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ABSTRACT: Screening of compound libraries against panels
of targets yields profiling matrices. Such matrices typically
contain structurally diverse screening compounds, large
numbers of inactives, and small numbers of hits per assay.
As such, they represent interesting and challenging test cases
for computational screening and activity predictions. In this
work, modeling of large compound profiling matrices was
attempted that were extracted from publicly available screening
data. Different machine learning methods including deep
learning were compared and different prediction strategies
explored. Prediction accuracy varied for assays with different
numbers of active compounds, and alternative machine
learning approaches often produced comparable results.
Deep learning did not further increase the prediction accuracy of standard methods such as random forests or support vector
machines. Target-based random forest models were prioritized and yielded successful predictions of active compounds for many
assays.

1. INTRODUCTION

Machine learning methods are widely used in computational
compound screening, also termed virtual screening (VS), to
select limited numbers of potentially active compounds from
large libraries.1 Algorithms such as support vector machine
(SVM) or random forest (RF) are among the most popular
approaches for activity prediction.2 In addition, there is
increasing interest in deep learning for VS and quantitative
structure−activity relationship predictions.3−5

Public repositories for compounds and activity data are
indispensable resources for developing, evaluating, and
calibrating VS methods and protocols. For small molecules
and data from medicinal chemistry and biological screening,
ChEMBL6 (maintained by the European Bioinformatics
Institute of the European Molecular Laboratory) and
PubChem7,8 (National Center of Biotechnology Information
of the National Institutes of Health) have become primary
resources, respectively. In addition, MoleculeNet has recently
been introduced as a collection of curated compound activity
data from diverse sources.9 For VS benchmark calculations,
known active compounds and decoys are typically as-
sembled.10−13 Active compounds are usually taken from
medicinal chemistry sources. Evaluating VS approaches using
high-throughput screening (HTS) data provides a more
realistic scenario but is generally complicated by experimental
variance and noise as well as natural unbalance of active and
inactive compounds in HTS data sets.14−16 Hit rates in HTS
typically range from about 0.1 to 2%,15 depending on the assays
and targets, whereas most test compounds are inactive.16

Learning from data sets of such unbalanced composition
generally provides substantial challenges for deriving predictive

models. Hence, predictions using HTS data are only rarely
reported.17,18 Learning from unbalanced data has been
addressed in a few studies.19−21

In addition to state-of-the-art machine learning methods such
as SVM and RF, deep neural networks (DNNs) have also been
applied for activity predictions.3−5,22−24 DNN applications
sometimes report higher prediction accuracy compared with
other methods. DNNs can either be trained on a per-target
basis or by combining data from multiple activity classes, which
are known as multitask DNNs.23,24 Different results have been
obtained by comparing the performance of single- and
multitask DNNs.23,24 A general limitation of DNN and, in
particular, multitask learning is the rather limited ability to
rationalize the failure of predictions.24

A challenge in VS going beyond learning on the basis of HTS
data is the prediction of compound profiling matrices, which
are obtained by screening compound collections in a panel of
assays.25−29 In these cases, the unbalance and screening data
noise issues referred to above further escalate. Compounds
might be active in one or more assays and inactive in others or
they might be consistently inactive, yielding rather complex
prediction scenarios. To our knowledge, machine learning
predictions of large profiling matrices with more than just a
handful of assays are yet to be reported. However, the inherent
challenges of such predictions are not the only reason for their
sparseness. Data unavailability is another. Although profiling
matrices are frequently generated in the pharmaceutical
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Table 1. Assays and Targetsa

assay ID
assay
code target name organism

# active CPDs
(matrix 2 training)

# active CPDs
(matrix 2 test)

# active CPDs
(matrix 1)

485313 A Niemann-pick C1 protein precursor Homo sapiens 3103 3142 395
485314 B DNA polymerase β Homo sapiens 1325 1326 125
485341 C β-lactamase Escherichia coli 458 478 420
485349 D serine-protein kinase ATM isoform 1 Homo sapiens 191 175 118
485367 E ATP-dependent phosphofructokinase Trypanosoma brucei brucei 152 138 103
504466 F ATPase family AAA domain-containing

protein 5
Homo sapiens 1624 1586 424

588590 G DNA polymerase iota Homo sapiens 885 868 103
588591 H DNA polymerase eta Homo sapiens 1123 1129 39
624171 I nuclear factor erythroid 2-related factor 2 Homo sapiens 367 391 118
624330 J Rac GTPase-activating protein 1 Homo sapiens 491 536 156
1721 K pyruvate kinase Leishmania mexicana 433 425 39
1903 L large T antigen Simian virus 40 275 248 57
2101 M glucocerebrosidase Homo sapiens 73 58 41
2517 N AP endonuclease 1 Homo sapiens 197 199 32
2528 O Bloom syndrome protein Homo sapiens 137 128 8
2662 P histone-lysine N-methyltransferase MLL Homo sapiens 10 15 3
2676 Q relaxin/insulin-like family peptide

