and 10,22,23 Figure
1A) and allosteric M2R modulators (e.g., 13,20 14,18 and
15,24,25 Figure 1B) were identified.

Dimerization of GPCR ligands can result in an increased
receptor affinity and improved selectivity.26,27 Bivalent
(dimeric) ligands were described for various GPCRs, such as
opioid,28 histamine,29,30 dopamine,31−33 adenosine,33−35 and
neuropeptide Y36−38 receptors, not least to investigate receptor
dimerization. Likewise, the design of dualsteric (bitopic)
ligands, that is, hybrid derivatives that simultaneously address
the orthosteric and allosteric sites of one and the same receptor
protomer, represents an approach toward improved subtype
selectivity.19,39−42 For example, rationally designed hybrid MR
ligands derived from the orthosteric agonist oxotremorine (2)
and hexamethonium-like allosteric modulators (e.g., compound
16, Figure 1C) showed increased subtype selectivity compared
to 2.43 Similarily, the MR ligand THRX-160209 (compound
17, Figure 1C) was reported to exhibit a higher M2R affinity
and selectivity than the corresponding monovalent ligands and
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was suggested to bind to the M2 receptor in a multivalent
manner.44

Pyridobenzodiazepinone derivative 7 and the structurally
closely related dibenzodiazepinone derivative 8 (Figure 1A)
represent tricyclic M2R-preferring MR antagonists.45,46 Tran̈kle
et al. suggested a dualsteric binding mode of 7 at the M2

receptor,21 and a hybrid ligand formed of 7 and allosteric
modulator 14 was reported to show a pronounced positive
cooperativity with 5, pointing at a new way for the development
of allosteric enhancers.47,48

This study was aimed at the design, synthesis, and
pharmacological evaluation of heterodimeric MR ligands
derived from 8, comprising five combinations of 8 with
reported orthosteric or allosteric MR ligands: “8−xanomeline
(1),” “8−TBPB (11),” “8−77-LH-28-1 (12),” “8−4-DAMP
(3),” and “8−propantheline (4).” Xanomeline (1) (cf. Figure
1A) is a M1 and M4 receptor preferring MR agonist.49

Compound 11 (cf. Figure 1B) was reported to selectively
activate M1 receptors through an allosteric mechanism, as
shown by mutagenesis and molecular pharmacology stud-
ies;50−52 in other reports, 11 was described as a bitopic M1R
ligand.53 Likewise, compound 12 (cf. Figure 1B) was suggested
to be a bitopic M1R ligand.54 MR antagonists 3 and 4 (cf.
Figure 1A) are nonselective orthosteric MR antagonists with
high affinities [Ki (3, M1R−M5R): 0.52−3.80 nM and Ki (4,
M1R−M4R): 0.057−0.33 nM].45,55 In addition to the
heterodimeric ligands, one monomeric and four homodimeric

ligands derived from xanomeline, one monomeric and two
homodimeric ligands derived from 8, and a monomeric ligand
derived from 11 were prepared as reference compounds.
Furthermore, two radiolabeled heterodimeric ligands (types
“8−11” and “8−1”) were prepared and characterized by
saturation binding [including experiments in the presence of
allosteric modulators (Schild-like analysis)], kinetic investiga-
tions, and competition-binding studies.

2. RESULTS AND DISCUSSION

2.1. Chemistry. Monomeric reference compound 22 and
homodimeric xanomeline-derived ligand 25 were prepared by
N-alkylation of homopiperazine derivative 21 using bromide 20
[followed by removal of the tert-butoxycarbonyl (Boc) group]
and by alkylation of piperazine (24) using bromide 23,
respectively (Scheme 1). Treatment of amine 26 with
octanedioyl dichloride or decanedioyl dichloride in the
presence of triethylamine yielded homodimeric xanomeline-
type compounds 27 and 28, respectively. Likewise, amidation
of terephthalic acid with amine 26, using 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide (EDC)/1-hydroxybenzo-
triazole hydrate (HOBt) as coupling reagent, afforded
homodimeric ligand 29 containing a rigid central linker moiety.
N-alkylation of 21 using bromide 30, followed by removal of
the Boc group, afforded TBPB derivative 31 (Scheme 1).
The “8−11” type heterodimeric ligand 34 was prepared by

