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Abstract Magnetic resonance imaging has become an indispensable tool for studying

associations of structural and functional properties of the brain with behavior in humans. However,

generally recognized standards for assessing and reporting the reliability of these techniques are

still lacking. Here, we introduce a new approach for assessing and reporting reliability, termed

intra-class effect decomposition (ICED). ICED uses structural equation modeling of data from a

repeated-measures design to decompose reliability into orthogonal sources of measurement error

that are associated with different characteristics of the measurements, for example, session, day,

or scanning site. This allows researchers to describe the magnitude of different error components,

make inferences about error sources, and inform them in planning future studies. We apply ICED to

published measurements of myelin content and resting state functional connectivity. These

examples illustrate how longitudinal data can be leveraged separately or conjointly with cross-

sectional data to obtain more precise estimates of reliability.

DOI: https://doi.org/10.7554/eLife.35718.001

Introduction
Neuroimaging techniques have become indispensable tools for studying associations among brain

structure, brain function, and behavior in multiple contexts, including aging, child development, neu-

ropathology and interventions, with concerted efforts increasingly focusing on comprehensive quan-

titative analyses across multiple imaging modalities (Lerch et al., 2017). Surprisingly, however,

generally recognized standards and procedures for assessing and reporting the reliability of meas-

urements and indices generated by noninvasive neuroimaging techniques are still lacking. This state

of affairs may reflect the rapid evolution of a research field that straddles several well-established

disciplines such as physics, biology, and psychology. Each of these fields comes with its own meth-

odology, including conceptualization of error of measurement and reliability, and an articulation of

these diverse methodologies into a coherent neuroscience framework is currently lacking. The goal

of our contribution is two-fold. First, we introduce a signal-to-noise perspective that reconciles these

seemingly disparate approaches. Second, we apply an analytic framework, based on the ideas of

Generalizability Theory (G-Theory; Cronbach et al., 1972) and Structural Equation Modeling (SEM)

that allows us to separate and gauge various sources of measurement error associated with different

characteristics of the measurement, such as run, session, day, or scanning site (in multi-site studies).

The proposed tool enables researchers to describe the magnitude of individual error components,

make inferences about the error sources, and inform them in planning the design of future studies.
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We proceed without loss of generality but with an emphasis on applications to human cognitive

neuroscience.

Materials and methods

Prelude: Coefficient of variation and intra-class correlation coefficient
represent different but compatible conceptions of signal and noise
Physics and psychometrics offer two fundamentally different but equally important and compatible

conceptions of reliability and error. Physicists typically inquire how reliably a given measurement

instrument can detect a given quantity. To this end, they repeatedly measure a property of an

object, be it a phantom or a single research participant, and for expressing the absolute precision of

measurement, evaluate the dispersion of the different measurement values obtained from this object

to their mean. The prototypical index produced by such approach is the coefficient of variation (CV),

which is defined as the ratio of an estimate of variability, si, and a mean, m, with i representing the

object undergoing repeated measurements:

CVi ¼
si

mi

The interpretability of the CV depends upon the quantity having positive values and being mea-

sured on a ratio scale. When these conditions are met, the CV effectively expresses the (im)precision

of measurement, with larger values meaning lesser precision. Imagine, for instance, that the same

quantity is being measured in the same research participant or the same phantom on two different

scanners. All other things equal, comparing the CV obtained from each of the two scanners shows

which of the two provides a more reliable (in this case, precise) measurement.

Note that in this context, the scanner with the greater precision may not necessarily yield more

valid data, as the mean of its measurements may be further away from the ground truth (see Fig-

ure 1). Bearing this distinction in mind, we limit our discussion to the issues of reliability (precision),

rather than validity (bias). In Table 1, we list terms used in various disciplines to express the differ-

ence between precision and bias. We maintain that the confusion surrounding these concepts may

to a large extent reflect terminological differences among disciplines.

In contrast to physics that deals with well-defined objects of measurement, in human neurosci-

ence, we focus on a different meaning of reliability. Informed by psychometric theory and differential

psychology, reliability here refers to the precision of assessing between-person differences.

Researchers concerned with gauging individual differences as a meaningful objective express this

form of reliability in a ratio index, termed intra-class correlation coefficient (ICC), which represents

the strength of association between any pair of measurements made on the same object. However,

instead of relating variance to the mean, the ICC quantifies variance within persons (or groups of

persons), in relation to the total variance, which also contains variance between persons (or between

groups of persons; cf. Bartko, 1966). Hence, the ICC is a dimensionless quantity bracketed between

0 and 1, and is tantamount to the ratio of variance-between, s2

B, to the total variance that includes

the variance-within, s2

W :

ICC¼
s
2

B

s
2

W þs
2

B

In repeated-measures studies on human participants, the variance-within corresponds to the vari-

ance within each person, whereas the variance-between represents differences among persons.

Thus, for interval or ratio scales, the ICC expresses the percentage of the total variance that can be

attributed to differences between persons.

The similarities and differences between CV and ICC become clear when one conceives of both

as expressions of signal-to-noise ratio. For a physicist, the mean represents the sought-after signal,

and the variation around the mean represents the noise to be minimized. Hence the use of the CV

to evaluate measurement precision normalized with the metric of the given scale. For a psychologist

interested in individual differences, the between-person variation is the signal, and the within-person

variation is regarded as noise. Therefore, a measure that quantifies the contribution of between-per-

son differences to the total variance in the data, the ICC, is chosen for this purpose (in other
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contexts, not discussed in this article, within-person variability itself may be an important marker of

individual differences, e.g., Garrett et al., 2013; Nesselroade, 1991).