receptor 1
Homo sapiens 215 195 223

463254 R ubiquitin carboxyl-terminal hydrolase 2
isoform a

Homo sapiens 4 4 2

485297 S Ras-related protein Rab-9A Homo sapiens 3751 3810 410
488837 T ryes absent homolog 2 isoform a Homo sapiens 2 7 1
492947 U β-2 adrenergic receptor Homo sapiens 25 28 4
504327 V histone acetyltransferase KAT2A Homo sapiens 158 141 50
504329 W nonstructural protein 1 influenza A virus 213 205 64
504339 X lysine-specific demethylase 4A Homo sapiens 4755 4757 1320
504842 Y chaperonin-containing TCP-1 β subunit

homolog
Homo sapiens 28 20 13

504845 Z regulator of G-protein signaling 4 Homo sapiens 9 7 1
504847 AA vitamin D3 receptor isoform VDRA Homo sapiens 772 771 48
540317 AB chromobox protein homolog 1 Homo sapiens 442 449 98
588579 AC DNA polymerase kappa Homo sapiens 354 362 6
588689 AD genome polyprotein dengue virus type 2 180 184 6
588795 AE flap endonuclease 1 Homo sapiens 175 210 17
602179 AF isocitrate dehydrogenase 1 Homo sapiens 75 81 28
602233 AG phosphoglycerate kinase Trypanosoma brucei brucei 28 40 1
602310 AH DNA dC->dU-editing enzyme APOBEC-

3G
Homo sapiens 60 66 11

602313 AI DNA dC->dU-editing enzyme
APOBEC-3F isoform a

Homo sapiens 202 183 28

602332 AJ heat shock 70 kDa protein 5 Homo sapiens 15 15 6
624170 AK glutaminase kidney isoform Homo sapiens 162 186 65
624172 AL glucagon-like peptide 1 receptor Homo sapiens 7 7 2
624173 AM hypothetical protein Trypanosoma brucei brucei 136 141 32
624202 AN breast cancer type 1 susceptibility protein Homo sapiens 1469 1484 275
651644 AO viral protein r human

immunodeficiency
virus 1

208 209 74

651768 AP Werner syndrome ATP-dependent
helicase

Homo sapiens 278 325 5

652106 AQ α-synuclein Homo sapiens 111 102 57
720504 AR serine/threonine-protein kinase PLK1 Homo sapiens 3357 3308 662
720542 AS apical membrane antigen 1 Plasmodium falciparum 93 98 25
720707 AT Rap guanine nucleotide exchange factor 3 Homo sapiens 50 62 3
720711 AU Rap guanine nucleotide exchange factor 4 Homo sapiens 59 68 16
743255 AV ubiquitin carboxyl-terminal hydrolase 2

isoform a
Homo sapiens 147 149 15

743266 AW parathyroid hormone 1 receptor Homo sapiens 66 70 79
493005 AX Tumor susceptibility gene 101 protein Homo sapiens 0 0 0
504891 AY peptidyl-prolyl cis−trans isomerase

NIMA-interacting 1
Homo sapiens 6 5 0

504937 AZ sphingomyelin phosphodiesterase Homo sapiens 5 9 0
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industry, they are rarely disclosed. The few profiling data sets
that are publicly available are essentially limited to kinase
targets and partly incomplete. Thus, there is currently no sound
basis for predictive modeling of profiling matrices.
In light of these limitations, we have developed a

computational methodology to extract complete profiling
matrices from available screening data.30 Applying this
approach, we have generated profiling matrices of different
compositions including assays for a variety of targets. These
matrices consist of “real life” screening data and are
characterized by generally low hit rates and the presence of
many consistently inactive compounds.
Prediction of compound profiling matrices is of high

relevance for chemogenomics research, which ultimately aims
at accounting for all possible small molecule−target inter-
actions. For all practical purposes, reaching this goal will
essentially be infeasible. Accordingly, there is a high level of
interest in computational approaches that are capable of
complementing profiling experiments with reliable ligand−
target predictions. Moreover, profiling matrices also represent
excellent model systems for HTS campaigns using a given
compound deck. If experimental matrices are available,
predicting the outcome of HTS runs against different targets
can be attempted under realistic conditions. This provides
much more informative estimates of computational screening
performance than artificial benchmark settings that are typically
used. In drug discovery, the prediction of HTS data has long
been and continues to be a topical issue. For example, because
the capacity of (compound) “cherry-picking” from screening
plates has become more widely available in the industry,
computational prescreening of compound decks can be used to
prioritize subsets that are most likely to yield new hits. Cycles
of computational screening followed by experimental testing
are implemented in iterative screening schemes, which may
significantly reduce the magnitude of experimental HTS efforts.
Herein, we have applied various machine learning approaches

and strategies to predict newly derived compound profiling
matrices. The results are presented in the following and provide
an experimentally grounded view of expected accuracy of
machine learning models in predicting the outcome of
screening campaigns for diverse targets.

