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Abstract

Allosteric regulatory processes are implicated at all levels of biological function. Recent advances 

in our understanding of the diverse and functionally significant class of intrinsically disordered 

proteins have identified a multitude of ways in which disordered proteins function within the 

confines of the allosteric paradigm. Allostery within or mediated by intrinsically disordered 

proteins ensures robust and efficient signal integration through mechanisms that would be 

extremely unfavorable or even impossible for globular protein interaction partners. Here, we 

highlight recent examples that indicate the breadth of biological outcomes that can be achieved 

through allosteric regulation by intrinsically disordered proteins. Ongoing and future work in this 

rapidly evolving area of research will expand our appreciation of the central role of intrinsically 

disordered proteins in ensuring the fidelity and efficiency of cellular regulation.
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I. INTRODUCTION

Classical descriptions of allostery [1, 2] were based on observations of cooperativity 

between subunits of folded, oligomeric proteins. The concept of allostery has since been 

expanded to include regulatory mechanisms involving monomeric proteins, where binding 

of a ligand at one site can result in modulation of functional outcome at a distant site. Many 

experimental descriptions of allosteric regulation focused on the existence of discrete 

conformational states in the presence and absence of allosteric effector ligands. While these 

studies greatly advanced our understanding of how biological molecules can mediate a wide 

range of cellular signals, it became clear that changes in structure alone could not account 

for all observations of allosteric processes in biological systems [3–5]. This problem is 

addressed by the concept of dynamic allostery, which posits that allosteric signals can be 

transmitted through changes in the dynamic properties of amino acid networks connecting 

the ligand binding sites [6–9]. Protein dynamics is also central to ensemble models of 

allostery, in which binding of a ligand or other effector leads to a shift in the population of 

the various conformational states that are sampled through fluctuations of the protein 

structure [10]. There are numerous examples of biological systems that utilize both types of 

allostery and combinations thereof, providing exquisite insights into the functional 

importance of protein dynamics as well as structural changes in the context of signal 

transduction and enzyme catalysis.

Over the past decade, research on intrinsically disordered proteins (IDPs) and intrinsically 

disordered regions of proteins (IDRs) has prompted a re-evaluation of the definitions of 

allosteric phenomena. Approximately one-third of human proteins contain disordered 

regions that are 30 or more amino acids in length [11]. IDPs and IDRs are flexible and 

capable of rapidly sampling an ensemble of conformational states [12]. IDPs are common 

participants in multivalent interactions, frequently function as hubs in molecular interaction 

networks, and are highly enriched in sites for post-translational modification [13–17]. These 

inherent characteristics of IDPs make them ideally suited for cellular signaling and 

regulation [15, 18], and recent studies have indicated that the ability of disordered proteins 

to rapidly integrate and transmit a wide range of diverse cellular signals can be linked to 

mechanistic processes best described under the umbrella of allostery [12, 19–21]. In some 

cases, the allosteric phenomenon is observed within a single disordered polypeptide chain, 

in which a coupled folding-and-binding event or post-translational modification in one 

region of the protein influences subsequent interactions or modifications at a distant site 

within the same molecule. In other cases, the IDPs themselves act as extremely precise 

allosteric effectors, cooperatively modulating binding events on macromolecular surfaces 

and elegantly orchestrating responses to stimuli and decisions about cell fate.

In this review, we highlight the diversity of allosteric regulatory mechanisms that have been 

observed for molecular processes involving IDPs and the unique regulatory sensitivity that 

can be achieved through IDP-mediated allostery. Each example will be discussed with a 

focus on the biological and functional significance of the disordered proteins involved, as 

well as within the context of currently available theoretical descriptions and mechanistic 

models of allosteric regulation mediated by protein disorder. Finally, we will provide our 

perspectives on the future expansion of the concept of allostery to include the processes 
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described here, and on the experimental methods and theoretical framework which will 

allow for further characterization of these complex yet highly important systems.

II. EXAMPLES OF ALLOSTERY INVOLVING DISORDERED PROTEINS

Thermodynamic coupling as a driver of allostery

The allosteric potential of intrinsically disordered proteins was first described theoretically 

in a series of papers by Hilser and colleagues [5, 10, 22–25]. Using thermodynamic models, 

the ensemble allosteric model (EAM) was developed to illustrate the energetic basis of 

allosteric coupling in multi-domain regulatory proteins. This framework is a natural and 

necessary extension of the concepts of structural and dynamic allostery: if each region of a 

protein is considered to exist as a distinct conformational ensemble, fluctuations within the 

conformational ensemble of one discrete protein domain (for example, upon ligand binding 

and/or folding) can play an important role in dictating functional output through energetic 

coupling (Δgint) to distal sites. By modeling energetic coupling in two- and three-domain 

proteins, it was demonstrated that there is a distinct thermodynamic advantage for disorder 

in optimizing allosteric coupling between domains (Figure 1) [10]. This formalism was 

further expanded to describe how intrinsically disordered protein ensembles can be tuned 

through a redistribution of conformational populations to enable a given protein region to 

function as both an allosteric agonist and antagonist [22].