N-alkylation of compound 32 using bromide 33; N-alkylation

Figure 1. (A) Structures of the described MR agonists (ACh, CCh, 1, and 2) and antagonists (3−10). The M2R binding poses of compounds 7 and
10 were reported to overlap in part with the binding pose of allosteric M2R modulator 14.21,23 (B) Structures of the selected allosteric MR ligands
(compounds 11−15). (C) Structures of heterodimeric ligands 16 and 17 as well as homodimeric MR ligands 18 and 19, the latter suggested to
exhibit a dualsteric binding mode at the M2R.
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of 21 using 33, followed by removal of the Boc group yielded
monomeric reference compound 35 (Scheme 2). Likewise, N-
alkylation of piperazine derivatives 36 and 37, using bromide
33, gave the “8−4” type heterodimeric ligands 38 and 39. The
“8−1” type heterodimeric ligand 43 was prepared through N-
alkylation of compound 40 by applying a mixture of bromides
20 and 33, followed by Boc-deprotection (Scheme 2).
Homodimeric ligand 41,23 obtained as a “byproduct” (after
Boc-deprotection), was isolated as well. Compound 41 was
recently used as an amine precursor for the preparation of a
tritium-labeled homodimeric MR ligand.23 Amine 43 was
propionylated to give congener 44. The “8−1” type ligand 46
was obtained by N-alkylation of 45 by bromide 33 (Scheme 2).
The “8−3” type heterodimeric ligand 48 and the “8−12” type
ligand 50 were synthesized by alkylation of compound 47 using
bromide 33 and by alkylation of amine 922 (cf. Figure 1A)
using bromide 49, respectively (Scheme 2). Treatment of 40
with a mixture of bromides 30 and 33, followed by Boc-
deprotection, gave the “8−11” type heterodimeric ligand 51,
which contains a rigid homopiperazine moiety in between the
pharmacophores. As in the case of the synthesis of 43,
homodimeric “byproduct” 41 was isolated. Propionylation of
51 gave congener 52 (Scheme 2). Homodimeric ligand 54 was
obtained by treating an excess of compound 47 with bromide
53 (Scheme 2). Regarding the syntheses of 43 and 51, it should
be mentioned that the respective non-DIBA type homodimeric
ligands, resulting from a double alkylation of 40 with bromides
20 or 30, were formed as well, but were not isolated because of

interference with other impurities [preparative high-perform-
ance liquid chromatography (HPLC)].
Amidation of isophthalic acid derivative 57 by applying a

mixture of amines 55 and 56, followed by Boc-deprotection,
afforded heterodimeric ligand 60 and homodimeric ligand 58
(Scheme 3). Propionylation of 58 and 60 gave congeners 59
and 61, respectively. By analogy, heterodimeric ligands 63, 66,
69, and 72 were obtained by amidation of 57 using the amine
mixtures 55/62, 55/65, 55/68, and 55/71, respectively, and
subsequent Boc-deprotection (Scheme 3). Propionylation of
63, 66, and 69 at the central linker moiety afforded
propionamide congeners 64, 67, and 70. It should be noted
that the respective non-DIBA type homodimeric ligands,
generated by double amidation of 57 with amines 56, 62, 65,
68, or 71, were formed but were not isolated (cf. Scheme 3).

2.2. Competition Binding at the Human MR Subtypes
M1−5 with [3H]N-Methylscopolamine ([3H]5) as the
Radioligand. 2.2.1. M2R Affinity. M2R receptor-binding
affinities of monomeric reference ligands 22, 31, and 35,
homodimeric ligands 54 (type “3−3”), 58, 59 (type “8−8”),
and 25, 27−29 (type “1−1”), as well as heterodimeric ligands
43, 44, 46, 60, and 61 (type “8−1”), 34, 51, 52, 63, and 64
(type “8−11”), 50 and 72 (type “8−12”), 38, 39, 69, and 70
(type “8−4”), and 48, 66, and 67 (type “8−3”) were
determined at live CHO-hM2R cells in equilibrium-binding
experiments using the MR antagonist [3H]5 as the orthosteri-
cally binding radioligand. The results are summarized in Table
1.
All compounds containing a dibenzodiazepinone moiety

showed high M2R affinity (pKi > 8.3). Whereas homodimeric
derivatives (25, 27−29) of MR agonist 1 exhibited an increased
M2R affinity (pKi > 7.7) compared to the parent compound
(pKi of 1: 6.55, see Table 3); the opposite was found in the case
of MR antagonist 3 [pKi = 7.09 ± 0.04, mean ± standard error
of the mean (SEM) from two independent experiments] and a
homodimeric derivative of 3 (compound 54, pKi = 6.05, Table
1). The “8−1” type heterodimeric ligand 46 displayed the
highest M2R affinity (pKi = 10.14, Table 1). Steep curve slopes
(≤−1.79) were observed for 43, 51, 60, 61, 64, 67, and 70,
indicating a complex mechanism of binding (e.g., the
involvement of more than one binding site).

2.2.2. MR Receptor Subtype Selectivity. Selected dibenzo-
diazepinone-type heterodimeric ligands (34, 38, 39, 44, 46, 48,
50 , 52, 61 , 64, 67, 70, and 72) and monomeric
dibenzodiazepinone derivative 35, containing an amino-
functionalized homopiperazine moiety, were also investigated
by equilibrium competition binding at the MR subtypes M1,
M3, M4, and M5 with [

3H]5 as the radioligand (Table 1). For all
compounds, there was a preference for the M2R. Except for 38,
the M1R and M4R affinities were higher than the M3R and M5R
affinities, that is, the selectivity profile was M2 > M1 ≈ M4 >
M3/M5 (34, 39, 44, 46, 48, 50, 52, 61, 64, 67, 70, and 72) and
M2 > M1 ≈ M5 > M3 > M4 in the case of 38 (Table 1).
Compound 46, showing the highest M2R affinity among the
studied MR ligands, exhibited a more pronounced M2R
selectivity than the pyridobenzodiazepinone-type ligand 7 (cf.
Figure 1A),45 the MR antagonist tripitramine56 containing
three pyridobenzodiazepinone moieties, as well as the recently
reported dibenzodiazepinone derivatives 10 and 19 (cf. Figure
1C).23 Displacement of [3H]5 by 46 as well as by
heterodimeric ligands 44 and 64, which were prepared as
tritiated ligands (see below), from MxRs (determined at CHO-
hMxR cells, x = 1−5) is illustrated in Figure 2.

