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Abstract Genome wide association studies (GWAS) rely on microarrays, or more recently

mapping of sequencing reads, to genotype individuals. The reliance on prior sequencing of a

reference genome limits the scope of association studies, and also precludes mapping associations

outside of the reference. We present an alignment free method for association studies of

categorical phenotypes based on counting k-mers in whole-genome sequencing reads, testing for

associations directly between k-mers and the trait of interest, and local assembly of the statistically

significant k-mers to identify sequence differences. An analysis of the 1000 genomes data show

that sequences identified by our method largely agree with results obtained using the standard

approach. However, unlike standard GWAS, our method identifies associations with structural

variations and sites not present in the reference genome. We also demonstrate that population

stratification can be inferred from k-mers. Finally, application to an E.coli dataset on ampicillin

resistance validates the approach.

DOI: https://doi.org/10.7554/eLife.32920.001

Introduction
Association mapping refers to the linking of genotypes to phenotypes. Most often this is done using

a genome-wide association study (GWAS) with single nucleotide polymorphisms (SNPs). Individuals

are genotyped at a set of known SNP locations using a SNP array. Then each SNP is tested for statis-

tically significant association with the phenotype. In recent years thousands of genome-wide associa-

tion studies have been performed and regions associated with traits and diseases have been

located.

However, this approach has a number of limitations. First, designing SNP arrays requires knowl-

edge about the genome of the organism and where the SNPs are located in the genome. This

makes it hard to apply to study organisms other than human. Even the human reference genome

was shown to be incomplete (Altemose et al., 2014) and association mapping to regions not in the

reference is difficult. Second, structural variations such as insertion-deletions (indels) and copy num-

ber variations are usually ignored in these studies. Despite the many GWA studies that have been

performed a significant amount of heritability is yet to be explained. This is known as the ‘missing

heritability’ problem (Zuk et al., 2012). A hypothesis is some of the missing heritability is due to

structural variations. Third, the phenotype might be caused by rare variants which are not on the

SNP chip. In last two cases, follow up work is required to find the causal variant even if association is

detected in the GWAS.
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Some of these limitations can be overcome by utilizing high throughput sequencing data. As

sequencing gets cheaper association mapping using next generation sequencing is becoming feasi-

ble. The current approach to doing this is to map all the reads to a reference genome followed by

variant calling. Then these variants can be tested for association. But this again requires a reference

genome and it may induce biases in variant calling and regions not in the reference genome will not

be included in the study. Moreover, sequencing errors make genotype calling difficult when

sequencing depth is low (Nielsen et al., 2012) and in repetitive regions. Methods have been pro-

posed to do population genetics analyses that avoid the genotype calling step (Fumagalli et al.,

2013, 2014) but these methods still require reads to be aligned to a reference genome. An alter-

nate approach is simultaneous de novo assembly and genotyping using a tool such as Cortex

(Iqbal et al., 2012) but this is not suited to large number of individuals as simultaneous assembly

and variant calling need loading all k-mers from all samples into memory requiring large amount of

it. The alternative approach of loading a subset of samples to process at a time would require subse-

quent alignment of sequences. Neither of these approaches is trivially parallelizable.

In the past, alignment free methods have been developed for a number of problems including

transcript abundance estimation (Patro et al., 2014), sequence comparison (Song et al., 2014), phy-

logeny estimation (Haubold, 2014), etc. (Nordström et al., 2013) introduced a pipeline called nee-

dle in the k-stack (NIKS) for mutation identification by comparison of sequencing data from two

strains using k-mers. (Sheppard et al., 2013) presented a method for association mapping in bacte-

rial genomes using k-mers. More recently, (Earle et al., 2016) proposed a method for mapping asso-

ciations to lineages when associations can not be accurately mapped to loci and (Lees et al., 2016)

showed that use of variable length k-mers leads to an increase in power.

However, these methods for association mapping in bacterial genomes use only the presence

and absence of k-mers and ignore the actual counts. This prevents association mapping to copy

number variations (CNVs). Moreover, tests based on k-mer counts are likely to have more power,

making detection of association with smaller number of samples possible (Appendix 1—figures 2

and 3). Here we present an alignment free method for association mapping to categorical pheno-

types. It is based on counting k-mers and identifying k-mers associated with the phenotype. The

overlapping k-mers found are then assembled to obtain sequences corresponding to associated

regions. Our method is applicable to association studies in organisms with no or incomplete refer-

ence genome. Even if a reference genome is available, this method has the advantage of avoiding

aligning and genotype calling thus allowing association mapping to many types of variants using the

same pipeline and to regions not in the reference.

In contrast to the approach in Iqbal et al. (2012), in our method, k-mers are initially tested for

association independently of other k-mers allowing us to load only a subset of k-mers using lexico-

graphic ordering. However, their approach can utilize information from the reference genome if one

is available whereas we currently make use of the reference genome only after sequences associated

have been obtained to determine the type of associated variant. A future direction may be to utilize

this information earlier in the pipeline.

We have implemented our method in a software called ‘hitting associations with k-mers’ (HAWK).

Experiments with simulated and real data demonstrate the promises of this approach. To test our

approach in a setting not confounded by population structure, we apply our method to analyze

whole genome sequencing data from three populations in the 1000 genomes project treating popu-

lation identity as the trait of interest.

In a pairwise comparison of the Toscani in Italia (TSI) and the Yoruba in Ibadan, Nigeria (YRI) pop-

ulations we find that sequences identified by our method largely agree with results obtained using

standard GWAS based on variant calling from mapped reads (Figure 2). Agreement with sites found

using read alignment and genotype calling indicate that k-mer based association mapping will be

applicable to mapping associations to diseases and traits.

We also analyze data from the Bengali from Bangladesh (BEB) population to explore possible

genetic basis of high rate of mortality due to cardiovascular diseases (CVD) among South Asians and

find significant differences in frequencies of a number of non-synonymous variants in genes linked to

CVDs between BEB and TSI samples, including the site rs1042034, which has been associated with

higher risk of CVDs previously, and the nearby rs676210 in the Apolipoprotein B (ApoB) gene.

We then demonstrate that population structure can be inferred from k-mer data from whole

genome sequencing reads and discuss how population stratification and other confounders can be
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accounted for. Finally, we apply our method to E. coli data set on ampicillin resistance and find hits

to the b-lactamase TEM (blaTEM) gene, the presence of which is known to confer ampicillin resis-

tance, validating our overall approach.

Materials and methods

Association mapping with k-mers
We present a method for finding regions associated with a categorical trait using sequencing reads

without mapping reads to reference genomes. The workflow is illustrated in Figure 1. Given whole

genome sequencing reads from case and control samples, we count k-mers appearing in each sam-

ple. We assume the counts are Poisson distributed and test k-mers for statistically significant associa-

tion with case or control using likelihood ratio test for nested models (see Appendix 1 for details).

Population structure is then inferred from k-mer data and used to adjust p-values. The differences in

k-mer counts may be due to single nucleotide polymorphisms (SNPs), insertion-deletions (indels) and

copy number variations. The k-mers are then assembled to obtain sequences corresponding to each

region.