Clearly, CV and ICC do not convey the same information. To illustrate this point, we simulated

data under two conditions, which show that each measure can be manipulated independently of the

other. We illustrate how CV remains unchanged, while drastic changes occur in ICC (see Figure 2).

Instead of individual CV values, we report an aggregated CV computed as the square-root of the

average within-person variance divided by the overall mean. For each condition, we simulated for

each of five persons ten repeated measures of a fictitious continuous outcome variable X. Across

conditions and persons, within-person variability was identical and only between-person variability

Figure 1. Bullseye charts representing precision and bias of a measurement instrument. The center of each

bullseye represents ground truth and the black dots represent repeated measurements. Ideal measurement

instruments have minimal bias and maximal precision (as illustrated in the top-left panel).

DOI: https://doi.org/10.7554/eLife.35718.002

Table 1. A list of terms describing the concepts of variability across repetitions and average distance

from ground truth over measurements across different disciplines and knowledge domains.

Knowledge domain Variability across repetitions Average distance from ground truth

Psychology Reliability Validity

Physics Precision Accuracy

Statistics Variance Bias

Measurement Theory Random error Systematic error

ISO 5725 (‘Accuracy’) Precision Trueness

DOI: https://doi.org/10.7554/eLife.35718.003
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varied between conditions. In the first condition, the simulated data have identical between-person

and within-person variance. As a result, we obtain a low ICC and conclude that the measurement

instrument fails to adequately discriminate among persons. However, critically, we also obtain a

rather low CV, implying high precision to detect deviation from zero (see left panel of Figure 2). In

the second instance, between-person standard deviation was larger than within-person standard

deviation by a factor of five. This condition yields a high ICC reflecting the fact that the measure dis-

criminates well among persons. At the same time, CV remains low, which implies reasonable preci-

sion of detecting differences from zero. This is because the within-person variance is still relatively

low in comparison to the means (see right panel of Figure 2).

In summary, whereas the CV refers to the precision of measurement obtained from each object,

the ICC expresses a part-whole relation of variance observed in the data. All other things being

equal, a less precise measurement will increase the variance-within, and hence compromise our abil-

ity to detect between-person differences. On the other hand, a rather imprecise measurement (as

Figure 2. Each plot shows simulated data of 10 repeated measurements of a fictitious outcome X for five persons. Within-person variance is identical

over persons and panels. Left panel: Between-person variance is identical to within-person variance. In that case, ICC-indexed reliability is estimated at

a rather low ICC = 0.48, whereas CV-indexed precision is fair, with averaged CV = 0.07. Right panel: Between-person standard deviation is larger than

within-person standard deviation by a factor of five. In this condition, estimated ICC-indexed reliability is high (ICC = 0.96), but CV-indexed precision

remains identical with averaged CV = 0.07 as the within-person standard deviation is still fairly small with respect to the sample mean.

DOI: https://doi.org/10.7554/eLife.35718.004
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indexed by the CV obtained for each object of measurement) may nevertheless yield high reliability

(as indexed by the ICC) if the between-person differences in means are large.

Intra-class effect decomposition (ICED)
The extant neuroimaging literature typically offers little justification for the choice of the reliability

index. Based on the preceding considerations, this is problematic, as the various indices differ

greatly in meaning. The ICC and variants thereof are appropriate for evaluating how well one can

capture between-person differences in a measure of interest. Put differently, it is misleading to

report the CV as a measure of reliability when the goal of the research is to investigate individual or

group differences. Both approaches to reliability assessment are informative, but they serve different

purposes, and cannot be used interchangeably. Below, we focus on individual differences as we

present a general and versatile method for estimating the relative contributions of different sources

of error in repeated-measures designs. Our approach can be seen as an extension of ANOVA-based

approaches to decomposing ICCs. In this sense, it is tightly linked to G-Theory, which has been used

successfully before in assessing reliability of neuroimaging measures (Gee et al., 2015; Noble et al.,

2017). The method, termed intra-class effect decomposition (ICED), has ICC as its core concept.

The key feature of the method, however, is its ability to distinguish among multiple sources of un-

reliability, with the understanding that not all sources of error and their separation are important

and meaningful in repeated-measures designs. For example, different sources of error may be due

to run, session, day, site, scanner, or acquisition protocol variations. Furthermore, there may be

more complex error structures to be accounted for, for example, runs nested in sessions; and multi-

ple sessions, again, may be nested within days, and all may be nested under specific scanners in

multi-site investigations. Neglecting these nuances of error structures leads to biased reliability esti-

mates. The ability to adequately model these relationships and visually represent them in path dia-

grams is a virtue of our approach.

Beyond reliability per se, researchers may often be interested in the specific sources of error vari-

ance and measurement characteristics that contribute to it. For example, in applying MRI to studying

long-term within-person changes in the course of aging, child development, disease progression, or

treatment, one may wish to determine first what effect repositioning of a person in the scanner

between sessions has on reliability of measured quantities (e.g., Arshad et al., 2017). Similarly, it

may be important to determine how much variation is associated with scanning on a different day

relative to conducting two scanning sessions on the same day (e.g., Morey et al., 2010). These

types of questions are of utmost importance in longitudinal studies, in which researchers collect data

on the same person using an ostensibly identical instrument (e.g., MRI scanner ) under an identical

protocol (sequence), but inevitably under slightly different measurement characteristics, including

position of the participant within the scanner, body and air temperature, or time of day. From a

design perspective, knowing the distinct components of measurement error and their relative magni-

tudes may enhance future study designs and boost their generalizability.