Application of the EAM to the human glucocorticoid receptor (GR), an allosterically 

regulated transcription factor from the steroid hormone receptor class of nuclear receptors, 

has enabled detailed, quantitative mechanistic studies of allostery involving disordered 

proteins. The human glucocorticoid receptor (GR) consists of three functional domains: an 

N-terminal intrinsically disordered (ID) domain, a central DNA binding domain (DBD), and 

a C-terminal ligand binding domain (LBD). All three domains of GR are inherently 

dynamic, and their conformational states can be altered by ligand or co-factor binding [26]. 

Studies of naturally occurring GR translational isoforms that differ only in the length of the 

N-terminal ID domain illustrate the functional importance of the disordered segments of GR, 

with the various isoforms displaying different physiological distribution and functional 

specificities [27, 28]. The changes in regulatory specificity for the N-terminal ID of GR can 

be observed even in studies of the ID domain in isolation [27]. The ID can be further broken 

down into two regions of distinct function: the regulatory (R) domain at the extreme N-

terminus and the functional (F) domain that links the R domain to the DNA-binding domain 

and serves as a binding hub for cofactors and cellular activators required for transcriptional 

activation. Thermodynamic coupling between the R and F domains of the GR N-terminal ID 

varies with the length and overall stability of the R domain in the various isoforms, resulting 

in modulation of transcriptional activity [27]. Recently, these studies were extended to 

include the DBD of GR, allowing for characterization of a more complex biological system 

within the framework of the EAM [28]. In longer constructs of GR, functional output is 

modulated not only by thermodynamic coupling between the R and F domains of the ID, but 

also by thermodynamic coupling of the R and F domains to the DBD. Through careful 

analysis, the authors determined that only a small subset of the possible combinations of 

coupling energies allow for transcriptional activation or repression; the remaining 
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combinations are functionally inactive due to “energetic frustration” caused by competing 

thermodynamic coupling between the domains.

By combining theoretical descriptions and experimental observations, these studies 

demonstrate that it is possible to obtain a great deal of information regarding complex 

allosteric regulatory mechanisms involving disordered proteins. In addition to the studies of 

GR highlighted here, recent work on the PPARγ-RXRα heterodimeric nuclear receptor has 

provided further insight into the mechanisms of allosteric signal transmission within multi-

domain proteins in response to ligand and co-activator binding [29].

Conditional cooperativity

As suggested in the theoretical framework developed by Hilser and co-workers, intrinsic 

disorder may serve to optimize allosteric coupling between binding sites. This is indeed the 

case for the phd/doc toxin-antitoxin (TA) operon from bacteriophage P1. Early molecular 

biological studies of TA operons revealed a phenomenon termed “conditional cooperativity” 

whereby the toxin is able to function as both an enhancer and a repressor of transcription 

[30–32]. The “conditional cooperativity” of transcriptional regulation in the context of TA 

operons was found to be completely dependent on the ratio of available toxin (Doc) to 

antitoxin (Phd). Phd is comprised of a globular N-terminal domain required for dimerization 

and DNA binding, and a C-terminal intrinsically disordered region that adopts an α-helical 

structure in complex with Doc [33]. Transcriptional repression of the phd/doc operon is 

dependent on the N-terminal DNA binding domain of PhD.

To obtain a mechanistic description of the “conditional cooperativity” observed for 

regulation of the phd/doc operon, Loris and coworkers used structural methods to 

characterize the conformational ensemble of Phd in its free state and bound to Doc [34]. 

These studies revealed instability and conformational heterogeneity in the N-terminal DNA-

binding domain of Phd. Remarkably, both the stability and DNA binding activity of the Phd 

N-terminus were dramatically enhanced by binding of Doc to the disordered C-terminal 

domain, indicating allosteric coupling between the N- and C-terminal domains of Phd. 