Scheme 1. Synthesis of Xanomeline Derivatives 22, 25, and
27−29 as well as TBPB Derivative 31a

aReagents and conditions: (a) (1) K2CO3, MeCN, microwave 110 °C,
30 min; (2) trifluoroacetic acid (TFA)/CH2Cl2 1:4 v/v, room
temperature (rt), 8 h, 66% (22), 20% (31); (b) K2CO3, MeCN,
microwave 110 °C, 30 min, 22%; (c) octanedioyl dichloride or
decanedioyl dichloride, triethylamine, tetrahydrofuran (THF), 0 °C/rt,
overnight, 39% (27), 65% (28); (d) terephthalic acid, EDC, HOBt,
dimethylformamide (DMF), rt, overnight, 26%.
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2.3. Effect on IP1 Accumulation. As previously reported
for homodimeric dibenzodiazepinone derivative 19,23 the
homodimeric xanomeline-type ligand 25 and the heterodimeric
dibenzodiazepinone-type ligands 44, 46, and 64 were
investigated with respect to M2R agonism and antagonism in
an IP accumulation assay (Figure 3). Like 19, compounds 44,
46, and 64 did not induce an IP1 accumulation when
investigated in the agonist mode (Figure 3A), but completely
suppressed the effect of CCh when studied in the antagonist
mode (Figure 3B), revealing that the combination of the
agonist xanomeline (1) with a dibenzodiazepinone-type
antagonist in one molecule (e.g., 44) resulted in a loss of
agonistic activity. Interestingly, homodimeric ligand 25, which
is derived from MR agonist 1, proved to be a M2R antagonist in
contrast to parent compound 1 (Figure 3). The pKb values of
44, 46, and 64 (cf. Figure 3B) were lower compared to the
respective pKi values (cf. Table 1), as previously observed for
homodimeric ligand 19.23 Possible reasons for this discrepancy
are discussed elsewhere.23

2.4. Synthesis of the Radiolabeled Ligands [3H]44 and
[3H]64. Aiming at a radiolabeled derivative of heterodimeric
ligand 46, which exhibited the highest M2R affinity and
selectivity (cf. Table 1), compound 44, containing a
propionamido-substituted homopiperazine moiety instead of
the piperazine ring in 46 (cf. Scheme 2), was prepared as a

tritiated derivative from amine precursor 43 and commercially
available [3H]42 (Figure 4A). Additionally, the tritiated
derivative of heterodimeric ligand 64 was prepared from 63
and [3H]42 (Figure 4A). The chemical stabilities of the “cold”
analogues 44 and 64 were investigated under assaylike
conditions [phosphate-buffered saline (PBS) pH 7.4] for over
48 h. 44 and 64 proved to be stable under these conditions (cf.
SI Figure 1, Supporting Information). [3H]44 and [3H]64 were
obtained in high radiochemical purities (98% and 99%,
respectively; Figure 4B,D) and showed a high ([3H]44) and
excellent ([3H]64) stability when stored in ethanol at −20 °C
(cf. Figure 4C,E).

2.5. Characterization of [3H]44 and [3H]64. Saturation-
binding experiments with [3H]44 and [3H]64 at intact CHO-
hM2R cells or CHO-hM2R cell homogenates yielded mono-
phasic saturation isotherms (Figure 5). As previously reported
for [3H]19,23 the extent of unspecific binding strongly
depended on the assay conditions: in the case of experiments
performed at intact adherent cells (white/transparent 96-well
plates), unspecific binding was considerably higher compared to
experiments performed at cell homogenates, which preclude
the unspecific binding of the radioligand to the microplate
(Figure 5).23 The apparent Kd values amounted to 1.0 and
0.081 nM (cell homogenates, Table 2). As orthosteric
antagonist 6 (used to determine unspecific binding) completely

Scheme 2. Synthesis of DIBA (8)-Derived Heterodimeric Ligands 34, 38, 39, 43, 44, 46, 48, and 50−52, Monomeric
Dibenzodiazepinone Derivative 35, and 4-DAMP (3)-Derived Homodimeric Ligand 54a

aReagents and conditions: (a) K2CO3, MeCN, reflux, 3−6 h, 57% (34), 51% (38), 38% (39), 41% (46), 27% (48); (b) (1) K2CO3, MeCN, reflux (3
h or overnight) or microwave 110 °C (30 min); (2) TFA/CH2Cl2/H2O 10:10:1 v/v/v, rt, 2 h, 12% (35), 17% (43), 12% (51); (c)
diisopropylethylamine (DIPEA), DMF, rt, 2 h, 95% (44), 96% (52); (d) NaI, K2CO3, MeCN, reflux, 3 h, 52%; (e) K2CO3, MeCN, microwave 110
°C, 45 min, 23%.