In the proposed SEM framework, observed variance is partitioned into several orthogonal error

variance components that capture unreliability attributable to specific measurement characteristics,

with the number of components depending on identification constraints based on the study design.

Figure 3 shows a minimal, or optimally efficient, repeated-measures study design for estimating the

contributions of the main effects of day, session, and residual variance to measurement error. The

design consists of four measurements (scans) performed over two days and three sessions. In this

design, unique contributions of each error source are identified as depicted in the path diagram in

Figure 4. In the diagram, observed variables correspond to image acquisitions and are depicted as

rectangles; latent variables are depicted as circles and represent the unobservable sources of vari-

ance, that is, the true score variance (T) and the error variance components of day (D), session (S),

and residual (E). Double-headed arrows represent variances of a latent variable. Single-headed

arrows represent regressions with fixed unit loadings.

In this example, total observed variability in an outcome across measurements and persons is par-

titioned into true-score variance and three error variance terms: the day-specific error variance, the

session-specific error variance (here capturing the effect of repositioning a person between scans),

and the residual error variance. The full measurement model is depicted as a path diagram in the

left panel of Figure 4. The structural equation model specifies four observed variables representing

the repeated measurements of the outcome of interest. One of the latent variables represents the
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true values of the construct of interest. Its variance, s2

T , denotes the between-person variance. Fixed

regressions of each measurement occasion on the latent construct express the assumption that we

are measuring the given construct with each of the four repeated measures on the same scale. There

are four orthogonal error variance sources with identical residual variance s
2

E, that is, residual errors

that are not correlated with any other type of error or among themselves over time. In classical test

theory, this is referred to as a parallel model, in which the construct is measured on the same scale

with identical precision at each occasion. Typically, there is no explicit assumption of uncorrelated

error terms even though many measures derived from this theory assume (and are only valid under)

uncorrelated error terms (Raykov et al., 2015). Here, we focus on a parallel model while accounting

for the correlated error structure implied by the greater similarity of multiple runs within the same

session compared to runs across different sessions. Note that, in the SEM framework, we also can

extend the parallel model to more complex types of measurement models (e.g., con-generic or tau-

equivalent models) that allow for different residual error variances or different factor loadings. To

account for the nested structure in our design, we introduce two day-specific error variance sources

with variance s
2

D that represent day-specific disturbances and imply a closer similarity of measure-

ments on the same day. Finally, there are three session-specific variance sources (depicted in blue)

representing the session effect (including, for example, the effect of repositioning a person between

sessions). The model-implied covariance matrix has the total variances for each observed variable in

the diagonal. It can be analytically or numerically derived using matrix algebra (McArdle, 1980) or

path-tracing rules (Boker et al., 2002), and is typically available in SEM computer programs (e.g.,

von Oertzen et al., 2015). The full model-implied covariance matrix is given in Table 2. For the

given study design, each variance source is uniquely identifiable, as there is a unique solution for all

parameters in the model. From the covariance matrix, it is apparent that the inclusion of the session

variance term differentially affects the similarity of measurements between days 1 and 2. The

Day #1 Day #2

Session #1 Session #2 Session #3

Scan #1 Scan #2 Scan #3 Scan #4

Time

Figure 3. A study design with four brain imaging scans per person spread across three sessions on two days. The start of each session (blue) implies

that the person is moved into the scanner. On the first day, there is only a single session, that is, between scans 1 and 2, the person remains in the

scanner whereas on day 2, the person is removed from the scanner after the first session and, after a short break, placed back in. This allows separating

the session-specific and the day-specific variance contributions to total variance.

DOI: https://doi.org/10.7554/eLife.35718.005
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correlation between first and second scan is
s
2

T
þs

2

D
þs

2

S

s
2

T
þs

2

E
þs

2

D
þs

2

S

whereas the correlation between measure-

ments 3 and 4 is
s
2

T
þs

2

D

s
2

T
þs

2

E
þs

2

D
þs

2

S

. Thus the similarity of the two measurements on the first day is

greater than the similarity of measurements on the second day. In other words, the difference in cor-

relation is the proportion of variance that the session-specific variance accounts for in total variance.

For this model (see Figure 4), we define ICC equivalently to the common ICC formula as ratio of

between-person variance to total variance at the level of observed variables:

ICC¼
s
2

T

s
2

T þs
2

E þs
2

Dþs
2

S

We estimate the components using the full information maximum likelihood procedure for SEM

(Finkbeiner, 1979), which allows estimating all components under the assumption of the data

Figure 4. Left: Measurement model of four repeated measures according to the study design protocol. The measurement model includes day-specific

effects that are separated by the error variance sources (in green), session-specific effects (represented by error variance sources in blue) and

orthogonal residual error variance sources (represented in red). Right: A minimal, power-equivalent model that represents a direct measurement of the

construct of interest. The true score (representing the outcome of interest) is measured with only a single error construct, whose variance is the effective

error variance representing the combined influence of the complete error (co)variance structure shown in the left model.