Figure 1. Workflow for association mapping using k-mers. The HAWK pipeline starts with sequencing reads from

two sets of samples. The first step is to count k-mers in reads from each sample. Then k-mers with significantly

different counts in two sets are detected. Finally, overlapping k-mers are assembled into sequences to get a

sequence, shown side by side, for each associated locus. The sequences may correspond to a SNP (underlined) in

which case corresponding sequence may be detected in the other group. This may not be the case for other kinds

of variations such as copy number variation.

DOI: https://doi.org/10.7554/eLife.32920.002
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Counting k-mers
The first step in our method for association mapping from sequencing reads using k-mers is to count

k-mers in sequencing reads from all samples. To count k-mers we use the multi-threaded hash based

tool JELLYFISH (Marçais et al., 2011). However, the pipeline can be modified to work with any k-mer

counting tool. We use k-mers of length 31 which is the longest k-mer length which can be efficiently

represented on 64-bit machines using JELLYFISH and filter out k-mers that appear once in samples

before testing for associations for computational and memory efficiency as they are likely from

sequencing errors.

Finding significant k-mers
Then for each k-mer we test whether that k-mer appears significantly more times in case or control

datasets compared to the other using a likelihood ratio test for nested models (Wilks, 1938). Sup-

pose, the reads are of length l, then we observe a k-mer if a read starts in one of l� k þ 1 positions

at the start of the k-mer in the genome or preceding it. So, the count of a k-mer equals the number

of reads that start in l� k þ 1 positions, the probability of which is small for most k-mers as genomes

tend to be much longer compared to that segment. That combined with the large number of reads

in second generation sequencing motivates us to assume Poisson distributions which allows us to

compute p-values quickly compared to negative binomial distributions used to model RNA-seq data

(Robinson and Smyth, 2008; van de Geijn et al., 2015). Furthermore, we observe that for large

number of k-mers in a whole genome sequencing experiment and typical counts of a single k-mer,

p-values calculated assuming Poisson distributions are not notably lower than those obtained assum-

ing negative binomial distributions (Appendix 1—figure 1).

Suppose, a particular k-mer appears K1 times in cases and K2 times in controls, and N1 and N2 are

the total number of k-mers in cases and controls respectively. The k-mer counts are assumed to be

Poisson distributed with rates �1 and �2 in cases and controls. The null hypothesis is H0:�1 ¼ �2 ¼ �

Figure 2. Intersection analysis and comparison of powers of tests. (a) Venn diagrams showing intersections among sequences obtained using HAWK and

significant sites found by genotype calling. The percentage values shown are fractions of the sites found using one method not covered by those found

by the other method. 80:3% of the sites overlapped with some sequence. Around 42% of sequences do not overlap with any such site which can be

explained by more types of variants found by HAWK as well as more power of the test using Poisson compared to Multinomial distribution. (b) Fraction

of runs found significant (after Bonferroni correction) by tests against minor allele frequency of the case samples (with that of the controls fixed at 0) are

shown. The curves labeled multinomial and Poisson correspond to likelihood ratio test using multinomial distribution and Poisson distributions with

different k-mer coverage.

DOI: https://doi.org/10.7554/eLife.32920.003
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and the alternate hypothesis is H1:�1 6¼ �2. The likelihoods under the alternate and the null are given

by (see Appendix 1 for details)

L �1; �2ð Þ ¼
e��1N1 �1N1ð ÞK1

K1!

e��2N2 �2N2ð ÞK2

K2!

and

L �ð Þ ¼
e��N1 �N1ð ÞK1

K1!

e��N2 �N2ð ÞK2

K2!
:

Since the null model is a special case of the alternate model, 2lnL is approximately chi-squared

distributed with one degree of freedom where L is the likelihood ratio. We get a p-value for each k-

mer using the approximate �2 distribution of the likelihood ratio and perform Bonferroni corrections

to account for multiple testing. We use the conservative Bonferroni correction as deviations from

Poisson distributions are possible.

Our approach may be extended to quantitative phenotypes, by regressing phenotype values

against k-mer counts to test whether k-mer counts are predictive of the phenotype.

Detecting population structure
To detect population structure in the data, we randomly choose one-thousandth of the k-mers pres-

ent between 1% and 99% of the samples and construct a binary matrix B ¼ bij
� 	

where bij ¼ 1 if the

j-th k-mer is present in the i-th individual and 0 otherwise. We then perform principal components

analysis (PCA) on the matrix which has been widely used to uncover population structure in geno-

type data (Patterson et al., 2006; Price et al., 2006). We have modified the EIGENSTRAT software

(Patterson et al., 2006) to run PCA on B and as in EIGENSTRAT, we normalize values in the j-th column

using

mij ¼
bij��j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pj 1� pj
� �

q

so that columns have approximately the same variance. Here �j is the mean of the j-th column and pj

is the allele frequency estimated from the fraction of samples with the corresponding k-mer using

the formula pj ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffi

1��j

p

for diploids and pj ¼ �j for haploid organisms.

Correcting for population stratification and other confounders
Population stratification is a known confounder in association studies. In association mapping from

sequencing reads other possible confounding factors include variations in sequencing depth and

batch effects. To correct for confounders in association mapping involving a categorical phenotype,

for the k-mers found significant in the Poisson distribution based likelihood ratio test, we fit a logistic

regression model on the phenotype against potential confounders and k-mer counts normalized

using total number of k-mers in the sample. By default we include first two principal components

obtained in the previous step and total number of k-mers in sequencing reads from each individual

to account for population structure and varying sequencing depth respectively but other potential

confounders may also be included as needed.

We then quantify the additional goodness of fit provided by each k-mer after the confounding

factors and use R script to obtain an ANOVA p-value using a �2-test with likelihood ratio and apply

Bonferroni threshold established earlier. That is a logistic regression model is fitted against the con-

founders and probability of responses are used to compute likelihood. Similarly, another logistic

regression model is fitted against the confounders as well as k-mer counts and likelihood under this

model is computed. Since the former model is a special case of the latter, negative logarithm of the

likelihood ratio is asymptotically �2 distributed with one degree of freedom which is then used to

calculate a p-value. For quantitative phenotypes linear regression may be used instead of logistic

regression.

We performed simulations to compare powers of Poisson distribution based likelihood ratio test

and logistic regression based tests to detect association for different coverages and varying number
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of case individuals having one and two copies of the allele with number of copies in control individu-

als fixed at zero and one copy respectively. The results are shown in Appendix 1—figure 4. We

observe that logistic regression based tests have less power compared to Poisson distribution based

test. We also note that logistic regression based test using only presence and absence of k-mer has

similar power as the one using k-mer counts while detecting one copy of an allele against zero cop-

ies but it is unable to detect association if cases have two copies of an allele against one copy in con-

trols. We leave designing tests modeling stochasticity in counts incorporating confounders as well as

extending our approach to quantitative phenotypes as future work.

Merging k-mers
We then take k-mers associated with cases and controls and locally assemble overlapping k-mers to

get a sequence for each differential site using the assembler ABySS (Simpson et al., 2009). The goal

of this step is to have a sequences for each associated locus instead of having multiple k-mers from

it. ABySS was used as the assemblies it generated were found to cover more of the sequences to be

assembled compared to other assemblers (Rahman and Pachter, 2013). We construct the de Bruijn

graph using hash length of 25 to be robust to lack of detection of some 31-mers without creating

many ambiguous paths in the de Bruijn graph and retain assembled sequences of length at least 49

which is the length formed by 25-mers overlapping with a SNP site on either side. It is also possible

to merge k-mers and pair corresponding sequences from cases and controls using the NIKS pipeline

(see [Nordström et al., 2013] for details). However, we find that this is time consuming when we

have many significant k-mers. Moreover, when number of cases and controls are not very high we do

not have enough power to get both of the sequences to be paired and as such pairing is not

possible.