2. RESULTS AND DISCUSSION

2.1. Profiling Matrices. Two HTS data matrices
comprising the same 53 assays and targets (i.e., one assay per
target) and 109 925 and 143 310 distinct compounds,
respectively, were used for machine learning and VS. These
matrices were assembled from confirmatory assays available in
the PubChem BioAssay collection7,8 by applying our new
algorithm.30 Assays, targets, and assay codes used in the
following discussion are reported in Table 1. The density of the
smaller matrix, termed matrix 1, was 100%, i.e., all possible
matrix cells contained binary annotations of activity or
inactivity. The number of compounds tested per assay initially
ranged from 266 527 to 387 381 and 46 of the 53 assays in

matrix 1 had a hit rate of less than 1%. Table 1 also shows that
the number of active compounds per assay varied significantly,
ranging from only a few to more than 1000. The 53 assays also
included four assays without hits. For assays with only few
active compounds, training of machine learning models was
generally very difficult (if not impossible in some instances).
However, if all test compounds were predicted to be inactive in
such cases, satisfactory results would still be obtained (i.e., only
very few actives would be missed), despite intrinsic limitations
of model building.
A second matrix was generated by slightly reducing the

density in favor of larger compound numbers.30 From this
matrix, all compounds contained in matrix 1 were removed,
yielding matrix 2. The density of matrix 2 was 96%. Matrix 1
and matrix 2 contained 105 475 (96.0%) and 110 218 (76.9%)
compounds, respectively, which were consistently inactive in all
assays. In matrix 1, 3639 (3.3%) of the test compounds had
single- and 811 (0.7%) had multitarget activity. For matrix 2,
the corresponding numbers of active compounds were 19 069
(13.3%) and 14 023 (9.8%), respectively. Hence, the
composition of these matrices was highly unbalanced and
dominated by consistently inactive compounds. Overall, only
0.1 and 0.8% of the cells in matrix 1 and 2, respectively,
contained activity annotations. Matrix composition is summar-
ized in Table 2. In matrix 1, the number of active compounds

per assay ranged from 0 to 1320, with a mean and median value
of 110 and 32, respectively. In matrix 2, it ranged from 0 to
9512, with a mean and median value of 1077 and 348,
respectively. Figure 1 shows exemplary active compounds from
matrix 1. In Figure 2, intra- and interassay similarity of active
compounds is reported. The heat map reveals low mean
similarity of compounds active in different assays. Furthermore,
interassay and intra-assay similarity were overall comparable.
Taken together, these observations indicated that it would be
challenging to detect compounds sharing the same activity on
the basis of similarity calculations and distinguish between
compounds with different activity.

2.2. Prediction Strategy. The primary goal was predicting
the entire matrix 1 by learning from matrix 2. Predictions were

Table 1. continued

assay ID
assay
code target name organism

# active CPDs
(matrix 2 training)

# active CPDs
(matrix 2 test)

# active CPDs
(matrix 1)

588456 BA thioredoxin reductase Rattus norvegicus 1 8 0
aReported are the PubChem assay IDs, codes used here, targets, and organisms, for all 53 assays. In addition, for each assay, numbers of active
compounds in the matrix 2 training and test sets and in matrix 1 are reported.

Table 2. Matrix Compositiona

matrix 1 matrix 2

density 100% 96.4%
# compounds (CPDs) 109 925 143 310
# assays 53 53
percentage of active cells 0.1% 0.8%
# consistently inactive CPDs 105 475 (96%) 110 218 (76.9%)
# CPDs with single-target
activity

3639 (3.3%) 19 069 (13.3%)

# CPDs with multitarget activity 811 (0.7%) 14 023 (9.8%)
aFor matrix 1 and matrix 2, the density, number of compounds and
assays, percentage of cells with activity annotations (active cells),
number of consistently inactive compounds, and number of
compounds with single- and multitarget activity are reported.
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attempted at two levels including global predictions of active
versus consistently inactive compounds as well as activity
predictions for individual targets. For global models, training
and test compounds with different activities were combined to
yield the “active” class. Half of matrix 2 was randomly selected
and used for training of global models using different methods.
Global models were applied to predict active and inactive
compounds for the other half of matrix 2 used as a test set as
well as the entire matrix 1. Per-target models were derived in
two ways: first, using half of matrix 2 and second, the entire
matrix 2. The former per-target models were applied to predict

the matrix 2 test set, and the complete matrix 1 and the latter
models were applied to predict matrix 1. For per-target models,
initial comparisons of different methods and optimization of
calculation parameters were carried out for 10 assays from
matrix 2 with large numbers of available training compounds
(assay codes A−J in Table 1). These models were used to
predict these 10 assays in the matrix 2 test set as well as in
matrix 1. Further details are provided in the Materials and
Methods section.