ACS Omega Article

DOI: 10.1021/acsomega.7b01085
ACS Omega 2017, 2, 6741−6754

6744

http://pubs.acs.org/doi/suppl/10.1021/acsomega.7b01085/suppl_file/ao7b01085_si_001.pdf
http://dx.doi.org/10.1021/acsomega.7b01085


prevented hyperbolic (monophasic) binding of the radioligands
to the M2R, these experiments proved that [3H]44 and [3H]64
bind to the orthosteric binding site of the M2R, as previously
reported for [3H]19.23

The association of [3H]44 and [3H]64 with the human M2R
was monophasic and yielded similar kon values (Figure 6A,C,
Table 2). Whereas the “8−1” type heterodimeric ligand [3H]44
dissociated completely from the M2R (t1/2 = 47 min, cf. Figure
6B, Table 2), the dissociation of the “8−11” type dimeric ligand
[3H]64 was incomplete, reaching a plateau at approximately
47% of initially M2R-bound [3H]64 (t1/2 = 35 min, cf. Figure
6D, Table 2). An incomplete ligand dissociation, which might
be attributed to conformational adjustments of the receptor
upon ligand binding57 or an enhanced rebinding capability of
the dimeric ligand,58 was also reported for the homodimeric

dibenzodiazepinone-type ligand [3H]19.23 The kinetically
derived dissociation constants of both [3H]44 and [3H]64
[Kd(kin): 0.33 and 0.057 nM, respectively] were in good
accordance with the Kd values obtained from the saturation-
binding experiments (Table 2).

2.6. Competition Binding at the M2R Using [3H]44 and
[3H]64 as Radioligands. Heterodimeric radioligands [3H]44
and [3H]64 were applied to equilibrium competition-binding
experiments at CHO-hM2R cell homogenates involving various
reported orthosteric, dualsteric, and allosteric MR ligands.
Orthosteric MR antagonist 6, dualsteric ligand 10, and allosteric
modulator 14 (cf. Figure 1) were capable of totally displacing
[3H]44 from the M2R (SI Figure 2A, Supporting Information),
indicating either a competitive mechanism or a strongly
negative cooperativity between dimeric ligand [3H]44 and 6,

Scheme 3. Synthesis of Dibenzodiazepinone-Type Homo- or Heterodimeric Ligands 58−61, 63, 64, 66, 67, 69, 70, and 72a

aReagents and conditions: (a) (1) 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethylaminium, HOBt, DIPEA, DMF, 60 °C, 3 h; (2) TFA/CH2Cl2/H2O
10:10:1 v/v/v, rt, 2 h, 8% (58), 16% (60), 10% (63), 28% (66), 15% (69), 4% (72); (b) DIPEA, DMF, rt, 2 h, 79% (59), 89% (61), 88% (64), 83%
(67), 86% (70).
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10, or 14. Likewise, orthosteric ligands 1 and 6, dualsteric
ligands 7 and 10, as well as allosteric modulators 13−15 (cf.
Figure 1) completely displaced [3H]64 from the M2R-specific
binding sites. (SI Figure 2B, Supporting Information). For most
of the investigated MR ligands, the respective pKi values were
in good agreement with the binding data obtained from
competition binding with [3H]5 (Table 3). However, the pKi
values of compounds 1, 6, 7, and 10, determined in the
presence of [3H]64, were consistently lower (up to 1 log unit in
the case of 7) than pKi values from the competition-binding
experiments with [3H]5. This is in agreement with the (in part)
irreversible M2R binding of [3H]64 (cf. Figure 6D), which
compromises its use as a molecular tool for the determination
of binding constants of nonlabeled ligands, as was also reported
for homodimeric MR ligand [3H]19.23

2.7. Schild-like Analysis with [3H]64 and Allosteric
M2R Modulator 14. To further explore the binding mode of
heterodimeric ligand 64 at the M2R, saturation-binding
experiments were performed with [3H]64 in the presence of
increasing concentrations of allosteric M2R ligand 14 (Figure
7), as recently reported for homodimeric radioligand [3H]19.23

As in the case of [3H]19,23 this Schild-like analysis resulted in
rightward-shifted saturation isotherms of [3H]64 (Figure 7A)
and a linear Schild plot with a slope not different from unity
(Figure 7B), which is consistent with a competitive mechanism
between [3H]64 and allosteric M2R ligand 14. With regard to

the fact that [3H]64 binds to the orthosteric binding site of the
M2R (see above), these results strongly support a dualsteric
binding mode of 64 at the human M2R. The “pA2” value of
7.16, obtained for 14 from the Schild regression (Figure 7B),
was in accordance with the reported M2R binding data of 14
(pKX 7.5059).

3. CONCLUSIONS
Linking orthosteric (1, 3, and 4) and allosteric (11 and 12) MR
ligands with a M2R preferring dibenzodiazepinone-type MR
antagonist (8) yielded a series of heterodimeric ligands (34, 38,
39, 43, 44, 46, 48, 50−52, 60, 61, 63, 64, 66, 67, 69, 70, and
72). The “8−1” type dimeric ligand 46 (UR-SK75), containing
a piperazine moiety in the linker, exhibited a higher M2R
affinity (pKi 10.14) and selectivity [expressed as the ratio of Ki
values (M1/M2/M3/M4/M5): 23:1:180:29:430] compared to
monomeric (such as 846 and 1022,23) and homodimeric (e.g.,
1822 and 1923) dibenzodiazepinone-type ligands. High M2R
affinity of all dibenzodiazepinone-type heterodimeric ligands
(pKi > 8.3, Table 1), as also reported for monomeric
dibenzodiazepinone-type ligands,22 suggested a minor influence
of the second pharmacophore on M2R binding, indicating that
the high M2R affinity of these compounds is mediated by the
“dibenzodiazepinone” pharmacophore, which binds most likely
to the orthosteric binding site of the M2R. This is supported by
the proposed binding mode of 10 and 19 at the M2R,