Implementation
Our method is implemented in a tool called ‘hitting associations with k-mers’ (HAWK) using C++. To

speed up the computation we use a multi-threaded implementation. In addition, it is not possible to

load all the k-mers into memory at the same time for large genomes. So, we sort the k-mers lexico-

graphically and load them into memory in batches. To make the sorting faster JELLYFISH has been

modified to output integer representation of k-mers instead of the k-mer strings. In future the sort-

ing step may be avoided by utilizing the internal ordering of JELLYFISH or other tools for k-mer count-

ing. The principal components analysis (PCA) is performed using a modified version of the widely

used EIGENSTRAT software (Patterson et al., 2006). The logistic regression model fitting and p-value

computation is done using scripts written in R and we are presently exploring ways to speed up the

computation. The implementation is available at http://atifrahman.github.io/HAWK/ (copy archived

at https://github.com/elifesciences-publications/HAWK).

Downstream analysis
The sequences obtained by merging overlapping k-mers can then be analyzed by aligning to a refer-

ence if one is available or by running BLAST (Altschul et al., 1990) to check for hits to related

Table 1. Known variants in YRI-TSI comparison.

Table 1 shows p-values of sequences computed using likelihood ratio test at some well known sites of variation between populations.

The (%) values denote fraction of individuals in the sample with the allele present. The p-values and % values are averaged over k-

mers constituting the associated sequences.

Gene SNP id Description Allele p-value %YRI %TSI

ACKR1 rs2814778 Duffy antigen C 9.72�10
�114 84.39% 1.78%

SLC24A5 rs1426654 Skin pigmentation G 8.45�10
�144 87.39% 1.02%

SLC45A2 rs16891982 Skin/hair color C 1.89�10
�122 92.18% 4.67%

G6PD rs1050829 G6PD deficiency C 1.53�10
�29 24.92% 1.02%

G6PD rs1050828 G6PD deficiency T 5.83�10
�25 18.32% 0.00%

DOI: https://doi.org/10.7554/eLife.32920.004
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organisms. The intersection results in this paper were obtained by mapping them to the human ref-

erence genome version GRCh37 using Bowtie2 (Langmead and Salzberg, 2012) to be consistent

with co-ordinates of genoptypes called by 1000 genomes project. The breakdown analysis was per-

formed by first mapping to the version of the human reference genome at the UCSC Human

Genome Browser, hg38 and then running BLAST on some of the ones that did not map. Specific loci

of interest were checked by aligning them to RefSeq mRNAs using Bowtie2 and on the UCSC

Human Genome Browser by running BLAT (Kent, 2002).

Results

Verification with simulated data
The implementation was tested by simulating reads from the genome of an Escherichia coli strain.

We introduced different types mutations - single nucleotide changes, short indels (less than 10 bp)

and long indels (between 100 bp and 1000 bp) into the genome. Then wgsim of SAM tools

(Li et al., 2009) was used to first generate two sets of genomes by introducing additional random

mutations (both substitutions and indels) into the original and the modified genomes and then simu-

late reads with sequencing error rate of 1% and other default parameters of wgsim. The HAWK pipe-

line was then run on these two sets of sequencing reads. The fraction of mutations covered by

resulting sequences are shown in Appendix 1—figure 5 for varying numbers of case and control

samples and different types of mutations. The results are consistent with calculation of power to

detect k-mers for varying total k-mer coverage (Appendix 1—figure 2) with slightly lower values

expected due to sequencing errors and conditions imposed during assembly.

Verification with 1000 genomes data
To analyze the performance of the method on real data we used sequencing reads from the 1000

genomes project (Abecasis et al., 2012). The population identities were used as the phenotype of

interest circumventing the need for correction of population structure. For verification, we used

Figure 3. Breakdown of types of variations in comparison of YRI-TSI. (a) Bars showing breakdown of 2,970,929 and 1,865,285 sequences enriched for in

YRI and TSI samples respectively. The ‘Multiple SNPs/Structural’ entries correspond to sequences of length greater than 61, the maximum length of a

sequence due to a single SNP with k-mer size of 31 and ‘SNPs’ correspond to sequences of maximum length of 61. (b) Numbers of sequences with

alignments to hg38, RefSeq mRNAs and Ensembl exons and coding regions.

DOI: https://doi.org/10.7554/eLife.32920.005
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sequencing reads from 87 YRI individuals and 98 TSI individuals for which both sequencing reads

and genotype calls were available at the time analysis was performed. The genotype calling was per-

formed using the same set of reads we used to perform association mapping.

The analysis using k-mers revealed 2,970,929 sequences enriched for in the YRI population as

compared to the TSI population and 1,865,285 sequences enriched for in TSI samples. QQ plot of

the p-values obtained is shown in Appendix 1—figure 6(a). Although we observe large deviations

from the diagonal line, this is partly due to large number of k-mers for which the null is not true and

cumulative distribution of the p-values, shown in Appendix 1—figure 6(b), reveals that majority of

the p-values are not significantly small.

To compare the results with the standard approach of mapping reads and calling variants, we

also performed similar analysis with genotype calls available from the 1000 genomes project.

VCFtools (Danecek et al., 2011) was used to obtain number of individuals with 0, 1 and 2 copies of

one of the alleles for each SNP site. Each site was then tested to check whether the allele frequen-

cies are significantly different in two samples using likelihood ratio test for nested models for multi-

nomial distribution (details in Appendix 1). We found that 2,658,964 out of the 39,706,715 sites had

allele frequencies that are significantly different.

Figure 2a shows the extent of overlap among these discarding the sequences that did not map

to the reference. We used to BEDtools (Quinlan and Hall, 2010) to determine the number sites that

were within an interval covered by at least one sequence found by assembling k-mers. We find that

80:3% (2,135,415 out of 2,658,964) of the significant sites was covered by some sequence found

using HAWK while 19:7% was not as shown in the Venn diagram on the top left. Approximately 95:2%

of the sites was covered by at least one k-mer.

We also observe that around 42% of sequences found using k-mers do not cover any sites found

significant using genotype calling. While up to 20% of them correspond to regions for which we did

not have genotype calls (chromosome Y, mitochondrial DNA and small contigs), repetitive regions

where genotype calling is difficult and structural variations, many of the remaining sequences are

possibly due to more power of the test based on counts than the one using only number of copies

of an allele. We performed Monte Carlo simulations to determine powers of the two tests. Figure 2

(b) shows the fraction of trials that passed the p-value threshold after Bonferroni correction as the

allele frequencies in cases were increased keeping the allele frequencies of control fixed at 0.

This is consistent with greater fraction of sequences in YRI (47:3% shown in bottom left of Figure 2

(a)) not covering sites obtained by genotyping compared to TSI (38:7% shown in bottom right of Fig-

ure 2(a)) as some low frequency variations in African populations were lost in other populations due

to population bottleneck during the migration out of Africa. However, some false positives may

result due to discrepancies in sequencing depth of the samples and sequencing biases. We provide

scripts to lookup number of individuals with constituent k-mers to help investigate sites found using

Poisson distribution based likelihood ratio test only. Table 1 shows example p-values of some of the

well known sites of variation between African and European populations as well as fraction of indi-

viduals in each group with the variant looked up using such scripts.