2.3. Global Models. Given that the vast majority of matrix
compounds were consistently inactive in all assays, we reasoned
that initial exclusion of these consistently inactive compounds
followed by target-based predictions might be a promising
strategy for activity prediction. Successful elimination of
consistently inactive compounds would increase data balance
and reduce the number of compounds to be predicted by per-
target models. Therefore, global models were first built using
SVM, RF, and DNN to distinguish between combined active
and consistently inactive screening compounds. On the basis of
test calculations (see Materials and Methods), models trained
with all available data reached highest relative performance
levels and the ECFP4 fingerprint was a preferred descriptor.
Figure 3 shows the prediction results of the global models for

the matrix 2 test set and for matrix 1. The performance of the
different models was nearly identical in both cases. Although
there was consistent early enrichment of active compounds,
deprioritization of inactive compounds was accompanied by a
substantial loss of active compounds, in particular, for matrix 1.
In this case, eliminating 50% of the inactive compounds also led
to a removal of 25% of the actives. For the minority class, the
magnitude of this initial loss of active compounds limited the
envisioned two-stage prediction approach.

2.4. Models for Assay-Based Predictions. Next, we used
a subset of 10 assays with larger numbers of available active
compounds (assay codes A−J in Table 1) for comparison of
alternative machine learning methods and identification of best-
performing models and preferred calculation conditions.

2.4.1. Method Comparison. Algorithms of different designs
and complexities were systematically compared. Most of the
implemented approaches resulted in single-task (per-target)
models, but two multitask approaches were also included in the

Figure 1. Exemplary active compounds. Shown are exemplary active
compounds from two matrix 1 assays for (a) DNA polymerase β
(assay code B) and (b) serine-protein kinase ATM isoform 1 (code
D), respectively.

Figure 2. Pairwise Tanimoto similarity. The heat map reports mean
pairwise Tanimoto similarity for active compounds from matrix 1. The
extended connectivity fingerprint with bond diameter 4 (ECFP4; see
Materials and Methods) was used as a molecular representation.

Figure 3. Receiver operating characteristic curves for global models.
Receiver operating characteristic (ROC) curves are shown for SVM
(red), RF (green), and DNN (blue) global models, which were trained
with half of matrix 2 and used to predict the other half of matrix 2
(right) and matrix 1 (left).
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comparison. A multitask model yields probabilities of activity
for compounds tested in different assays. Investigated methods
included a similarity search-based approach termed the
conditional correlated Bernoulli model (CCBM) to estimate

rank positions of active compounds; popular machine learning
approaches; such as naıv̈e Bayes (NB) classification, SVM, and
RF, single- and multitask DNN; and graph-convolutional NN
(GraphConv). Test predictions were assessed by calculating

Table 3. Area under the Curve Values for Prediction of 10 Assays of the Matrix 2 Test Seta

assay code CCBM NB RF SVM single-task DNN multitask DNN GraphConv

A 0.85 0.84 0.91 0.92 0.91 0.91 0.90
B 0.77 0.79 0.85 0.85 0.82 0.82 0.83
C 0.64 0.71 0.73 0.72 0.69 0.67 0.72
D 0.63 0.72 0.69 0.65 0.67 0.62 0.64
E 0.81 0.82 0.86 0.84 0.84 0.85 0.85
F 0.82 0.82 0.88 0.88 0.87 0.87 0.86
G 0.73 0.79 0.84 0.84 0.81 0.79 0.82
H 0.80 0.85 0.90 0.90 0.88 0.87 0.89
I 0.80 0.85 0.89 0.89 0.88 0.85 0.89
J 0.84 0.87 0.92 0.92 0.91 0.86 0.92

aReported are AUC values for prediction of 10 assays (codes A−J) using different machine learning methods. For each assay, best results are
indicated in bold.

Table 4. Area under the Curve Values for Prediction of 10 Assays of Matrix 1a

assay code CCBM NB RF SVM single-task DNN multitask DNN GraphConv

A 0.88 0.86 0.93 0.94 0.93 0.93 0.92
B 0.64 0.68 0.70 0.69 0.67 0.66 0.69
C 0.66 0.64 0.69 0.67 0.64 0.64 0.68
D 0.62 0.63 0.62 0.62 0.63 0.60 0.65
E 0.86 0.91 0.94 0.91 0.90 0.88 0.89
F 0.82 0.82 0.87 0.88 0.87 0.86 0.87
G 0.55 0.55 0.58 0.57 0.54 0.57 0.64
H 0.70 0.75 0.77 0.76 0.74 0.75 0.76
I 0.82 0.86 0.89 0.88 0.86 0.83 0.88
J 0.84 0.88 0.93 0.94 0.93 0.90 0.94

aReported are AUC values for prediction of 10 assays (codes A−J) using different machine learning methods. For each assay, best results are
indicated in bold.