23 by
saturation-binding studies using the radioligands [3H]44
([3H]UR-SK71) and [3H]64 ([3H]UR-SK59), and by the
fact that compounds containing M1R/M4R selective agonist 149

Figure 2. Displacement of [3H]5 [c = 0.2 nM (M1, M2, M3), 0.1 nM
(M4), or 0.3 nM (M5)] by heterodimeric ligands 44 (A), 46 (B), and
64 (C) from MxRs determined at intact CHO-hMxR cells (x = 1−5).
Data represent mean values ± SEM from at least three independent
experiments (performed in triplicate).

Figure 3. M2R agonism and antagonism of 25, 44, 46, and 64
investigated in an IP1 accumulation assay using HEK-hM2-Gαqi5‑HA
cells. (A) Concentration-dependent effect of CCh, 1, 25, 44, 46, and
64 on the accumulation of IP1. 25, 44, 46, and 64 elicited no response.
pEC50 of CCh and 1:6.96 and 7.45, respectively. Data represent mean
values ± SEM from at least seven (CCh and 1) or at least two (25, 44,
46, and 64) independent experiments (each performed in triplicate).
(B) Concentration-dependent inhibition of the IP1 accumulation
induced by CCh (0.3 μM) by 6, 25, 44, 46, and 64. Corresponding
pKb values: 6: 8.63,

23 25: 7.21, 44: 7.18, 46: 7.67, and 64: 7.93. Data
represent mean values ± SEM from at least five independent
experiments (each performed in duplicate).
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as a second pharmacophore (43, 44, 46, 60, and 61) proved to
be M2R-preferring ligands. Moreover, the prototypical hetero-
dimeric ligands 44 and 46 were shown to be M2R antagonists
(cf. Figure 3). Concerning the “8−1” type heterodimeric
ligands, one can speculate about the contribution of the
pharmacophore of 1 to M2R binding because the homodimeric
derivatives of 1 (compounds 25, 27−29) exhibited consid-
erably higher M2R affinities compared to 1. This work confirms
that dibenzodiazepinone-type MR ligands represent a promis-
ing class of compounds for the development of highly selective
M2R ligands with a high receptor affinity based on the
dualsteric ligand approach.

4. METHODS
4.1. General Experimental Conditions. Reagents and

chemicals for synthesis were purchased from Acros Organics
(Geel, Belgium), Iris Biotech (Marktredwitz, Germany), Alfa
Aesar (Karlsruhe, Germany), Merck (Darmstadt, Germany),

Sigma (Munich, Germany), or TCI Europe (Zwijndrecht,
Belgium). Technical grade solvents (acetone, ethyl acetate, light
petroleum (40−60 °C), and CH2Cl2) were distilled before use.
Deuterated solvents for nuclear magnetic resonance (NMR)
spectroscopy were from Deutero (Kastellaun, Germany).
Acetonitrile for HPLC (gradient grade) was obtained from
Merck or Sigma. Anhydrous DMF was purchased from Sigma.
CCh (Sigma) and compounds 6 (Sigma), 7 (Abcam,
Cambridge, UK), 13 (Sigma), 14 (Sigma), and 15 (Absource
Diagnostic, Munich, Germany) were purchased from commer-
cial suppliers. The radiolabeled MR antagonist [3H]5 (specific
activity = 80 Ci/mmol) was purchased from American
Radiolabeled Chemicals Inc. (St. Louis, MO) via Hartmann
Analytic (Braunschweig, Germany). The syntheses of com-
pounds 40,23 42,60 and 5723 are described elsewhere.
Compounds 1,61 120,23 and 12362 were prepared according
to described procedures.

Figure 4. Preparation, purity, and identity control of the radiolabeled dibenzodiazepinone derivatives [3H]44 and [3H]64. (A) Synthesis of [3H]44
and [3H]64 by [3H]propionylation of amine precursors 43 and 63, respectively, using succinimidyl [3H]propionate ([3H]42). Reagents and
conditions: (a) DIPEA, DMF, rt, 1.5 h, radiochemical yields: 36% ([3H]44) and 35% ([3H]64). (B,C) HPLC analysis of [3H]44 (0.18 μM) spiked
with “cold” 44 (3 μM), analyzed 3 days after synthesis (B) and after 10 months of storage at −20 °C in EtOH/H2O (1:1) (C). (D,E) HPLC analysis
of [3H]64 (0.23 μM) spiked with “cold” 64 (3 μM), analyzed 3 days after synthesis (D) and after 10 months of storage at −20 °C in EtOH/H2O
(1:1) (E). HPLC conditions are provided in the Supporting Information.
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Millipore water was used throughout for the preparation of
buffers and HPLC eluents. If moisture-free conditions were
required, reactions were performed in dried glassware under an
inert atmosphere (argon). Anhydrous THF was obtained by
distillation over sodium, and anhydrous CH2Cl2 was prepared
by distillation over P2O5 after predrying over CaCl2. Reactions
were monitored by thin-layer chromatography using aluminum
plates coated with silica gel (Merck silica gel 60 F254, thickness
0.2 mm). Spots were detected by ultraviolet (UV) light (254 or
366 nm) or by staining using 0.3% solution of ninhydrin in n-
butanol (amines) or iodine. Column chromatography was
performed in glass columns on silica gel (Merck silica gel 60,
63−200 μm). Flash chromatography was performed on an
Intelli Flash-310 Flash-Chromatography Workstation (Varian,
Darmstadt, Germany). Polypropylene reaction vessels (1.5 or 2
mL) with a screw cap (Süd-Laborbedarf, Gauting, Germany)
were used for the synthesis of radioligands ([3H]44 and [3H]
64) for small-scale reactions, for the investigation of chemical
stabilities (44 and 64), and for the preparation and storage of
stock solutions. Melting points were measured with a Büchi 530
(Büchi, Essen, Germany) apparatus and are uncorrected.
Microwave-assisted reactions were performed with an Initiator