Table 2. Summary of sequences not in the human reference genome.

Table 2 shows summary of sequences associated with different populations that did not map to the human reference genome (hg38)

or to the Epstein-Barr virus genome.

Population
Population
compared to

Total no.
sequences

No. sequences with
length�1000bp

Total length
in
sequences
with
length�1000
bp

No. sequences with
length�200bp

Total length in sequences with
length�200bp

YRI TSI 94,795 41 59,956 478 225,426

TSI YRI 66,051 10 13,896 184 77,383

BEB TSI 19,584 3 3835 75 33,954

TSI BEB 18,508 2 2105 81 28,134

DOI: https://doi.org/10.7554/eLife.32920.006
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HAWK maps associations to multiple variant types
HAWK enables mapping associations to different types of variants using the same pipeline. Figure 3

(a) shows breakdown of types of variants found associated with YRI and TSI populations. The ‘Multi-

ple SNPs/Structural’ entries correspond to sequences of length greater than 61 (the maximum length

of a sequence due to a single SNP with k-mer size of 31 as 31-mers covering the SNP can extend to

a maximum of 30 bases on either side of the SNP). In addition to SNPs we find associations to sites

with indels and structural variations. Furthermore, we find sequences that map to multiple regions in

the genome indicating copy number variations or sequence variation in repeated regions where

genotype calling is known to be difficult. Although the majority of the sequences map outside of

genes, we find variants in genes including in coding regions (Figure 3(b)).

We performed similar analysis on sequencing reads available from 87 BEB and 110 TSI individuals

from the 1000 genomes project and obtained 529,287 and 462,122 sequences associated with BEB

and TSI samples respectively, much fewer than the YRI-TSI comparison. Appendix 1—figure 7

shows breakdown of probable variant types corresponding to the sequences found associated with

BEB and TSI samples.

Histograms of lengths of sequences obtained by merging overlapping k-mers show (Appen-

dix 1—figure 8, Appendix 1—figure 9) peaks at 61 bp which is the maximum length corresponding

to a single SNP for k-mer size of 31. We also see drops off after 98 bp in all cases providing evidence

for multinucleotide mutations (MNMs) (Harris and Nielsen, 2014) since this is the maximum

sequence length we can get when k-mers of size 31 are assembled with minimum overlap of 24.

HAWK reveals sequences not in the human reference genome
As HAWK is an alignment free method for mapping associations, it is able to find associations in

regions that are not in the human reference genome, hg38. The analysis resulted in 94,795 and

66,051 sequences of lengths up to 2,666 bp and 12,467 bp associated with YRI and TSI samples

respectively that did not map to the human reference genome. Similarly BEB-TSI comparison yielded

19,584 and 18,508 sequences with maximum lengths of 1761 bp and 2149 bp associated with BEB

and TSI respectively.

Table 3. Variants in genes linked to cardiovascular diseases.

Variants in genes linked to cardiovascular diseases found to be significantly more common in BEB samples compared to TSI samples.

The (%) values denote fraction of individuals in the sample with the allele present. The p-values and % values are averaged over k-

mers constituting the associated sequences.

Gene SN id Variant type Allele p-value %BEB %TSI

APOB rs2302515 Missense C 1.30�10
�12 29.29% 8.37%

APOB rs676210 Missense A 7.73�10
�25 72.93% 33.08%

APOB rs1042034 Missense C 2.28�10
�23 68.67% 31.91%

CYP11B2 rs4545 Missense T 1.31�10
�28 31.33% 0.91%

CYP11B1 rs4534 Missense T 9.36�10
�36 33.00% 0.91%

WNK4 rs2290041 Missense T 1.53�10
�14 13.24% 0.47%

WNK4 rs55781437 Missense T 1.30�10
�12 15.21% 0.91%

SLC12A3 rs2289113 Missense T 7.40�10
�13 8.14% 0.00%

SCNN1A rs10849447 Missense C 8.67�10
�12 62.88% 39.92%

ABO - 4 bp (CTGT) deletion - 1.17�10
�13 29.15% 10.55%

ABO rs8176741 Missense A 2.06�10
�16 27.70% 8.45%

SH2B3 rs3184504 Missense C 8.22�10
�23 92.88% 63.87%

RAI1 rs3803763 Missense C 1.32�10
�12 75.86% 51.17%

RAI1 rs11649804 Missense A 1.95�10
�19 81.57% 52.79%

DOI: https://doi.org/10.7554/eLife.32920.007
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We found that few of the sequences enriched for in TSI samples, with lengths up to 12kbp and

2kbp in comparisons with YRI and BEB respectively, mapped to the Epstein–Barr virus (EBV)

genome, strain B95-8 [GenBank: V01555.2]. EBV strain B95-8 was used to transform B cells into lym-

phoblastoid cell lines (LCLs) in the 1000 Genomes Project and was shown to be a contaminant in the

data (Santpere et al., 2014).

Table 2 summarizes the sequences that could not be mapped to either the human reference

genome or the Epstein-Barr virus genome using Bowtie2. Although an exhaustive analysis of all

remaining sequences using BLAST is difficult, we find sequences associated with YRI that do not

map to the human reference genome (hg38) with high score but upon running BLAST aligned to

other sequences from human (for example to [GenBank: AC205876.2] and some other sequences

reported (Kidd et al., 2010). We also find sequences with no significant BLAST hits to human geno-

mic sequences, some of which have hits to closely related species. Similarly, we find sequences asso-

ciated with TSI aligning to human sequences such as [GenBank: AC217954.1] not in the reference.

Although there are much fewer long sequences obtained in the BEB-TSI comparison, we find

sequences longer than 1kbp associated with each population with no BLAST hit.

Differential prevalence of variants in genes linked to CVDs in BEB-TSI
comparison
We noted that cardiovascular diseases (CVD) are a leading cause of mortality in Bangladesh and age

standardized death rates from CVDs in Bangladesh is higher compared to Italy (see World Health

Organization, 2011). Moreover, South Asians have high rates of acute myocardial infarction (MI) or

heart failure at younger ages compared to other populations and (Gupta et al., 2006; Joshi et al.,

2007) revealed that in several countries migrants from South Asia have higher death rates from

Figure 4. Detection and correction for population stratification in YRI-TSI dataset. (a) Plots of first two principal components for YRI and TSI individuals

from the 1000 genomes project. The PCA was run on a binary matrix indicating presence or absence of 3,483,820 randomly chosen k-mers present in

between 1% and 99% of the samples. The colors indicate population and sizes of circles are proportional to sequencing depth. (b) �log10(adjusted

p-values) are plotted against �log10(unadjusted p-values) where adjusted p-values are calculated by fitting logistic regression models to predict

population identity from k-mer counts adjusting for population stratification, total number of k-mers per sample and gender of individuals whereas

unadjusted p-values are the p-values obtained using likelihood ratio test of k-mer counts assuming Poisson distributions.

DOI: https://doi.org/10.7554/eLife.32920.008
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coronary heart disease (CHD) at younger ages compared with the local population and according to

the INTERHEART Study, the mean age of MI among the poeple from Bangladesh is considerably lower

than non-South Asians and the lowest among South Asians (Yusuf et al., 2004; Saquib et al., 2012).