Figure 4. Per-target receiver operating characteristic curves. ROC curves are shown for target-based activity predictions with RF (green), multitask
DNN (orange), and CCBM (pink) models. Curves represent 10 matrix 1 assays used for method comparisons. Codes A−J designate assays
according to Table 1.
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area under the curve (AUC) values for receiver operating
characteristic (ROC) curves and recall rates for the top 1% of
ranked test sets.
Initially, we tested general training conditions. For each

assay, available active training compounds were combined with
increasing numbers of compounds inactive in the assay and a
series of models were generated with different machine learning
methods and evaluated. For all methods (except GraphConv),
the folded version of the extended connectivity fingerprint with
bond diameter 4 (ECFP4; see Materials and Methods) was
used as a descriptor. Paralleling the findings for global models,
preferred training sets generally consisted of all available active
and inactive training compounds. Using these training sets,
different methods were compared.
Tables 3 and 4 report benchmark results for the matrix 2 test

set and for matrix 1, respectively. For the matrix 2 test set, best
models consistently yielded AUC values >0.7 per assay and
values >0.8 for eight assays. For matrix 1, prediction accuracy
was overall lower but AUC values <0.7 were only obtained for
three assays. Thus, different methods yielded models with at
least reasonable prediction accuracy in most cases. Interestingly,
although differences in prediction accuracy were often small,
RF was the overall best-performing approach, achieving top
predictions for eight assays in matrix 2 and five in matrix 1. As
shown in Figure 4, it also compared favorably in multitasking
DNN and performed better than the CCBM similarity search
control. The performance level of RF was nearly matched by
SVM, followed by GraphConv. Given overall comparable
prediction accuracy achieved by different machine learning
methods and high RF performance across different assays, RF
was selected as a representative approach for further activity
predictions.
2.4.2. Alternative Molecular Representations. In the next

step, RF models built using different molecular representations
were compared. The results are reported in Table 5. In these
calculations, ECFP4 emerged as the preferred descriptor, with
nearly identical performance of its unfolded and folded (fixed
length) version.
2.5. Per-Target Activity Predictions. On the basis of the

comparisons above, final models for activity predictions on the

49 assays producing hits in matrix 1 were derived using RF,
folded ECFP4, and all available active and inactive compounds
per assay from the matrix 2 training set. As reported in Table 1,
only few active training instances were available in a number of
assays.
The results of activity predictions for all assays in the matrix

2 test set and in matrix 1 are reported in Figure 5. Predictions

were overall superior for matrix 2 than matrix 1 (that did not
share compounds with matrix 2). For matrix 2, AUC values of
0.8 or greater were achieved for 31 of 49 assays; an encouraging
finding. For matrix 1, AUC values of at least 0.8 were obtained
for 22 assays but there were also nine assays with low
performance close to or even worse than random selection. In
most cases, assays with low prediction accuracy only contained
a limited number of actives (ranging from 1 to 79 compounds).
As a control, matrix 1 predictions were also carried out with
models trained on the entire matrix 2, shown in Figure 6. The
availability of essentially twice as many active training
compounds significantly improved prediction accuracy, with
AUC values of 0.7 or greater obtained for 35 assays.
Table 6 reports the results for predictions on the 49 assays in

matrix 1 after training RF models on the entire matrix 2. Recall
rates among the top 1% of the ranking ranged from 0 to 100%
and varied significantly, with mean and median values of 35 and
30%, respectively. Active compounds were successfully
identified for 41 of 49 assays, and 26 models achieved recall
rates of at least 30%. In instances where activity predictions
completely failed, only few active compounds were available
(ranging from two to eight). Interestingly, for many assays,
there was a notable early enrichment of active compounds. In
22 cases, the first active compound was ranked among the top
three database molecules and in 30 cases, it was ranked among
the top 30. Thus, per-target models yielded promising
predictions in many instances.

2.6. Conclusions. In this study, we have attempted to
predict compound profiling matrices extracted from raw
screening data. Large numbers of assays, small numbers of
active compounds, their chemical diversity, and very large
number of consistently inactive compounds challenged

Table 5. Comparison of Different Molecular
Representationsa

assay
code MOE MACCS

MOE + fold.
ECFP4

nonfolded
ECFP4

folded
ECFP4

A 0.91 0.90 0.93 0.93 0.93
B 0.65 0.64 0.68 0.70 0.70
C 0.66 0.67 0.68 0.69 0.69
D 0.59 0.60 0.63 0.65 0.62
E 0.86 0.84 0.90 0.93 0.94
F 0.86 0.84 0.87 0.87 0.87
G 0.58 0.56 0.60 0.57 0.58
H 0.76 0.73 0.76 0.77 0.77
I 0.85 0.86 0.87 0.90 0.89
J 0.90 0.92 0.93 0.93 0.93

aReported are AUC values for prediction of 10 assays (codes A−J) in
matrix 1 using per-target RF models on the basis of different molecular
representations, including 192 two-dimensional (2D) descriptors from
the Molecular Operating Environment (MOE), 166 MACCS
structural keys, the folded and unfolded version of ECFP4, and the
combination of MOE descriptors and folded ECFP4 (MOE + fold.
ECFP4). For each assay, best results are indicated in bold.