DOI: https://doi.org/10.7554/eLife.35718.006
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missing at random. This maximum-likelihood-based ICC is similar to the analytical procedure based

on relating the ANOVA-derived within and between residual-sums-of-squares. The main difference is

that the maximum likelihood estimator cannot attain negative values when we allow only positive

variance estimates (Pannunzi et al., 2018).

In many cognitive neuroscience studies, one may be interested in construct-level reliability, and

not only in reliability of indicators (i.e., observed variables). This construct reliability is captured by

ICC2 (Bliese, 2000). Based on the above SEM-based effect decomposition, we use power equiva-

lence theory (von Oertzen, 2010) to derive the effective error of measuring the latent construct of

interest. The effective error can be regarded as the residual error that would emerge from a direct

measurement of a latent construct of interest. Here, it is an index of the precision with which a given

study design is able to capture stable individual differences in the outcome of interest. The effective

error is a function of all error components and its specific composition depends on the specific

design in question. Effective error is the single residual error term that arises from all variances com-

ponents other than the construct that is to be measured. As such, it represents the combined influ-

ence of all error variance components that determine construct reliability:

ICC2 ¼
s
2

T

s
2

T þs
2

eff

Effective error can be computed using the algorithm provided by von Oertzen (2010) and for

some models, analytic expressions are available (see the multi-indicator theorem in von Oertzen,

2010). For the study design in our example, effective error is:

s
2

eff ¼
2s

2

Dþs
2

E þs
2

S

� �

2s
2

Dþs
2

E þ 2s
2

S

� �

8s
2

Dþ 4s
2

E þ 3s
2

S

Relating true score variance to total variance yields ICC2 – a measure of reliability on the construct

level. For our model, ICC2 is then:

ICC2 ¼
s
2

T

s
2
T
þ

2s2

D
þs

2

E
þs

2

S
ð Þ 2s2

D
þs

2

E
þ2s2

S
ð Þ

8s2

D
þ4s2

E
þ3s2

S
ð Þ

As a check, when assuming no day-specific and session-specific effects by inserting s
2

D ¼ 0 and

s
2

S ¼ 0, we obtain the classical definition of ICC2 that scales residual error variance with the number

of measurement occasions (here, four occasions):

ICC2 ¼
s
2

T

s
2

T þ
s
2

E

4

In sum, ICC is a coefficient describing test-retest reliability of a measure (also referred to as short-

term reliability or intra-session reliability by Noble et al., 2017) whereas ICC2 is a coefficient

Table 2 Model-implied covariance matrix.

Rows and columns correspond to the four measurement occasions (brain scans) distributed over two

days. Parameters of the covariance matrix are the individual differences of the construct of interest,

s
2

T , the session-specific error variance, s2

S, the day-specific error variance, s2

D, and the residual error

variance, s2

E.

Scan 1 Scan 2 Scan 3 Scan 4

Scan 1 s
2

T þ s
2

E þ s
2

D þ s
2

S s
2

T þ s
2

D þ s
2

S s
2

T s
2

T

Scan 2 s
2

T þ s
2

D þ s
2

S s
2

T þ s
2

E þ s
2

D þ s
2

S s
2

T s
2

T

Scan 3 s
2

T s
2

T s
2

T þ s
2

E þ s
2

D þ s
2

S s
2

T þ s
2

D

Scan 4 s
2

T s
2

T s
2

T þ s
2

D s
2

T þ s
2

E þ s
2

D þ s
2

S

DOI: https://doi.org/10.7554/eLife.35718.007
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describing test-retest reliability of an underlying construct (an average score in parallel models) in a

repeated-measures design (long-term reliability or intersession reliability according to Noble et al.,

2017).

For our hypothesized measurement model that includes multiple measurements and multiple vari-

ance sources, the analytic solution of ICC2 allows, for instance, to analytically trace reliability curves

depending on properties of a design, such as the number of sessions, number of runs per sessions,

number of sessions per day, or varying magnitudes of the error component. Of note, this corre-

sponds to a D-study in G-Theory that can demonstrate, for example, how total session duration and

number of sessions influence resting state functional connectivity reliability (see Noble et al., 2017).

A virtue of the proposed SEM approach is the possibility of applying likelihood-ratio tests to effi-

ciently test simple and complex hypotheses about the design. For example, we can assess whether

individual variance components significantly differ from zero or from particular values, or whether

variance components have identical contributions (corresponding to F-tests on variance components

in classical G-Theory). Such likelihood-ratio tests represent statistical model comparisons between a

full model, in which each of the hypothesized error components are freely estimated from the data,

and a restricted model, in which the variance of a target error component is set to zero. Both models

are nested, and under the null hypothesis, the difference in negative-two log-likelihoods of the mod-

els will be �
2-distributed with 1 degree of freedom. This allows the derivation of p values for the null

hypotheses of each individual error component being zero. Moreover, the generality of SEM allows

testing complex hypotheses with hierarchically nested error structures or multi-group

models. It also allows inference under missing data or by evaluating informative hypotheses

(de Schoot et al., 2011) whereas ANOVA-based approaches become progressively invalid with

increasing design complexity.