This motivated us to explore probable underlying genetic causes.

The sequences of significant association with the BEB sample were aligned to RefSeq mRNAs and

the ones mapping to genes linked to CVDs (Kathiresan and Srivastava, 2012) were analyzed. It is

worth noting that the sites were obtained through a comparison of BEB and TSI samples and CVD

status of the individuals were unknown. We explored whether any of the sites found due to popula-

tion difference could potentially contribute towards increased mortality from CVDs in BEB. The sites

listed are included as they are in genes known to be linked to CVDs but they are not highly ranked

among all sites of difference between BEB and TSI.

Table 3 shows non-synonymous variants in such genes that are significantly more common in the

BEB sample compared to the TSI sample. It is worth mentioning that the ‘C’ allele at the SNP site,

rs1042034 in the gene Apolipoprotein B (ApoB) has been associated with increased levels of HDL

cholesterol and decreased levels of triglycerides (Teslovich et al., 2010) in individuals of European

descent but individuals with the ‘CC’ genotype have been reported to have higher risk of CVDs in

an analysis of the data from the Framingham Heart Study (Kulminski et al., 2013). Distribution of

rs1042034 alleles in various populations is shown in Appendix 1—figure 10 generated using the

geography of genetic variants browser (Marcus and Novembre, 2017). The SNP rs676210 has also

been associated with a number of traits (Mäkelä et al., 2013; Chasman et al., 2009). Both alleles of

higher prevalence in BEB at those sites have been found to be common in familial hypercholesterol-

emia patients in Taiwan (Chiou and Charng, 2012). On the other hand, prevalence of the risk allele,

‘T’ at rs3184504 in the gene SH2B3 is higher in TSI samples compared to BEB samples.

We also observe a number of sites in the gene Titin (TTN) of differential allele frequencies in BEB

and TSI samples (Appendix 1—table 1). However, TTN codes for the largest known protein and

although truncating mutations in TTN are known to cause dilated cardiomyopathy [(Herman et al.,

2012; van Spaendonck-Zwarts et al., 2014; Roberts et al., 2015)], no such effect of other kinds of

mutations are known.

Detection and correction for confounding factors
To check whether population structure can be detected from k-mer data we randomly sampled

approximately one thousandth of k-mers that appear in between 1% and 99% of the YRI and TSI

datasets in the 1000 genomes project yielding 3,483,820 distinct k-mers and ran principal compo-

nents analysis (PCA) on them. Figure 4(a) shows plots of the first two principal components of the

individuals. Although the clusters generated are not as clearly separated as in the case with PCA run

on variant calls obtained from the 1000 genomes project, shown in Appendix 1—figure 11, possibly

due to varying sequencing coverage and batch effects in the k-mer counts, we observe that the first

two principal components together completely separates the two populations. The first principal

component correlates with sequencing depth indicated by size of the circles in the figure with the

second principal component primarily separating the populations.

We then fit logistic regression models to predict population identities using first two principal

components, total number of k-mers in each sample and gender of individuals along with k-mer

counts and obtain ANOVA p-values of the k-mer counts using �2-tests. Total number of k-mers was

included in the model as sequencing biases such as the GC content bias are known which may lead

to false positives if the cases and controls are sequenced at different sequencing depths while the

genders of individuals are included to prevent false positives for k-mers from X and Y chromosomes

in case of sex imbalance in cases and controls. Negative ten based logarithms of unadjusted p-values

were calculated using a Poisson distribution based likelihood ratio test and are shown against those

of adjusted p-values for 2,113,327 randomly chosen k-mers with statistically significant unadjusted

p-values in Figure 4(b). It shows that all of the �log10(adjusted p-values) are close to zero which is

expected since the first two principal components together completely separate the populations.

QQ plot of adjusted p-values of 56,119 randomly chosen k-mers is shown in Appendix 1—figure 11

(c). Appendix 1—figure 11(d) shows that only the first two principal components provide substan-

tial adjustment in p-values for this dataset indicating sequencing depth and sex are not significant

confounders while QQ plot for unadjusted p-values obtained from logistic regression is shown in

Appendix 1—figure 11(b).
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We also performed simulation experiments to test whether associations can be detected after

correcting for confounding factors. We set a k-mer as present in a YRI individual with probability p

and in a TSI individual with probability 1� p and counts were simulated using total numbers of k-

mers in the samples assuming Poisson distribution. The individuals with the k-mer were randomly

assigned to cases according to penetrance values and the rest were assigned to controls. A p-value

was then computed as above correcting for population stratification and other confounders and

tested for significance. The process was repeated 1000 times for a particular p and penetrance and

repeated for other values. The fraction of runs association was detected are shown in Appendix 1—

figure 12. We observe that with logistic regression based test that has less power compared to Pois-

son distribution based likelihood ratio test, associations can be detected with small sample sizes

such as present ones under various conditions. For example, if 80% of case individuals are YRI, asso-

ciations can be detected in all trials if penetrance is 100% and about 80% trials when it is 80%.

Association mapping ampicillin resistance in E. coli
Finally we applied HAWK to map association to ampicillin resistance in E. coli using a dataset

described in (Earle et al., 2016). It contains short reads from 241 strains of E. coli, 189 of which

were resistant to ampicillin and the remaining 52 were sensitive. We ran HAWK on 176,284,643 k-

mers obtained from the whole genome sequencing reads, first computing p-values using likelihood

ratio test assuming Poisson distribution and then adjusting p-values using first ten principal compo-

nents and total number of k-mers per sample for the top 200,000 k-mers associated with cases and
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Figure 5. Manhattan plots for association mapping of ampicillin resistance in E. coli using k-mers. Manhattan plots showing �log10(adjusted p-values) of

k-mers found significantly associated with ampicillin resistance and their start positions in (a) Escherichia coli strain DTU-1 genome and (b) plasmid

pKBN10P04869A sequence. The vertical lines denote start positions of b-lactamase TEM-1 gene, the presence of which is known to confer resistance to

ampicillin.

DOI: https://doi.org/10.7554/eLife.32920.009

The following source data is available for figure 5:

Source data 1. Source data for Figure 5a.

DOI: https://doi.org/10.7554/eLife.32920.010

Source data 2. Source data for Figure 5b.

DOI: https://doi.org/10.7554/eLife.32920.011
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controls. 5047 of the k-mers associated with cases passed Bonferroni correction while none of the

ones associated with controls did.

The k-mers passing Bonferroni correction were assembled using ABySS resulting in 16 sequences

associated with cases. Upon running BLAST on these sequences we found hits to Escherichia coli

strain DTU-1 genome [GenBank: CP026612.1], Escherichia coli strain KBN10P04869 plasmid

pKBN10P04869A sequence [GenBank: CP026474.1] as well as other sequences. We then mapped

the k-mers found significant using these two sequences as the references to obtain their locations

within them. Manhattan plots of the positions thus obtained and �log10(adjusted p-values) of the

corresponding k-mers are shown in Figure 5. We found that the strongest associations are within

the b-lactamase TEM-1 (blaTEM-1) gene which is known to confer resistance to ampicillin (also

detected by [Earle et al., 2016]) and just upstream of that. We also noted some other hits within the

E. coli chromosome.

QQ plot of the p-values obtained is shown in Appendix 1—figure 13(a). It may be noted that for

large number of k-mers, that are part of the b-lactamase TEM-1 (blaTEM-1) gene or are in linkage

disequilibrium with it, the null is not true which results in deviations from the diagonal line. However,

majority of the points are close to the origin which can be seen from the cumulative distribution of

p-values in Appendix 1—figure 6(b).