Figure 5. Area under the curve values for per-target models trained
with half of matrix 2. AUC values are reported for predictions of
compounds active in assays of the matrix 2 test set (blue) and matrix 1
(red).
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predictions in this case. Different machine learning methods
were compared for their ability to identify active compounds
across assays. Perhaps surprisingly, alternative methods often
yielded comparable performance. Overall, RF emerged as a
preferred approach, followed by SVM. Deep learning methods
did not yield further improved prediction accuracy. In this
context, we note that compound data sets used for activity
predictions are still much smaller in size than many other data
sets originating from life science research. In addition,
compound data sets for activity prediction are also studied
computationally using predefined molecular representations.
Taken together, these features do not play into the strengths of
deep learning in extracting patterns and feature representations
from large data sets. This may explain the absence of significant
performance increases through deep learning in predicting
profiling matrices. Data sets originating from the life sciences
that are more suitable for deep learning include, for example,
images from high-content screening, data from large-scale gene
expression analysis or next generation sequencing, and
multipoint records from clinical trials. In these cases, perform-
ance increases through deep learning relative to other
computational methods might be expected. Notably, image
analysis in computer science has been one of the first
applications where deep learning outperformed other machine
learning approaches.
Initially, in our study, global models were designed aiming to

eliminate large numbers of consistently inactive compounds.
However, these models also deprioritized many active
compounds, thus limiting their applicability as a first-path
computational screen. By contrast, systematic activity pre-
dictions using per-target RF models yielded overall promising
predictions on the basis of highly unbalanced training sets. A
notable early enrichment of active compounds was frequently
observed.
Compound matrices obtained from experimental screens

provided a more realistic test system for machine learning than
often applied benchmark settings. Under these conditions,
prediction accuracy was lower than often reported for standard
benchmarking exercises, as expected. Increasing complexity of
machine learning methods did not scale with prediction
accuracy, e.g., deep learning did not make a difference in this

case. However, RF calculations yielded successful predictions
for the majority of assays, indicating the ability of standard
machine learning methods to identify novel active compounds
under rather challenging experimental conditions. As an
outlook, multitask learning should be further explored on the
basis of profiling matrices for subsets of assays and we are also

Figure 6. Area under the curve values for per-target models trained
with matrix 2. AUC values are reported for predictions of compounds
active in assays of matrix 1.

Table 6. Recall of Active Compounds in the Top 1% of
Ranked Matrix 1a

assay
code

# active CPDs in
matrix 1

# active CPDs in
top 1%

recall
(%)

rank of first
active CPD

X 1320 383 29 1
S 410 209 51 2
A 395 208 53 1
F 424 161 38 1
Q 223 120 54 1
J 156 113 72 2
AN 275 80 29 1
E 103 63 61 1
AR 662 59 9 1
C 420 56 13 4
AO 74 52 70 1
W 64 49 77 1
L 57 43 75 1
AB 98 36 37 5
I 118 35 30 10
AM 32 30 94 1
M 41 28 68 2
K 39 26 67 2
AK 65 25 38 3
AQ 57 17 30 7
D 118 16 14 1
B 125 15 12 2
AA 48 15 31 1
AF 28 15 54 1
G 103 7 7 42
H 39 7 18 39
AE 17 7 41 4
AS 25 7 28 1
AV 15 6 40 11
N 32 5 16 5
Y 13 5 38 1
AI 28 5 18 19
AD 6 3 50 72
V 50 2 4 192
AJ 6 2 33 88
T 1 1 100 38
Z 1 1 100 368
AG 1 1 100 146
AH 11 1 9 32
AU 16 1 6 249
AW 79 1 1 573
O 8 0 0 6758
P 3 0 0 12 637
R 2 0 0 31 266
U 4 0 0 1805
AC 6 0 0 2012
AL 2 0 0 26 430
AP 5 0 0 1156
AT 3 0 0 36 085

aFor each assay, the number of active compounds in matrix 1, their
recall in the top 1% of the ranking, and the highest-ranked active for
RF models trained with matrix 2 are reported.
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interested in focusing predictions specifically on small numbers
of compounds with multitarget activity for which a different
methodological framework might be required.

3. MATERIALS AND METHODS
3.1. Matrices. A complete (100% density) assay-compound

matrix (matrix 1) was generated from confirmatory assays in
the PubChem BioAssay database7 using a newly introduced
algorithm.30 PubChem compounds yielding unique SMILES
representations were retained in the matrix, which contained
109 925 compounds tested against a panel of 53 different
confirmatory assays. Subsequently, matrix 2 with a final density
of 96% was generated using the same algorithm. Initially, a
matrix 2 precursor was assembled with 95% density that
contained 281 943 compounds tested in the 53 assays. From
the precursor, all matrix 1 compounds were removed. In
addition, 28 708 inactive compounds tested in less than 50
assays were eliminated, yielding matrix 2 with 143 310
compounds. matrix 2 was then randomly divided into training
and test sets each consisting of 71 655 compounds. Zero
imputation31 was applied to missing values. Forty nine of the 53
assays produced hits, as reported in Table 1.
3.2. General Training Conditions. 3.2.1. Global Models.