Results

An empirical example: Myelin water fraction data from Arshad et al.
(2017)
To demonstrate how the proposed approach separates and quantifies sources of un-reliability, we

re-analyzed data from a study of the brain regional myelin content by Arshad et al. (2017). In human

aging, changes of myelin structure and quantity have been proposed as neuroanatomical substrates

of cognitive decline, which makes it particularly interesting to obtain a highly reliable estimate of

regional myelin content, here, represented by myelin water fraction (MWF) derived from multi-com-

ponent T2 relaxation curves. The data in this demonstration were collected in 20 healthy adults

(mean age ± SD = 45.9 ± 17.1 years, range of 24.4–69.5 years; no significant difference between

men and women: t(18)=–0.81, p=0.43) and are freely available (Arshad et al., 2018); for detailed

sample description see Arshad et al. (2017). The study protocol stipulated three acquisitions for

each participant in a single session. In the first part, T1-weighted and T2-weighted MRI images were

acquired, followed by a back-to-back acquisition of the ME-T2 relaxation images without reposition-

ing the participant in the scanner. At the end of the first part, participants were removed from the

scanner and, after a short break, placed back in. In the second part, T1-weighted, T2-weighted and

ME-T2 multiecho sequences were acquired once. All further details relating to the study design, MR

acquisition protocol, and preprocessing can be found in the original publication by Arshad et al.

(2017). In the following, we focus on the MWF derived from a multi-echo gradient recall and spin-

echo (GRASE) sequence. The study design allows separating the influences of repositioning

expressed as session-specific variance from true score variance (defined as the shared variance over

all three repetitions) and individual error variance (the orthogonal residual error structure). Figure 5

presents a diagram of the hypothesized contributions of the individual variance components. Param-

eters in the SEM correspond to estimates of true score variation (T), session-specific error variance

component (S), and a residual error variance component (E). Model specification and estimation was

both performed in Wnyx (von Oertzen et al., 2015) and lavaan (Rosseel, 2012) via full information

maximum likelihood. We provide the Wnyx models and lavaan syntax in the Supplementary material.

For illustration, we only report estimates of the first of the six regions of interest reported in the

original study, the anterior limb of the internal capsule (ALIC). The estimates of the individual vari-

ance components explaining the observed variance are shown in the diagram in Figure 5. To assess
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Figure 5. A Structural Equation Model of a repeated measures design in which each participant is scanned three times. Each person is scanned the

first time (T1), followed by a back-to-back immediate re-acquisition (T2), and, finally, the person is moved out of the scanner, positioned back in the

scanner, and scanned the third time (T3). Parameters in the SEM correspond to estimates of true score variation (s2

T ), session-specific error variance

Figure 5 continued on next page

Brandmaier et al. eLife 2018;7:e35718. DOI: https://doi.org/10.7554/eLife.35718 10 of 19

Research article Neuroscience

https://doi.org/10.7554/eLife.35718


the significance of these components’ magnitudes, we used likelihood ratio tests against null mod-

els, in which each component’s variance was set to zero. For testing the residual error variance com-

ponent, we used a Wald test because the null model without an orthogonal error structure cannot

be estimated. Of the total between-person variance in measurements of MWF, we found that 86%

were due to true score variance (est = 6.97; �2 = 27.759; df = 1; p<0.001), 8% - to session-specific

variance (est = 0.59, �2 = 3.951; df = 1; p=0.047), and 6% - to residual error variance (est = 0.52;

Z = 9.64; p=0.002). Testing whether the variance contribution of the session-specific variance and

the residual error variance were equal yields a non-significant result (�2 = 20.02; df = 1; p=0.89) and,

thus, cannot be decided.

As shown before, we can obtain ICC as the ratio of systematic (t) and all variance components,

which by means of standardization of the observed variables sums up to unity, resulting in:

ICC¼ 0:86

To compute ICC2 as a standardized estimate of the precision with which the repeated-measures

study design can measure individual differences in MWF in ALIC, we equate the day-specific variance

with zero since it is not identified in this design but rather subsumed under the estimate of the true-

score variance component, yielding:

ICC2 ¼
s
2

T

s
2

T þ
ðs2

E
þs

2

S
Þðs2

E
þ2s2

S
Þ

ð3s2

E
þ4s2

S
Þ

¼ 0:94

The fact that day-specific variance and true score variance are inseparable in this design (both are

shared variance components of all three measurement occasions) leads to an inflation of the true

score variance estimate if non-zero day-specific variance is assumed and, thus, to an overly optimistic

estimate of reliability. To be able to separate the individual variance contributions, one would have

to rely on an augmented design that includes additional scanner acquisitions on at least one differ-

ent day, such as the design shown in Figure 4.

Arshad et al. (2017) only reported pair-wise ICCs, based either only on the two back-to-back ses-

sions of a single day, or on a single session of each day (again omitting a third of the available data).

In the following, we derive the corresponding pair-wise ICCs using the full data set. Our estimates

are similar even though not identical to the results obtained by Arshad et al. (2017) because our

results were jointly estimated from three measurements. First, the authors report an estimate of ICC

based on one measurement from the second session of the first day and one measurement from the

single session of the second day, resulting in ICC = 0.83, which is close to our estimate of

ICC = 0.86. Second, they reported an estimated reliability (ICC) derived only from the two back-to-

back sessions on the first day as ICC = 0.94, Similarly, we can derive the reliability of a single mea-

surement, had we measured only the two back-to-back sessions, achieving the identical result:

ICC¼
s
2

T þs
2

S

s
2

T þs
2

S þs
2

E

¼ 0:94

The estimates of construct-level reliability obtained imply that individual differences in MWF can

be measured quite well. As expected, the reliability estimate is higher for the back-to-back session

than for the complete design because one error variance component, session-specific error variance,

is not apportioned to the total error variance. Such a simple design commingles true score variance

and the session-specific variance, and reliability studies should thus, by design, take into account

potential different error sources, such as session-specific error variance.