2.0 synthesizer (Biotage, Uppsala, Sweden). NMR spectra were
recorded on a Bruker AVANCE 300 (7.05 T), Bruker
AVANCE III HD 400 (9.40 T), or a Bruker AVANCE III
HD 600 spectrometer equipped with a cryogenic probe (14.1
T) (Bruker, Karlsruhe, Germany). Abbreviations for the
multiplicities of the signals are s (singlet), d (doublet), t
(triplet), dd (doublet-of-doublet), q (quartet), m (multiplet),
and brs (broad-singlet). Infrared (IR) spectra were measured
with a Nicolet 380 FT-IR spectrophotometer (Thermo
Electron Corporation). Low-resolution mass spectrometry
was performed on a Finnigan SSQ 710A instrument [chemical
ionization mass spectrometry (CI-MS, Thermo Finnigan, San
Jose, CA). High-resolution mass spectrometry (HRMS)
analysis was performed on an Agilent 6540 UHD Accurate-
Mass Q-TOF LC/MS system (Agilent Technologies, Santa
Clara, CA) using an electrospray ionization source. Preparative
HPLC was performed on a system from Knauer (Berlin,
Germany) consisting of two K-1800 pumps and a K-2001
detector. Except for compound 54, a Kinetex-XB C18 column,
5 μm, 250 × 21 mm (Phenomenex, Aschaffenburg, Germany)
served as the stationary phase at a flow rate of 15 mL/min. For
the purification of 54, a Nucleodur 100-5 C18 column, 5 μm,

Figure 5. Representative hyperbolic (monophasic) isotherms of specific M2R binding (red dashed line) of [3H]44 (A,B) and [3H]64 (C,D) obtained
from saturation-binding experiments either performed with live adherent CHO-hM2R cells (A,C) or CHO-hM2R cell homogenates (B,D).
Unspecific binding (blue solid line) was determined in the presence of MR antagonist 6 (500-fold excess). Experiments were performed in triplicate.
The error bars of specific binding and error bars in the Scatchard plots represent propagated errors calculated according to the Gaussian law of
errors. The error bars of total and unspecific binding represent the SEM.

Table 2. M2R Binding Characteristics of [3H]44 and [3H]64

saturation-binding binding kinetics

radioligand Kd [nM]a Kd(kin) [nM]b kon [min−1 nM−1]c koff [min−1]d, t1/2 [min]d

[3H]44 1.0 ± 0.2 0.20 ± 0.03 0.078 ± 0.015 0.015 ± 0.001, 47 ± 3
[3H]64 0.081 ± 0.022 0.072 ± 0.002 0.31 ± 0.01 0.022 ± 0.002, 35 ± 1

aDissociation constant determined by saturation binding at CHO-hM2R cell homogenates; mean ± SEM from at least three independent
experiments (performed in triplicate). bKinetically derived dissociation constant ± propagated error [Kd(kin) = koff/kon].

cAssociation rate constant
± propagated error, calculated from kobs (nonlinear regression), koff (nonlinear regression), and the applied radioligand concentration (cf.
Radioligand Binding). dDissociation rate constant (nonlinear regression, two ([3H]44)- or three ([3H]64)-parameter equation describing a
monophasic decline) and half-life; mean ± SEM from three independent experiments (performed in triplicate).
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250 × 21 mm (Macherey-Nagel, Düren, Germany) was used as
the stationary phase at a flow rate of 15 mL/min. Mixtures of
acetonitrile and 0.1% aq TFA were used as the mobile phase,
and a detection wavelength of 220 nm was used throughout.
Lyophilization of the collected fractions was performed with an
Alpha 2-4 LD apparatus (Martin Christ, Osterode am Harz,
Germany). Except for compound 54, analytical HPLC analysis
(purity control) was performed on a system from Merck-
Hitachi (Hitachi, Düsseldorf, Germany) composed of a L-6200-
A pump, an AS-2000A autosampler, a L-4000A UV detector,
and a D-6000 interface. A Kinetex-XB C18 column, 5 μm, 250