Further studies allowed for description of the molecular details behind the stoichiometry-

dependent switch between transcriptional enhancement and repression (Figure 2), revealing 

that disordered regions within the antitoxin Phd function as entropic barriers that impair 

binding of a second Phd molecule to the operator DNA through negative cooperativity. Doc 

binding to the first Phd molecule lowers the entropic barrier and triggers an allosteric switch 

to positive cooperativity, which allows for strong repression. However, once Phd is fully 

saturated with Doc, the repressor complex becomes energetically unfavorable due to steric 

clashes between neighboring Doc molecules, enabling de-repression of transcription [35].

An important outcome of this study, which also pertains to many other systems, was the 

discovery that the degree of disorder in the C-terminal region of Phd is finely tuned to 

optimize allosteric coupling. Chimeric constructs in which all charged residues within the 

Phd C-terminal disordered region were replaced by polar or neutral amino acids, or in which 

of the entire C-terminal IDR was replaced with [SSSG]n further exacerbated negative 

cooperativity between binding sites, indicating that maintenance of a certain degree of 

disorder in the Phd C-terminal IDR is highly important for function [35].
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Disordered proteins as allosteric effectors

The transcriptional co-activator CREB-binding protein (CBP) and its paralog p300 function 

as master regulators of cellular transcriptional programs by mediating interactions between a 

wide variety of transcription factors and the basal transcription machinery [36–38]. CBP is a 

large, multi-domain protein featuring seven stably folded domains, one molten globular 

domain, and many disordered regions of both known and unknown functionality [39, 40]. 

Both the structured and disordered regions of CBP interact with a multitude of disordered 

protein partners, and recent studies have implicated allosteric mechanisms as playing an 

important role in modulating the transcriptional co-activation function of CBP/p300.

The globular KIX domain of CBP is an important binding site for a number of intrinsically 

disordered transcription factors involved in cell differentiation, leukemogenesis, and viral 

transformation [38, 41]. The kinase inducible activation domain (pKID) of the transcription 

factor CREB and the activation domain of the transcription factor c-Myb bind to a common 

site on KIX, whereas the mixed lineage leukemia protein (MLL) binds to a distinct surface 

on the opposite face of KIX (Figure 3) [42, 43]. Biochemical and structural studies show 

that MLL and pKID or MLL and c-Myb bind cooperatively to KIX to form ternary 

complexes; binding of MLL in its cognate site enhances the binding of both pKID and c-

Myb and vice versa [42, 44, 45]. These studies indicated that KIX functions not only as a 

structured scaffold for binding of disordered ligands but also as an allosteric modulator of 

transcription.

Numerous studies have sought to obtain a mechanistic explanation for the synergistic 

coupling between the distinct binding sites on KIX. ITC measurements of cooperativity in 

forming the c-Myb:KIX:MLL and pKID:KIX:MLL ternary complexes revealed differing 

thermodynamic contributions depending on the pair of ligands [42]. Cooperativity in binding 

of pKID to the KIX:MLL complex is driven by an increase in entropy, whereas enhanced 

binding of c-Myb to form the ternary complex is due to a favorable change in enthalpy. 

NMR studies by Bruschweiler, et al. [46, 47] identified dynamic amino acid networks 

linking the MLL binding site to the second ligand binding site on the other side of the KIX 

structure. Computational studies have provided additional insight into the mechanism of the 

cooperativity, although there are conflicting explanations for the origins of allostery within 

KIX arising from these studies. Molecular dynamics simulations of both the c-

Myb:KIX:MLL [48] and pKID:KIX:MLL [49] ternary complexes suggested that 

cooperativity originates from a shift in the KIX conformational ensemble upon binding 

MLL, to populate a state that favors binding of c-Myb or pKID. However, the results of 

another computational study [50] suggested that binding of MLL lowers the entropic cost for 

binding of c-Myb, a result that is inconsistent with experiment [42]. Detailed kinetic studies 

using stopped-flow fluorescence methods suggested that allostery is mediated by changes in 

the binding kinetics of individual ligands in the presence or absence of a ligand in the 

opposing site, with the differences in kinetics observed primarily in the dissociation rate 

constants of the individual disordered ligands [51, 52].

Despite an abundance of data, a mechanistic explanation that can uniformly and reliably 

account for all of the observed allosteric processes involving KIX is lacking. The extreme 

diversity of ligands competing for the two binding sites on KIX (the MLL site and the 
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pKID/c-Myb site) suggests that a general unifying mechanism might not be able to explain 

the role of cooperativity (either positive or negative) in function. By employing allostery to 

control occupancy of its two ligand binding sites, KIX could more effectively integrate 

cellular signals and ensure rapid transcriptional responses to the constantly changing 

environment in the cell.