A comprehensive SEM approach to assessing reliability allows for using the complete dataset in a

single model to estimate reliability as either item-level reliability (ICC) or a construct-level reliability

(ICC2). A particular benefit of the proposed approach is its ability to tease apart individual error

Figure 5 continued

component (s2

S), and a residual error variance component (s2

E ). The standardized estimates are based on myelin water fraction data in the anterior limb

of the internal capsule acquired from Arshad et al. (2017).
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components as far as the study design permits this, that is, as far as these components are identi-

fied. Future studies may very well increase study design complexity to test for additional error vari-

ance components. To compare the effect of repositioning a participant versus scanning a participant

back-to-back, Arshad et al. (2017) compared pairwise ICCs of either the two back-to-back acquisi-

tions or the second of the back-to-back acquisition with the repositioned acquisition. Using the

SEM-based approach described above, we can directly estimate a variance component that quanti-

fies the contribution of the session to the total error variance. We can also formally test whether this

contribution is non-zero, or, if necessary, whether it is greater than some value or some other error

variance component in the model. Furthermore, our estimates are always based on the complete

dataset and there is no need to select certain pairs of runs for computing subset ICCs and poten-

tially disregarding important dependencies in the data – a limitation that Arshad et al. (2017)

explicitly mentioned in their report.

Link-wise reliability of resting state functional-connectivity indices
Resting-state functional connectivity was proposed as a promising index of age-related or pathol-

ogy-induced changes in the brain, and has been used to predict brain maturation (Dosenbach et al.,

2010) or disease state (Craddock et al., 2009). These applications can only prove practically useful

if reliability is sufficiently high, so that differences between persons can be reliably detected in the

first place, as a methodological precondition for prediction. Thus, there has been increasing interest

in examining reliability of methods for assessing resting state connectivity (Gordon et al., 2017;

Noble et al., 2017; Pannunzi et al., 2018). Here, we demonstrate how ICED can be used to evalu-

ate reliability of pairwise functional indices obtained from resting-state functional connectivity

analyses.

To illustrate such a model, we obtained the resting state functional connectivity (rsFC) dataset

from Pannunzi et al., 2018, which is based on the publicly available raw data from the Day2day

study (Filevich et al., 2017). In that study, six participants were scanned at least 40 (and some up to

50) times over the course of approximately seven months, and another sample of 50 participants

(data from 42 participants of them available) were each scanned only once. In the following, we

show how both datasets can be jointly investigated to estimate link-wise reliability of resting state

functional connectivity (rsFC). We present a reliability analysis of the link-wise connectivity indices of

brain regions-of-interest based on 5 min of measurement. For each measurement, as our main out-

come, we obtained a 16 � 16 correlation matrix of rsFC indices, for pairs of regions including pre-

frontal, sensor-motor, parietal, temporal, limbic, occipital cortices, cerebellum and subcortical struc-

tures. In our model, we assume independence of the measurement occasions. Thus, we decompose

the covariance structure of the repeated measurements into one between-person variance and one

within-person variance component. For simplicity, we illustrate this model by using the first ten

observations. Figure 6 shows a path diagram of this model. We estimated this model using Wnyx

and lavaan and significance tests were performed using Wald tests. For example, we first estimated

our model only for the link between left prefrontal cortex and right prefrontal cortex. The true score

variance was estimated to account for 49% of the total variance (est = 0.013; W = 2.46; df = 1;

p=0.117) and the error variance contributed 51% of the total variance (est = 0.014; W = 27.00;

df = 1; p<0.0001), thus, ICC was 0.49.

With up to fifty measurement occasions, we can expect to get sufficiently precise measures of

within-person fluctuations but since only eight participants contributed, we augment this dataset

with cross-sectional data from additional 42 persons treating them as quasi-longitudinal data with

the majority of data missing. This more precise measurement of between-person differences yields a

somewhat different pattern of results. The true score variance was 39% of the total variance

(est = 0.008; W = 6.31; df = 1; p=0.012) and the error variance was 61% of the total variance

(est = 0.013; W = 33.53; df = 1; p<0.0001). Thus, our estimate dropped from 0.49 to 0.39. Due to a

small sample size in the first analysis, we likely had overestimated the between-person differences in

rsFC and had obtained an exceedingly overoptimistic ICC. By augmenting the initial analysis with a

second dataset, we have obtained more precise and, here, even more pessimistic estimates of rsFC

reliability.

Figure 7 shows a reliability matrix of all links between the investigated brain regions with esti-

mates based on the joint model. Pannunzi et al., 2018 reported that ICCs range from 0.0 to 0.7

with an average ICC of 0.22, which is typically considered an unacceptably low reliability (i.e., signal
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is outweighed by noise by a factor of about 4). The average ICC in our analysis is 0.28 and, thus,

very much in line with the original analysis. Compared to Pannunzi et al., 2018, we find a com-

pressed range of ICCs from 0.0 to 0.55 and second the claim that rsFC obtained from 5 min scans

performs poorly as a marker for individual subjects (also see Gordon et al., 2017).