mm × 4.6 mm (Phenomenex, Aschaffenburg, Germany) was
used as the stationary phase at a flow rate of 0.8 mL/min.
Mixtures of acetonitrile (A) and 0.1% aq TFA (B) were used as
the mobile phase (degassed by helium purging). The following
linear gradient was applied: 0−30 min: A/B 5:95−85:15, 30−
32 min: 85:15−95:5, and 32−40 min: 95:5. Detection was
performed at 220 nm throughout. The oven temperature was
30 °C. Analytical HPLC analysis of 54 was performed on a
system from Thermo Separation Products composed of a
SN400 controller, a P4000 pump, a degasser (Degassex DG-
4400, Phenomenex), an AS3000 autosampler, and a Spectra
Focus ultraviolet−visible detector. A Eurospher-100 C18
column, 5 μm, 250 × 4 mm (Knauer, Berlin, Germany) served
as reversed-phase (RP) column at a flow rate of 0.8 mL/min.
Mixtures of acetonitrile (A) and 0.05% aq TFA (B) were used
as the mobile phase (degassed by helium purging). The oven
temperature was set to 30 °C, and detection was performed at
220 nm. The following linear gradient was applied: 0−30 min:
A/B 20:80−95:5 and 30−40 min: 95:5.
Annotation concerning the NMR spectra (1H, 13C) of the

dibenzodiazepinone derivatives (34, 35, 38, 39, 43, 44, 46, 48,
50, 52, 58−61, 63, 64, 66, 69, and 72): due to a slow rotation
about the exocyclic amide group on the NMR time scale, two
isomers (ratios provided in the experimental protocols) were
evident in the 1H- and 13C-NMR spectra.

4.2. Compound Characterization. Nondescribed inter-
mediate compounds were characterized by 1H- and 13C-NMR
spectroscopy, HRMS, and melting point (if applicable). Target
compounds were characterized by 1H- and 13C-NMR spectros-
copy, HRMS, and RP-HPLC analysis. In addition, compounds
44 and 64 were analyzed by IR spectroscopy. Purities
determined by analytical RP-HPLC amounted to >95%.

Figure 6. Association and dissociation kinetics of [3H]44 (A,B) and [3H]64 (C,D) determined at CHO-hM2R cell homogenates at 23 °C. (A)
Association of [3H]44 (c = 2 nM) with the M2R. Inset: ln[B(eq)/(B(eq) − B(t))] vs time. (B) Dissociation of [3H]44 (preincubation: 4 nM, 1 h) from
the M2R determined in the presence of 6 (1000-fold excess), showing complete monophasic exponential decline. Inset: ln[B(t)/B(0)] vs time. (C)
Association of [3H]64 (c = 0.6 nM) with the M2R. Inset: ln[B(eq)/(B(eq) − B(t))] vs time. (D) Dissociation of [3H]64 (preincubation: 0.6 nM, 1 h)
from the M2R determined in the presence of 6 (1000-fold excess), showing incomplete monophasic exponential decline. Inset: ln[(B(t) − B(plateau)/
B(0)] versus time. For kon and koff values, see Table 2. Data represent mean ± SEM from three (A,B,D) or two (C) independent experiments (each
performed in triplicate).

Table 3. M2R Binding Data (pKi or pIC50 Values) of Various
Orthosteric (1 and 6), Allosteric (13−15), Dualsteric (7 and
10) MR Ligands, and 64 Determined with [3H]44, [3H]64,
or [3H]5

ligand [3H]44 pKi
a [3H]64 pKi

a [3H]5 pKi* or pIC50**
b

1 5.78 ± 0.05 6.55 ± 0.05*
6 8.52 ± 0.26 8.52 ± 0.14 9.04 ± 0.08*
7 7.71 ± 0.14 8.71 ± 0.05*
10 9.61 ± 0.11 8.35 ± 0.09 9.11 ± 0.05*
13 5.60 ± 0.07 6.11 ± 0.09**c

14 5.90 ± 0.22 6.08 ± 0.28 6.32 ± 0.18**c

15 5.43 ± 0.02 <4.5**c

64 9.44 ± 0.01 9.44 ± 0.06*
aDetermined by equilibrium competition binding with [3H]44 (2 nM)
or [3H]64 (0.3 nM) at CHO-hM2R cell homogenates; mean values ±
SEM from at least three independent experiments (performed in
triplicate). bDetermined by equilibrium competition binding with [3H]
5 (0.2 nM) at live CHO-hM2R cells; mean ± SEM from at least three
independent experiments (performed in triplicate). cReported by
Pegoli et al.23
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4.3. Investigation of the Chemical Stability. The
chemical stability of 44 and 64 was investigated in PBS (pH
7.4) at 22 ± 1 °C. The incubation was started by addition of 10
mM solution of the compounds in dimethylsulfoxide (1 μL) to
PBS (99 μL) to give a final concentration of 100 μM. After 0,
12, and 48 h, an aliquot (20 μL) of the solution was taken and
added to acetonitrile/0.04% aq TFA (1:9 v/v) (20 μL). An
aliquot (20 μL) of the resulting solution was analyzed by RP-
HPLC using a system from Agilent Technologies (composed of
a 1290 Infinity binary pump equipped with a degasser, a 1290
Infinity autosampler, a 1290 Infinity thermostated column
compartment, a 1260 Infinity diode array detector, and a 1260
Infinity fluorescence detector). A Kinetex-XB C18 column, 2.6
μm, 100 × 3 mm (Phenomenex) served as the stationary phase
at a flow rate of 0.5 mL/min. The following linear gradient was
applied: 0−20 min: acetonitrile/0.04% aq TFA 10:90−68:32,
20−22 min: 68:32−95:5, and 22−28 min: 95:5. The detection
wavelength was set to 220 nm.
4.4. Cell Culture and Preparation of Cell Homoge-

nates. The culture conditions of CHO-K9 cells, stably
transfected with the human muscarinic receptors M1−M5
(obtained from Missouri S&T cDNA Resource Center; Rolla,
MO), and the preparation of CHO-hM2R cell homogenates are
described elsewhere.23