(Earle et al., 2016) performed an association study of ampicillin resistance using multiple

approaches - SNP calling and imputations, gene presence or absence through whole genome

assembly and gene finding as well as a k-mer based method. Their gene presence or absence

approach yielded b-lactamase TEM-1 (blaTEM-1) as the top hit while the best k-mer within the causal

gene found by them was of rank 6. However, neither of the approaches are likely to scale to large

genomes. We also followed a more conventional approach where first the reads were mapped using

Bowtie 2 (Langmead and Salzberg, 2012) to the reference strain CFT073 [GenBank: AE014075.1],

the same reference used by (Earle et al., 2016). We also included plasmid pKBN10P04869A

sequence [GenBank: CP026474.1] in the reference as it includes the b-lactamase TEM-1 (blaTEM-1)

gene. Freebayes (Garrison and Marth, 2012) was then used to simultaneously call variants in all the

strains. We finally tested each variant for association to ampicillin resistance using Eigenstrat

(Price et al., 2006) using first ten principal components to correct for confounders. This approach

resulted in no hits with genome wide significance and Manhattan plots of the variants and their

�log10(p-values) are shown in Appendix 1—figure 14.

Discussion
In this paper, we presented an alignment free method for association mapping from whole genome

sequencing reads. It is based on finding k-mers that appear significantly more times in one set of

samples compared to the other and then locally assembling those k-mers. Since this method does

not require a reference genome, it is applicable to association studies of organisms with no or

incomplete reference genome. Even for human our method is advantageous as it can map associa-

tions in regions not in the reference or where variant calling is difficult.

We tested our method by applying it to data from the 1000 genomes project and comparing the

results with the results obtained using the genotypes called by the project as well as using simulated

data. We observe that more than 80% of the sites found using genotype calls are covered by some

sequence obtained by our method while also mapping associations to regions not in the reference

and in repetitive areas. Moreover, simulations suggest tests based on k-mer counts have more

power than those based on presence and absence of alleles.

Breakdown analysis of the sequences found in pairwise comparison of YRI, TSI and BEB, TSI sam-

ples reveals that this approach allows mapping associations to SNPs, indels, structural and copy

number variations through the same pipeline. In addition we find 2–4% of associated sequences are

not present in the human reference genome some of which are longer than 1kbp. The YRI, TSI com-

parison yields almost 60kbp sequence associated with the YRI samples in sequences of length

greater than 1kbp alone. This indicates populations around the world have regions in the genome

not present in the reference emphasizing the importance of a reference free approach.

We explored variants in genes linked to cardiovascular diseases in the BEB, TSI comparison as

South Asians are known to have a higher rate of mortality from heart diseases compared to many

other populations. We find a number of non-synonymous mutations in those genes are more
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common in the BEB samples in comparison to the TSI ones underscoring the importance of associa-

tion studies in diverse populations. The SNP rs1042034 in the gene Apolipoprotein B (ApoB) merits

particular mention as the CC genotype at that site has been associated with higher risk of CVDs.

We also outlined an approach to uncover population stratification, a known confounder in associ-

ation studies, from k-mer data and correct for it and other confounders in our k-mer based associa-

tion mapping pipeline. Application of the pipeline to map associations to ampicillin resistance in E.

coli lead to hits to a gene, the presence of which is known to provide the resistance.

The results on simulated data, real data from the 1000 genomes project and E. coli datasets pro-

vide a proof of principle of this approach and motivate extension of this method to quantitative phe-

notypes and modeling of randomness of counts in population stratification detection and correction

of confounder steps and then application to association studies of disease phenotypes in humans

and other organisms.
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Appendix 1

DOI: https://doi.org/10.7554/eLife.32920.013

Finding differential k-mers in association studies
We consider the case where we have s1 and s2 samples from two populations. We observe a

specific k-mer k1;1; . . . ; k1;s1 and k2;1; . . . ; k2;s2 times in the samples from two populations and

total k-mer counts in the samples are given by n1;1; . . . ; n1;s1 and n2;1; . . . ; n2;s2 . We assume that

the k-mer counts are Poisson distributed with rate �1 and �2 in the two populations where the

�’s can be interpreted as quantities proportional to the average number of times the k-mer

appears in the two populations. The null hypothesis is H0:�1 ¼ �2 ¼ � and the alternate

hypothesis is H1:�1 6¼ �2
We test the null using likelihood ratio test for nested models. The likelihood ratio is given

by

L¼
sup L �1; �2ð Þf g

sup L �;�ð Þf g

where

L �1; �2ð Þ ¼
Y

s1

i¼1

e��1n1;i �1n1;i
� �k1;i

k1;i!

Y

s2

i¼1

e��2n2;i �2n2;i
� �k2;i

k2;i!

and

L �ð Þ ¼
Y

s1

i¼1

e��n1;i �n1;i
� �k1;i

k1;i!

Y

s2

i¼1

e��n2;i �n2;i
� �k2;i

k2;i!
:

L �1; �2ð Þ is maximized at �̂1 ¼

Ps1

i¼1
k1;i

Ps1

i¼1
n1;i
, �̂2 ¼

Ps2

i¼1
k2;i

Ps2

i¼1
n2;i

and L �ð Þ is maximized at

�̂ ¼

Ps1

i¼1
k1;iþ

Ps2

i¼1
k2;i

Ps1

i¼1
n1;iþ

Ps2

i¼1
n2;i
. Therefore,

L¼
L �̂1; �̂2

� �

L �̂; �̂
� � :

Since the null model is a special case of the alternate model, 2lnL is approximately chi-

squared distributed with one degree of freedom.(Wilks, 1938; Huelsenbeck and Crandall,

1997; Huelsenbeck et al., 1996)

We note that the test statistic stays the same if the likelihood values are computed by

pooling together the counts in samples from two populations that is

L �1; �2ð Þ ¼
e��1N1 �1N1ð ÞK1

K1!

e��2N2 �2N2ð ÞK2

K2!

and

L �ð Þ ¼
e��N1 �N1ð ÞK1

K1!

e��N2 �N2ð ÞK2

K2!

where
Ps1

i¼1
k1;i ¼ K1,

Ps2
i¼1

k2;i ¼ K2,
Ps1

i¼1
n1;i ¼ N1, and

Ps2
i¼1

n2;i ¼ N2.

For each k-mer in the data, we compute the statistic as described above and obtain a

P-value using �2

1
distribution. The P-values are then corrected for multiple testing using

Bonferroni correction.
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Appendix 1—figure 1. QQ plots of p-values. QQ plots of p-values calculated using likelihood

ratio test with Poisson and negative binomial distributions for (a) simulated data and (b) real

data from the 1000 genomes project. The simulation was performed by sampling 200 values

from a negative binomial distribution with number of failures fixed at 1 million and a uniformly

chosen success probability between 0 and 0:01. Half of the samples were assigned to cases

and others were assigned to controls. Then p-values were computed using likelihood ratio

tests with Poisson and negative binomial distributions. The process was repeated 100; 000

times and QQ plot was generated. Similarly p-values were computed for counts of 56; 119

randomly chosen k-mers from YRI and TSI populations from the 1000 genomes project.