Discussion

When the true scores are changing: Extending ICED to growth curve
modeling
So far, we have assumed that the construct of interest does not change over time. Thus, any change

between repeated measures was assumed due to unsystematic variability, that is, noise. But what if

the construct of interest varies over time? For example, had we modeled all fifty measurements from

the day2day study that spanned roughly six month, we would have confounded reliability and lack of

stability. it is very likely that the difference between repeated measures in the beginning and at the

end of the study represent a mixture of measurement error and true within-person short-term vari-

ability, long-term change, or both (also see Nesselroade, 1991). When assessing reliability over

repeated measures in practice, one seeks avoiding this problem by reducing the interval between

measurements. At the same time, one is interested in independent measurements, and the degree

of dependence may increase with shorter time spans as the chance of item-specific or construct-gen-

eral temporal effects that may affect multiple measurements may artificially increase the reliability

estimate. If, however, measurements are numerous or if the reliability estimate must be obtained

from an existing study with a considerable time lag between measurements, it is likely that

true change in the construct is present, and that persons differ regarding its magnitude, direction,

or both. If substantive change is not accounted for, reliability estimates are biased towards lower val-

ues (Brandmaier et al., 2018). The resulting biased measure may still be useful when interpreted as

a stability coefficient, while keeping in mind that instability may be caused by change as well as

imprecise measurement. What is, however, the best strategy when we wish to know whether true

scores have changed?

Elsewhere, we have applied the logic presented here to linear latent growth curve models

(Brandmaier et al., 2015; Brandmaier et al., 2018; von Oertzen and Brandmaier, 2013). Effective

Figure 6. Path-diagram of a joint cross-sectional and longitudinal model to estimate link-wise resting state functional connectivity. The latent variable X

(yellow) represents the outcome of interest (e.g., a particular link-wise connectivity coefficient) and is longitudinally measured by 10 measures T1 to T10

(blue rectangles). A second cross-sectional measurement, Tx (green rectangle), augments the estimation of the between-person differences. The

respective data set is organized with a mutually missing data scheme, that is, all cells of the longitudinal measurements are missing for cross-sectional

data rows and vice versa.
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error of the change component (or, slope) in a latent growth curve model reflects the precision with

which a growth curve model can measure between-person differences in change. By scaling the

magnitude of individual differences in change (i.e., between-person variance in slope) with effective

error, we obtain effective curve reliability (ECR; Brandmaier et al., 2015). Major components of

effective error for individual differences in change are the number of measurement occasions, the
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Figure 7. Link-wise reliability based on combined cross-sectional and longitudinal samples from the day2day study.
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temporal arrangement of measurement occasions, the total study time span, and instrument reliabil-

ity. We have shown that effective error, reliability, and statistical power are all potentially useful

measures that quantify the sensitivity of a longitudinal design, or any repeated measures design (for

example, multiple sessions within a day), to measure individual differences in change

(Brandmaier et al., 2015; Brandmaier et al., 2018). All these measures may be used for a priori

design optimization. Such optimization entails either trading-off multiple design factors against each

other, while keeping power constant, or changing power as a function of the various design factors

and treating them as important measures to communicate reliability of change beyond cross-sec-

tional reliability.

Intra-class effect decomposition of group differences and interactions
among error sources
In Section 4, we have discussed a research design that is optimal in factorizing the total error vari-

ance into three orthogonal error components of day-specific, session-specific, and unspecific residual

variance. Optimality referred to a design that comprises the smallests number of measurements nec-

essary to identify the sought-after error components. However, the ICED framework easily general-

izes to more complex designs. For example, with a greater number of sessions, it would be possible

to identify additional sources of error, such as experimenter-specific or site-specific errors. We can

think of this framework as a variance decomposition approach just as in regular analysis of variance

(see Noble et al., 2017), with the only difference that we are not interested in the sources of true

score variance with the residuals set aside but rather in the decomposing the error score variance.

In the example reported in Section 4, we only examined main effects of day and session. Note,

however, that the ICED method also can handle interaction effects. For example, we may be inter-

ested if there is an interaction of day and session, that is, if it matters on which day repositioning

happened. To test this interaction, one can easily add a second group to the design presented ear-

lier, with two sessions at Day one and one session at Day two (i.e., the mirror image of the current

design, in which there is one session at Day one and two sessions at Day two). In this model, we

could estimate the ICED components separately for each group. To test a potential interaction, we

would state a null hypothesis of no differences in error variance across groups for the session effect.

This is a null model of no interaction between session and order-of-day. Explicitly testing the initial

model against the restricted null model yields a c2 significance test of the interaction. Now, impos-

ing this equality constraint on the session effect across groups would effectively test for the presence

of reliable session by day interaction (e.g., does it make a difference whether repositioning within a

day takes place at Day one or Day two). One could also conduct the same study with different

groups, such as children, older adults, or patients with a particular disease or condition to evaluate

group differences in day and session error contributions.