4.5. IP1 Accumulation Assay. The IP1 accumulation assay
was performed as described elsewhere.23

4.6. Radioligand Binding. Equilibrium competition-bind-
ing experiments with [3H]5 were performed at intact CHO-
hMxR cells (x = 1−5) as described previously,22 but the total
volume per well was 200 μL, that is, in the case of total binding,
the wells were filled with 180 μL of L15 medium followed by
addition of L15 medium (20 μL) containing [3H]5 (10-fold
concentrated). To determine the unspecific binding and the
effect of a compound of interest on the equilibrium binding
[3H]5, the wells were filled with 160 μL of L15 medium
followed by addition of L15 medium (20 μL) containing 6 or
the compound of interest (10-fold concentrated) and L15
medium (20 μL) containing [3H]5 (10-fold concentrated).
Saturation binding with [3H]44 and [3H]64 at intact CHO-

hM2R cells was performed in the same manner as saturation-
binding experiments with [3H]522 with minor modifications:
unspecific binding was determined in the presence of 6 (500-
fold excess to [3H]44 or [3H]64), and the incubation period
was 2 h.
Saturation and equilibrium competition-binding experiments

with [3H]44 and [3H]64 at CHO-hM2R cell homogenates were

performed according to the procedure described for saturation
and competition-binding experiments with [3H]19 at CHO-
hM2R cell homogenates,23 using a total volume per well of 200
instead of 100 μL. The total amount of soluble protein per well
was between 19 and 43 μg. In the case of competition-binding
experiments, the radioligand concentration was 2.0 and 0.3 nM,
respectively. To keep the total volume per well at 200 μL in the
case of saturation-binding experiments performed with [3H]64
in the presence of 14, the addition of L15 medium (20 μL)
containing 14 (10-fold concentrated) was compensated by an
equivalent reduction in the volume of L15 medium added to
the wells.
M2R association experiments with [3H]44 and [3H]64 were

performed at CHO-hM2R cell homogenates essentially using
the procedure described for saturation-binding experiments
with [3H]19 at CHO-hM2R cell homogenates.23 The radio-
ligand concentration was 2 and 0.6 nM, respectively. The
incubation was started in reversed order after different periods
of time (120−1 min). After last addition of the radioligand,
homogenates were collected on filter mats using the Harvester.
Unspecific binding was determined in the presence of 6 (500-
fold excess to the radioligand). For M2R dissociation
experiments with [3H]44 and [3H]64, performed at CHO-
hM2R cell homogenates, the procedure was essentially the same
as for saturation-binding experiments with [3H]19 at CHO-
hM2R cell homogenates.23 The preincubation (60 min) of the
cell homogenates with the radioligand ([3H]44: 4 nM, [3H]64:
0.6 nM) was started in reversed order after different periods of
time ([3H]44: between 180 and 1 min and [3H]64: between
150 and 1 min) by addition of L15 medium (10 μL) containing
the radioligand (10-fold concentrated) to the wells preloaded
with L15 medium (80 μL) and cell homogenates (10 μL). The
dissociation was started by addition of 10 μL of L15 medium
containing 6 (40 and 6 μM, respectively) and was stopped by
collection and washing of the homogenates using the harvester.
To determine unspecific binding, 6 (1000-fold excess to the
radioligand) was added during the preincubation step.

4.7. Data Processing. Retention (capacity) factors were
calculated from retention times (tR) according to k = (tR − t0)/
t0 (t0 = dead time). Data from the IP1 accumulation assay and
radioligand-binding assays [saturation binding (including
Schild-like analysis), association and dissociation kinetics, and
equilibrium competition binding] were processed as described
previously.23 Statistical significance (curve slopes) was assessed
by a t-test (one-sample, two-tailed). Propagated errors were
calculated according to the Gaussian law of errors.

Figure 7. Effect of allosteric M2R modulator 14 on the saturation binding of [3H]64 determined at CHO-hM2R cell homogenates at 22 °C. (A)
Isotherms of specific radioligand binding plotted in the linear and semilogarithmic scale. The presence of compound 14 led to a rightward shift of the
saturation isotherms of [3H]64. (B) “Schild” regression resulting from the rightward shifts (ΔpKd) of the saturation isotherms [log(r − 1) plotted vs
log(concentration 14), where r = 10ΔpKd]. The slope of the linear Schild regression was not different from unity [P > 0.5, based on the slope mean
value ± SEM (0.99 ± 0.15) from three sets of independent saturation-binding experiments (performed in triplicate)], suggesting a competitive
interaction between [3H]64 and 14. Data represent mean values ± SEM from three independent experiments (each performed in triplicate).
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