DOI: https://doi.org/10.7554/eLife.32920.014

Power Calculation
To evaluate the theoretical power of the test, we fixed the number of times a k-mer is present

in control samples at 0, obtained the minimum k-mer count in case samples required to obtain

a p-value less than significant threshold after Bonferroni correction and calculated the

probability of observing at least that count in case samples for varying total k-mer coverage of

cases (number of case samples �k-mer coverage per sample). The results are plotted

in Appendix 1—figure 2 for different total number of tests.
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Appendix 1—figure 2. Power for different k-mer coverages. The figure shows power to detect

a k-mer present in all case samples and no control sample against total k-mer coverage of

cases using Bonferroni correction for different number of total tests for p-value=0.05.

DOI: https://doi.org/10.7554/eLife.32920.015

We have also performed a simulation similar to the one in Lees et al. (2016). Ratio of cases

to controls was set at 0.5. Then for a fixed minor allele frequency (MAF) and different odds

ratios (OR) and total number of samples, the number of case samples with the variant was

determined by solving a quadratic equation and the probabilities of samples being case or

control with and without the variant were calculated. Cases and controls were then sampled

100 times using those probabilities. The fraction of times the p-value obtained was below the

significance level, after Bonferroni correction for 1 million tests, are then plotted against the

number of samples in Appendix 1—figure 3.

Appendix 1—figure 3. Power vs number of samples. Figures show power to detect a k-mer at

MAF = 0.16 and different odds ratios for per sample k-mer coverage of (a) five and (b) two

after Bonferroni correction for 1 million tests.

DOI: https://doi.org/10.7554/eLife.32920.016
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Appendix 1—figure 4. Comparison of powers of Poisson LRT and logistic regression based

tests. Figures show power to detect a k-mer by Poisson based likelihood ratio test, logistic

regression based tests using k-mer counts and presence and absence of k-mers with number

of allele copies in controls fixed at (a), (b) 0 and (c), (d) 1. Simulation was performed by

randomly choosing case individuals with specified number of copies of an allele according to

varying probability. k-mer counts were then generated according to Poisson distribution and

detection of association was checked after Bonferroni correction for 1 million tests. The

process was repeated 100 times for each set of parameters. Number of cases and number of

controls were fixed at 100.

DOI: https://doi.org/10.7554/eLife.32920.017

Verification with simulated E. coli data
The simulation with E. coli genome ( ~ 4.6 million bp) was performed by first introducing 100

single base changes, 100 indels of random lengths less than 10 bp and 100 indels of random

lengths between 100 and 1000 bp at random locations. Then different number of controls and

cases were generated using wgsim of SAMtools (Li et al., 2009) introducing more mutations

with default parameters and 300000 paired end reads of length 70 ( ~5x k-mer coverage) were

generated with sequencing error rate of 0.01.

The sensitivity and specificity analysis was done by aligning the sequences generated by

HAWK using Bowtie 2 (Langmead and Salzberg, 2012) and checking for overlap with

mutation locations with in-house scripts.

Rahman et al. eLife 2018;7:e32920. DOI: https://doi.org/10.7554/eLife.32920 21 of 31

Tools and resources Epidemiology and Global Health Genetics and Genomics

https://doi.org/10.7554/eLife.32920.017
https://doi.org/10.7554/eLife.32920


Appendix 1—figure 5. Sensitivity with simulated E. coli data. The figure shows sensitivity for

varying number of case and control samples for different types of mutations. Sensitivity is

defined as the percentage of differing nucleotides that are covered by a sequence. All of the

sequences covered some location of mutation.

DOI: https://doi.org/10.7554/eLife.32920.018

Testing for significant genotypes
Consider a site with two alleles. Let n1;0; n1;1; n1;2 be the number of individuals with 0,1 and 2

copies of the minor allele respectively in the sample from population one and n2;0; n2;1; n2;2 are

the corresponding ones from population 2. Let p1 and p2 be the minor allele frequencies in the

two populations and N1 and N2 be the number of samples. The null hypothesis is H0:p1 ¼ p2 ¼

p and the alternate hypothesis is H0:p1 6¼ p2

We test the null using likelihood ratio test for nested models. The likelihood ratio is given

by

L¼
sup L p1;p2ð Þf g

sup L p;pð Þf g

where under random mating

L p1;p2ð Þ ¼
N1

n1;0;n1;1;n1;2

� �

1� p1ð Þ2n1;0 2p1 1� p1ð Þð Þn1;1p
2n1;2
1

N2

n2;0;n2;1;n2;2

� �

1� p2ð Þ2n2;0 2p2 1� p2ð Þð Þn2;1p
2n2;2
2

and

L pð Þ ¼
N1

n1;0;n1;1;n1;2

� �

1� pð Þ2n1;0 2p 1� pð Þð Þn1;1p2n1;2

N2

n2;0;n2;1;n2;2

� �

1� pð Þ2n2;0 2p 1� pð Þð Þn2;1p2n2;2 :

L p1; p2ð Þ is maximized at p̂1 ¼
n1;1þ2n1;2

2N1

, p̂2 ¼
n2;1þ2n2;2

2N2

and L pð Þ is maximized at

p̂ ¼
n1;1þ2n1;2þn2;1þ2n2;2

2N1þ2N2

. Therefore,
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L¼
L p̂1; p̂2ð Þ

L p̂; p̂ð Þ
:

Since the null model is a special case of the alternate model, 2lnL is approximately chi-

squared distributed with one degree of freedom.

For each SNP site in the data, we compute the statistic as described above and obtain a

p-value using �2

1
distribution. The p-values are then corrected for multiple testing using

Bonferroni correction.

Intersection analysis using 1000 genomes data
For the intersection analysis we used data from 87 YRI individuals and 98 TSI individuals for

which both sequencing reads and genotype calls were available. The HAWK pipeline was run

using a k-mer size of 31. The assembly was using ABySS (Simpson et al., 2009). The

sequences were aligned to the human reference genome version GRCh37 using Bowtie2. Each

of the genotypes called by the 1000 genomes project was then tested for association with

populations using the approach described in the previous section. The extent of intersection

of the loci found using two methods was then determined using BEDtools (Quinlan and Hall,

2010).

Appendix 1—figure 6. QQ plot and cumulative distributions of p-values. The figures show (a)

QQ plot and (b) cumulative distributions of �log10(p-values) for observed p-values in the

comparison of YRI and TSI populations from the 1000 genomes project and p-values expected

if the null is true.

DOI: https://doi.org/10.7554/eLife.32920.019

Breakdown analysis
The types of variants corresponding to sequences found using the HAWK pipeline were

estimated by mapping them to the human reference genome version hg38 using Bowtie2 and

using following properties.

. Unmapped: The sequences that were not mapped to the reference using Bowtie2.