Summary
In this paper, we have discussed the distinction and complementarity of ICC and CV in gauging reli-

ability of brain imaging measures, a topic that thus far has received only limited attention. Consider-

ing the increasing demand for longitudinal and multi-center studies, there is a dire need for properly

evaluating reliability and identifying components that contribute to measurement error. ICC and CV,

as measures of (relative) precision, or reliability, fundamentally relate information about lasting prop-

erties of the participants to the precision with which we can measure this information over repeated

assessments under the assumption of no change in the underlying construct. We have shown how

the generality of the SEM approach (cf. McArdle, 1994) may be leveraged to identify components

of error sources and estimate their magnitude in more complex designs in more comprehensive and

general ways than achievable with standard ANOVA-based ICC decompositions. The underlying

framework for deriving the individual error components as factors of reliability is closely related to

Cronbach’s generalizability theory (or G-Theory; Cronbach et al., 1972), which was recently

expressed in a SEM framework (Vispoel et al., 2018). Our approach is similar to those approaches

but was derived using the power equivalence logic (von Oertzen, 2010) to analytically derive effec-

tive error and reliability scores in a SEM context. This means that our approach easily generalizes to

complex measurement designs beyond standard ANOVA, and that effective error, ICC, ICC2 can
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automatically be derived using von Oertzen (2010) algorithm from any study design rendered as a

path diagram or in matrix-based SEM notation.

As noted at the beginning of our article, ICC and CV represent two perspectives on reliability

that correspond to a fundamental divide of approaches to the understanding of human behavior:

the experimental and the correlational (individual differences), each coming with its own notion of

reliability (Cronbach, 1957; Hedge et al., 2018). In experimental settings, reliable effects are usually

those that are observed on average, that is, assumed to exist in most individuals. To facilitate detec-

tion of such effects, the within-person variability must be low in relation to the average effect. The

experimental approach is therefore compatible with the CV perspective. In individual difference

approaches, reliable effects distinguish well between persons, which is only true if the within-person

variability is low in relation to the between-person variability. The two notions of reliability are associ-

ated with competing goals; hence, it is not surprising that robust experimental effects often do not

translate into reliable individual differences (Hedge et al., 2018).

In addition to ICC and CV, other reliability indices have been reported. When researchers com-

pare the similarity of sets, as in gauging the overlap of voxels identified in two repeated analyses of

the same subject, the Sørensen–Dice similarity coefficient (or, Dice coefficient; Dice, 1945; Søren-

sen, 1948) is often used. Since we are focusing on the reliability of derived continuous indices (e.g.,

total gray matter volume, fractional anisotropy or indices of myelin water fraction in a region of inter-

est, or link-wise resting state functional connectivity), we did not consider the Dice coefficient here.

Others have used the Pearson product moment correlation coefficient, r, to quantify the consistency

of test scores across repeated assessments. The linear correlation is a poor choice for reliability

assessment because due to its invariance to linear transformation, it is insensitive to mean changes

(Bartko, 1966). Moreover, it is limited to two-occasion data. Therefore, we have also not considered

Pearson’s r here.

Outlook
Effective error variance partitioning as described above can be useful for communicating absolute

precision of measurement, on its own and complimentarily with reliability. Importantly, one needs to

specify what kind of reliability is being sought: reliability with respect to an anchoring point (e.g., the

scale’s zero) or with respect to the heterogeneity in the population. It needs to be emphasized that

ICC can only be large if there are individual differences across persons in the measure of interest.

Critics of ICC-based approaches to estimating reliability have argued that this method confounds

group heterogeneity in the outcome of interest and measurement precision, and therefore must ‘be

perceived as an extremely misleading criterion for judging the measurement qualities of an instru-

ment.’ (Willett, 1989, p. 595). We strongly disagree with this narrow view of measurement quality.

In the proverbial sense, ‘one man’s trash is another man’s treasure,’ and what some may view as a

‘confound,’ is for others a virtue of the measure in as much as it determines the capability of detect-

ing heterogeneity in the population. However, the ICC may reveal nothing about the trial-to-trial dif-

ferences expressed as deviations in the actual unit of measurement; those are better represented by

the within-person standard deviation or standardized versions of it. We maintain that ICC is the

appropriate measure of reliability when assessing diagnostic instruments and especially while focus-

ing on individual differences.

In this article we introduced ICED as a variance-partitioning framework to quantify the contribu-

tions of various measurement context characteristics to unreliability. ICED allows researchers to (1)

identify error components; (2) draw inferences about their statistical significance and effect size; and

(3) inform the design of future studies.

Given the remarkable pace of progress in human brain imaging, researchers often will be inter-

ested in the (yet unknown) reliability of a new neuroimaging measure. Whether this reliability is suffi-

cient can roughly be decided using thresholds, which essentially are a matter of consensus and

conventions. For example, reliability larger than 0.9 is often regarded as excellent, as it implies a sig-

nal to noise ratio of 10:1. However, there may be good reasons to adopt less conservative thresholds

(e.g., Cicchetti and Sparrow, 1981). In addition, using ICED, researchers can go beyond a summary

index of ICC and instead report the magnitudes of individual variance components that contribute

to lowering the overall ICC. These different components may differ in their methodological and prac-

tical implications. Often, researchers will be interested in using inferential statistics to test whether

each of the individual variance components differs from zero and, maybe, whether the components
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differ from each other. Finally, the results of these analyses can guide researchers in their subsequent

attempts to improve measurement reliability. For instance, using ICED, researchers may discover

that a hitherto overlooked but remediable source of error greatly contributes to unreliability, and

work on improving the measurement properties influencing this component. Also, researchers may

ask what combinations of measurements are needed to attain a target reliability (Noble et al.,

2017) while optimizing an external criterion such as minimizing costs or participant burden

(Brandmaier et al., 2015).

To conclude, we hope that the tools summarized under ICED will be applied in human brain

imaging studies to index overall reliability, and to identify and quantify multi-source contributions to

measurement error. We are confident that the use of ICED will help researcher to develop more reli-

able measures, which are a prerequisite for more valid studies.
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