A more recent example of allostery driven by binding of disordered proteins involves the 

TAZ1 domain of CBP/p300, which forms the binding site for numerous regulatory proteins 

[53]. The cellular transcriptional response to oxygen deficiency is mediated by the 

transcription factor HIF-1 [54–56], which interacts with the TAZ1 domain of CBP/p300 

through the disordered C-terminal transactivation domain of its oxygen-sensitive α subunit 

to activate transcription of critical adaptive genes [57, 58]. Upon restoration of normal 

oxygen levels, the transcriptional program and overall stability of HIF-1α is downregulated 

by negative feedback loops [59, 60]. These feedback loops are essential for HIF-1α 
regulation, as dysregulation or uncontrolled HIF-1α transcriptional activity is associated 

with metabolic disorders and abnormal angiogenesis, promoting a number of undesirable 

outcomes, including tumor growth, cardiovascular disease, and prolonged inflammatory 

response [54].

HIF-1α transcriptional activity is downregulated by the intrinsically disordered protein 

CITED2, which is under direct transcriptional control of HIF-1α and competes with HIF-1α 
for binding to TAZ1 [61]. Solution structures of TAZ1 bound to the disordered C-terminal 

transactivation domains of HIF-1α [62, 63] and CITED2 [64, 65] reveal that the proteins 

bind to a partially overlapping site on TAZ1, with a conserved four residue LP(Q/E)L motif 

occupying an identical binding groove on the TAZ1 surface. The HIF-1α and CITED2 

activation domains bind tightly to TAZ1 with equal affinity (~10 nM) [64, 66], yet 

fluorescence and NMR studies of HIF-1α and CITED2 competition for TAZ1 binding 

yielded a surprising result [66]. In mixtures containing equimolar amounts of HIF-1α, 

CITED2, and TAZ1, only CITED2 is bound to TAZ1, implying that CITED2 binding 

disfavors the HIF-1α bound state. Detailed analysis of the biophysical and structural data 

revealed that CITED2 displaces the bound HIF-1α from its complex with TAZ1 by a 

complex allosteric mechanism which relies heavily on the disorder of both HIF-1α and 

CITED2, as well as structural plasticity of the TAZ1 domain (Figure 4). In its TAZ1-bound 

state, HIF-1α retains flexibility throughout its N-terminus and the LPQL motif to facilitate 

access to the TAZ1 surface by CITED2. Once CITED2 binds to TAZ1 via its N-terminal α 
helix, coupling between the CITED2 α helix and the LPEL motif facilitates displacement of 

the HIF-1α LPQL motif from the common binding site. These initial binding events trigger 

a conformational change in TAZ1, from a conformation that is more favorable for HIF-1α 
binding to a conformation that strictly favors CITED2 binding, effectively skewing the 

equilibrium such that the only observable state is the TAZ1:CITED2 complex. Importantly, 

this process is only weakly reversible—while equimolar amounts of CITED2 are sufficient 

to fully displace HIF-1α from its complex with TAZ1, very large amounts of HIF-1α are 

required to displace CITED2 from its complex with TAZ1. The ability of CITED2 to fully 

displace bound HIF-1α from its complex with TAZ1 at equimolar concentrations implies 

that regulatory efficiency can be achieved without requiring the accumulation of high 

concentrations of CITED2 to shut off HIF-1α transcriptional activation. Thus, HIF-1α, 
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CITED2, and TAZ1 function as a highly efficient, unidirectional molecular switch capable 

of responding to environmental signals within the cell [66].

The allosteric behavior observed for competition between HIF-1α and CITED2 for TAZ1 

binding is largely dependent on the flexible and disordered nature of the HIF-1α and 

CITED2 transactivation domains. CITED2 exploits the nascent flexibility of the HIF-1α N-

terminus to use its own N-terminal α helix as an anchor to TAZ1, bringing the CITED2 

LPEL motif into close proximity to its binding site and driving efficient displacement of 

HIF-1α. The allosteric mechanism here shares many features with the “anchor and driver” 

model of allostery proposed by Nussinov and coworkers [67, 68] in which the “anchor” of 

the allosteric effector (CITED2 α helix) dictates the potency of the allosteric enhancement 

while the “driver” (CITED2 LPEL motif) influences the efficiency of the allosteric process.

Conformational changes within the TAZ1 domain itself also play an important role in 

allosteric regulation. Plasticity in the TAZ1 domain allows for subtle conformational 

rearrangement in its complexes with HIF-1α and CITED2, and structural differences in the 

TAZ1:HIF-1α and TAZ1:CITED2 complexes dictate whether a competing ligand can bind 

or not. Parallels can be drawn to the example of cooperative binding interactions of the KIX 

domain of CBP discussed above and summarized in Figure 3. In both cases, structural 

changes in globular domains that bind multiple ligands at distinct binding sites can be 

instrumental in determining the bound (and functional) state of the protein at equilibrium.