. Multimapped: The sequences with multiple mappings. These may be due to copy number

variations or sequence variation in repetitive regions.
. Indels: The sequences that mapped to the reference with one or more indels.
. Multiple SNPs/Structural: The maximum length of a sequence due to a single SNP with 31-

mer is 61. Sequences with length greater than 61 were assigned this label.
. SNPs: All other sequences.
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Appendix 1—figure 7. Breakdown of types of variations in BEB-TSI comparison. (a) Bar plots

showing breakdown of 529,287 and 462,122 sequences associated with BEB and TSI samples

respectively. The ‘Multiple SNPs/Structural’ entries correspond to sequences of length greater

than 61, the maximum length of a sequence due to a single SNP with k-mer size of 31 and

‘SNPs’ correspond to sequences of maximum length of 61. (b) Numbers of sequences with

alignments to hg38, RefSeq mRNAs and Ensembl exons and coding regions.

DOI: https://doi.org/10.7554/eLife.32920.020
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Appendix 1—figure 8. Histograms of sequence lengths in YRI-TSI comparison. Figures show

sections of histograms of lengths of sequences associated with (a, c) YRI and (b, d) TSI in

comparison of YRI and TSI samples. Figures (a), (b) show peaks at 61, the maximum length

corresponding to a single SNP with k-mer size of 31. Figures (c), (d) show drop off after 98

which is the maximum length corresponding to two close-by SNPs as 31-mers were assembled

using a minimum overlap of 24.

DOI: https://doi.org/10.7554/eLife.32920.021
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Appendix 1—figure 9. Histograms of sequence lengths in BEB-TSI comparison. Figures show

sections of histograms of lengths of sequences associated with (a, c) BEB and (b, d) TSI in

comparison of BEB and TSI samples. Figures (a), (b) show peaks at 61, the maximum length

corresponding to a single SNP with k-mer size of 31. Figures (c), (d) show drop off after 98

which is the maximum length corresponding to two close-by SNPs as 31-mers were assembled

using a minimum overlap of 24.

DOI: https://doi.org/10.7554/eLife.32920.022

Probing for variants of interest
We searched for well known variants and other variants of potential biological interest by

aligning sequences to RefSeq mRNAs using Bowtie2 and then looking up gene names from

RefSeq mRNA identifiers using the UCSC Table Browser (Karolchik et al., 2004). Variants of

interest were then further explored by running BLAT (Kent, 2002) on the UCSC Human

Genome Browser (Kent et al., 2002).
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Appendix 1—figure 10. Distribution of the SNP rs1042034 alleles in 1000 genomes popula-

tions. Plot obtained from the Geography of Genetic Variants Browser showing distribution of

alleles at the SNP site rs1042034 revealing the ‘C’ allele is more prevalent in South, Southeast

and East Asian populations compared to populations from other parts of the world.

DOI: https://doi.org/10.7554/eLife.32920.023
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Appendix 1—figure 11. Detection and correction for population stratification in YRI-TSI data-

set. (a) Plots of first two principal components for YRI and TSI individuals where the PCA was

run on variants called in the 1000 genomes project. QQ plots of ANOVA �2 p-values of k-mer

counts computed by running logistic regression (b) without adjustment, (c) adjusted using first

two principal components obtained from k-mer counts, total number of k-mers and sex of

individuals, (d) adjusted using only first two principal components.

DOI: https://doi.org/10.7554/eLife.32920.024
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Appendix 1—figure 12. Detection of association after correcting for confounders. A k-mer

(allele) is considered to be present in a YRI individual with probability p and in a TSI individual

with probability 1� p and counts are simulated using total numbers of k-mers in the samples

assuming Poisson distribution. The individuals with the k-mer are randomly assigned to cases

according to a penetrance value and the rest are assigned to controls. A p-value is then

computed using logistic regression to predict phenotype from the counts correcting for

population stratification, total number of k-mers per sample and gender of individuals from

the 1000 genomes data. The process is repeated 1000 times for a particular p and penetrance

and fraction of runs where the p-value passed the Bonferroni threshold is plotted. The process

is repeated for various probabilities and penetrance.

DOI: https://doi.org/10.7554/eLife.32920.025

Appendix 1—figure 13. QQ plot and cumulative distributions of p-values. The figures show (a)

QQ plot and (b) cumulative distributions of �log10(p-values) for observed p-values in

association mapping of ampicillin resistance in E. coli and p-values expected if the null is true.

DOI: https://doi.org/10.7554/eLife.32920.026
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Appendix 1—figure 14. Manhattan plots for association mapping of ampicillin resistance in E.

coli using conventional approach. Manhattan plots showing �log10(p-values) of SNPs and their

positions in (a) Escherichia coli strain CFT073 genome and (b) plasmid pKBN10P04869A

sequence. The vertical lines denote start positions of b-lactamase TEM-1 gene, the presence

of which is known to confer resistance to ampicillin. The horizontal lines denote Bonferroni

threshold of 0:05=361293.

DOI: https://doi.org/10.7554/eLife.32920.027

Appendix 1—table 1. Variants in Titin of differential prevalence in BEB-TSI comparison. Variants

in Titin, a gene linked to cardiovascular diseases, that were found to be significantly more

common in BEB samples compared to TSI samples. The (%) values denote fraction of individuals

in the sample with the allele present. The p-values and % values are averaged over k-mers

constituting the associated sequences.

Gene SNP id Variant type Allele p-value %BEB %TSI

TTN rs9808377 Missense G 1.70�10
�15 66.44% 41.91%

TTN rs62621236 Missense G 2.33�10
�16 27.70% 5.72%

TTN rs2291311 Missense C 1.06�10
�11 25.77% 7.77%

TTN rs16866425 Missense C 8.19�10
�12 21.73% 2.73%

TTN rs4894048 Missense T 2.00�10
�23 22.65% 2.26%

TTN rs13398235 Intron/missense A 2.04�10
�13 41.00% 17.40%

TTN rs11888217 Intron/missense T 4.18�10
�13 27.25% 4.55%

TTN rs10164753 Missense T 3.69�10
�13 28.48% 6.19%

TTN rs10497520 Missense T 1.66�10
�23 54.76% 18.86%

TTN rs2627037 Missense A 6.99�10
�13 25.06% 4.72%

TTN rs1001238 Missense C 1.66�10
�17 64.66% 38.21%

TTN rs3731746 Missense A 1.26�10
�14 50.72% 30.21%

TTN rs17355446 Intron/missense A 3.31�10
�11 15.44% 1.11%

TTN rs2042996 Missense A 1.03�10
�17 71.41% 35.87%

TTN rs747122 Missense T 1.59�10
�11 28.57% 7.24%

TTN rs1560221* Synonymous G 1.11�10
�22 70.71% 34.66%

TTN rs16866406 Missense A 2.17�10
�12 35.60% 17.51%

TTN rs4894028 Missense T 2.58�10
�13 27.54% 6.89%

TTN - Insertion T 1.09�10
�12 34.11% 8.59%

Appendix 1—table 1 continued on next page
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Appendix 1—table 1 continued

Gene SNP id Variant type Allele p-value %BEB %TSI

TTN rs3829747 Missense T 4.72�10
�12 37.55% 20.30%

TTN rs2291310 Missense C 2.18�10
�20 36.63% 8.04%

TTN rs2042995 Intron/Missense C 7.83�10
�12 56.32% 31.64%

TTN rs3829746 Missense C 5.30�10
�29 75.94% 37.60%

TTN rs744426 Missense A 1.36�10
�13 37.15% 18.92%

DOI: https://doi.org/10.7554/eLife.32920.028
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