Global models to distinguish between combined active and
consistently inactive compounds were initially built using SVM,
RF, and DNN on the basis of training sets of increasing size
taken from the matrix 2 training set. A steady improvement in
performance was observed with increasing training set size,
consistent with earlier observations.32 Therefore, final global
models were built using the entire matrix 2 training set.
3.2.2. Per-Target Models. Initially, per-target models were

trained for 10 selected assays (codes A−J) for which larger
numbers of active compounds were available (Table 1). Models
were built using all active training compounds and different
numbers of randomly selected compounds that were inactive in
each assay. First, all available inactive compounds were used.
Second, the number of randomly selected inactive compounds
was set to 10 and 20 times the number of active compounds,
following previously established rules for composition of
training sets.32 Hence, three training sets with increasing ratio
of inactive to active compounds were compared in model
building.
3.3. Molecular Representations. Several descriptors were

evaluated to represent compounds, including the extended
connectivity fingerprints of bond diameter 4 (ECFP4)33 and
MACCS structural keys.34 ECFP4 is a feature set fingerprint
that enumerates layered atom environments and encodes them
as integers using a hashing function. The feature set
(“unfolded”) version of ECFP4 has variable size but can be
“folded” to yield a constant number of bits. A 1024 bit folded
version of ECFP4 was obtained through modulo mapping.
MACCS is a binary keyed fingerprint, accounting for the
presence or absence of 166 predefined substructures. The
OEChem toolkit35 and inhouse Python scripts were used to
generate these fingerprints. In addition, 192 numerical 2D
MOE descriptors were used.36 Among others, these descriptors
included physical properties, atom and bound counts, and
various topological descriptors. Furthermore, graph-based
representation known as graph-convolutional networks (Graph-
Conv) was evaluated as an alternative to conventional chemical
descriptors. GraphConv is a learnable representation inspired
by the Morgan circular fingerprint representing compounds as
undirected graphs and employs convolutional layers to create

graph-based features.37−39 The DeepChem (version 1.3.2
dev)40 implementation of GraphConv was used. Fingerprint
similarity was quantified by calculating the Tanimoto coefficient
(Tc).41

3.4. Machine Learning Models. Similarity searching, three
state-of-the-art machine learning, and three types of DNNs
were applied. For building predictive models, training
compounds were represented as a feature vector ∈x and
associated with a class label y ∈ {−1, 1}, encoding inactivity or
activity for a given target. If the activity against all targets was
predicted with a global model, y was expressed in a vector form.

3.4.1. Conditional Correlated Bernoulli Model (CCBM).
CCBM is an approach for modeling the distribution of Tc
values of a screening database given a reference compound.42

For a specific target, each active compound from the matrix 2
training set was used once as the reference to search for active
compounds in the test sets, i.e., matrix 2 test set and in matrix 1.
Consistently inactive compounds from the matrix 2 training set
were used as the database, and all active compounds present in
matrix 2 test set and in matrix 1 were used as probes. A p-value
representing the probability of finding a database compound
with higher rank was calculated for every test compound. A
nearest neighbor reference compound was determined and
selected for each test compound having the highest Tc value,
and the p-value corresponding to this reference compound was
considered. If multiple nearest neighbors existed for a test
compound, the mean p-values was taken. Finally, a ranking of
test compounds was generated in the order of increasing p-
values.

3.4.2. Support Vector Machine (SVM). SVM is a supervised
learning algorithm aiming to identify a hyperplane H that best
separates two classes using the training data projected into the
feature space .43 This hyperplane is defined by a weight
vector w and a bias b so that H = {x·w, x + b = 0} and
maximizes the margin between the classes. To achieve better
model generalization, slack variables can be added to permit
errors of training instances falling within the margin or on the
incorrect side of H. The trade-off between training errors and
margin size can be controlled by the regularization hyper-
parameter C, which was optimized herein by 2-fold cross-
validation using candidate values 0.1, 1, and 10. The preferred
C values were 0.1 for 9 out of 10 models. In addition, the
“kernel trick” enables projecting the training data into a higher
dimensional space without computing the explicit mapping
of into . Class weights were considered to preferentially
penalize errors in the minority class (active compounds).32 The
Tanimoto kernel44 was used to replace the standard scalar
product.32 SVM models were generated using SVM-light.45

3.4.3. Random Forest (RF). RF consists of an ensemble of
decision trees built from distinct subsets of the training data
with replacement, known as bootstrapping.46 A random subset
of features is considered during node splitting for the
construction of trees.47 The number of trees was set at 500,
and class weights were applied. The number of randomly
selected features available at each split (max_features) and the
minimum number of samples required to reach a leaf node
(min_samples_leaf) were optimized via 2-fold cross-validation.
Candidate values for max_features were the square root, the
logarithm to base 2, or the total number of features; for
min_samples_leaf, candidate values were 1, 5, and 10. RF
calculations were carried out with scikit-learn.48 The minimum
number of samples for a leaf node was set to 5 for half of the
assays and to 10 for the other half and the maximum number of
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features to 10 and 32, respectively. No preferred parameter
combination was identified.
3.4.4. Naıv̈e Bayes (NB). NB uses Bayes’ theorem to predict

the probability of a compound x to be active assuming feature
independence49,50

| = | ·
P x

P x P
P x

(active )
( active) (active)

( )

For binary descriptors, the Bernoulli NB implementation of
scikit-learn was used.48

3.4.5. Deep Feed Forward Neural Network (DNN). DNN
classifier approximates a function that maps an input value x to
a class y, y = f(x; w), and learns the value of parameters w to
achieve the best approximation.51 DNN consists of different
layers with a number of neurons: an input layer, at least two
hidden layers, and an output layer.52 Each hidden or output
neuron assigns weights to the inputs, adds these weights, and
passes the sum through a nonlinear function or activation
function

∑= +
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟y f w x bk

j
kj j k

where y is the output of neuron k, f is the activation function, x
is the input variable (activation neuron in the previous layer), w
is the weights connecting neuron k with xj, and bk is the bias.
The summation includes all of the neurons adding connections
to k.53 Accordingly, each input is modified by a unique set of
weights and biases. During the training phase, weights and
biases are modified to obtain the correct output y, which is
facilitated by following the gradient of the cost function
(gradient decent) and efficiently calculated using back-
propagation.52 Training is generally performed using subsets
of data, and the weights and biases are updated accordingly.
Single-task DNNs (with one DNN per assay) and a multitask
DNN (i.e., a single DNN for predicting all active compounds)
were investigated. For the multitask DNN, the matrix
containing the activity profiles for training compounds was
fed into the network as the set of desired outputs y and the
output layer consisted of multiple nodes equaling the number
of assays. Implementations were based on tensorflow54 and
keras.55

Following previously formulated guidelines,4,24,56 hyper-
parameters were either set to constant values or optimized by
internal validation using 80 vs 20% data splits. For DNN, tested
values for the learning rate (LR) were 0.01 and 0.001 and for
the drop-out rate (DO), tested values were 25 and 50%.
Investigated network architectures included [2000, 100], [2000,
1000], [500, 500, 500], [2000, 1000, 100], and [2000, 1000,
500, 100]. Therefore, both pyramidal and rectangular
architectures were considered during hyperparameter optimi-
zation. Stochastic gradient descent was chosen as the optimizer,
128 as the batch size, and the “rectified linear unit” (ReLU) as
the activation function. Output nodes were “softmax” for the
single-task and “sigmoid” for the multitask DNNs. Different
weights were also applied to the data according to the ratio of
the number of active to inactive compounds to put more
emphasis on actives. Finally, the maximum number of “epochs”
was set to 100 for internal validation and 500 for the final
model building.
For single-task DNN, two combinations of hyperparameters

were preferentially selected including an optimum LR of 0.001,

DO of 50%, and architecture [2000, 1000], as well as LR was of
0.01, DO of 25%, and architecture [2000, 100]. Multitask
models require a single combination of optimized hyper-
parameters. Therefore, the median of AUC for all assays was
used as a metric for multitask DNN hyperparameter
optimization. The maximum value was obtained with a
pyramidal architecture of two layers ([2000, 1000]), LR of
0.001, and DO of 25%.

3.4.6. Graph-Convolutional Neural Networks (Graph-
Conv). As mentioned above, GraphConv is based on features
or descriptors with learnable parameters from a 2D molecular
graph. Initially, a set of atom features, such as atom type or
valence, and a neighbor list is obtained for every atom.
Neighbor information is assigned to each atom by summing up
the neighbors’ features. The learnable parameters include the
weight matrices and biases used for posterior transformations.
The same weight matrices and bias vectors are used in one layer
depending on the degrees of atoms. After updating atom
features, the pooling layer uses an activation function to
generate a new set of feature values, which is the output vector
in one layer. This procedure is repeated several times, and all of
the outputs are summed up to obtain the final representation of
the compound.5 Finally, this representation is the input of a
fully connected DNN. Therefore, in this approach, feature
extraction and model building are combined into one trainable
module.38 In our study, GraphConv models were carried out
with DeepChem (version 1.3.2 dev),40 which implemented a
modified architecture of GraphConv. The pooling operator is
max pool on an atom that returns the maximum activation
across the atom and the atom’s neighbors without introducing
additional parameters. Instead of summing several layers’
outputs, a graph gather layer is introduced. This layer sums
all feature vectors for all atoms to obtain the final
representation of a compound.
For GraphConv, internal validation (80−20%) was also

applied and the number of epochs was set to 50 and the batch
size to 256. The DO value was set to 25%. The numbers of
output features in hidden graph-convolutional layers were [64],
[64, 64], [64, 128, 64], [32, 32, 32, 32], and [64, 64, 64, 64];
for the dense layer dimension, which precedes the gather layer,
they were 128 and 256; and for LR they were 0.01 and 0.001.
Moreover, batch normalization, Adam optimizer, and ReLU
were considered except for the gather (tanh), as the default
settings in DeepChem. A single combination of hyper-
parameters was determined on the basis of the median value
of AUCs for the 10 assays, as described for multitask DNN.
The preferred architecture had three hidden convolutional
layers with [64, 128, 64] neurons, 256 neurons in the dense
layer, and an LR of 0.001.
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