The molecular switch between HIF-1α and CITED2 also shares similarities with examples 

from the literature that have been described as “unidirectional allostery” [69, 70], 

“competitive allostery” [71], and “facilitated dissociation” mechanisms [72–74]. In all of 

these mechanisms, competition for a shared binding site accelerates dissociation of the 

bound ligand. These types of regulatory mechanisms would be highly advantageous in 

cellular signaling processes where it might be detrimental to wait for bound ligands or 

partner proteins to spontaneously dissociate.

Disorder within molecular hub proteins can modulate functional output

A key property of intrinsically disordered proteins is that they often contain multiple 

interaction motifs (binding sites) for molecular partners. As such, they can potentially bind 

to multiple cellular partners in a variety of combinations, allowing them to function as 

molecular hubs in interaction networks [13, 75]. Molecular hub proteins display varying 

degrees of binding promiscuity, with some binding modules favoring interactions with both 

high affinity and specificity, while other interactions can feature low affinity and low 

specificity, and all possible combinations in between. One such intrinsically disordered 

molecular hub protein is the adenovirus oncoprotein early region 1A (E1A), which interacts 

with the TAZ2 domain of CBP/p300 and the retinoblastoma protein (pRb) to epigenetically 

reprogram transcriptional processes in the host cell [76, 77]. Intriguingly, E1A interactions 

with partner proteins can be modulated by both positive and negative cooperativity, 

depending on the occupancy or availability of various binding sites [78, 79]. For instance, an 

E1A construct containing only conserved region 1 (CR1), which is capable of binding both 

pRb and TAZ2 in isolation, displays negative cooperativity for formation of an E1A-TAZ2-

pRb ternary complex when the E1A CR1 region is already bound to the other partner 
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protein. Extension of the E1A construct to include the N-terminal domain results in 

formation of ternary E1A-TAZ2-pRb complexes with positive cooperativity (Figure 5). This 

switch from negative to positive cooperativity is driven by the incorporation of another 

TAZ2 interaction site, implying an allosteric regulatory mechanism in which occupancy of 

the N-terminal domain modulates pRb binding in the CR1 region. Notably, binding 

promiscuity of E1A and its complexes with partner proteins have important implications for 

the functional output. Binary interactions between E1A and pRb regulate the cell cycle, 

while interactions between E1A and TAZ2 facilitate acetylation of E1A by CBP/p300 and 

subsequent epigenetic regulation of transcription. The allosterically-enhanced ternary 

complex formed between E1A, CBP/p300, and pRb allows for effective disruption of the 

cell cycle by promoting pRb acetylation by CBP/p300, thus targeting pRb for degradation 

and allowing the virus to hijack the cellular transcriptional machinery, forcing cell cycle 

progression and uncontrolled cellular proliferation [78].

Post-translational modifications as allosteric modulators

Another functional advantage of protein disorder is to maintain accessibility of binding sites 

for modifying enzymes and partner proteins. Experimental data and computational 

predictions indicate that IDPs are highly enriched in sites for post-translational 

modifications [80–82]. These post-translational modifications can play important roles in 

transmitting signals between structurally distinct regions of disordered proteins or enhancing 

or abrogating interactions with biological partners [83]. In some cases, accumulation of 

post-translational modifications within a disordered protein leads to a threshold response. In 

these cases, allostery is inferred from the non-linear biological response as a function of an 

increasing number of modifications. In other cases, post-translational modifications can 

drive interactions at remote sites, triggering transmission of an allosteric signal across the 

molecule even in the absence of changes in the overall conformational ensemble. Examples 

of both types of allostery driven by post-translational modifications are discussed below.

An early example of how post-translational modifications can mediate allosteric signal 

transmission in disordered proteins involves p27Kip1, which regulates cell cycle progression 

through inhibitory interactions with Cdk2/CyclinA and Cdk2/CyclinE complexes [84]. 

Relief of cell cycle inhibition is achieved through phosphorylation events in both the kinase 

inducible domain near the p27Kip1 N-terminus and within the C-terminal disordered domain. 

Inherent flexibility of p27Kip1 in its inhibitory complex with Cdk2/CyclinA preserves 

accessibility of tyrosine residues in its kinase inducible domain to modifying enzymes like 

the tyrosine kinases Abl and Src [85]. Phosphorylation of Tyr88 in the kinase inducible 

domain triggers further phosphorylation events within the p27Kip1 polypeptide chain, 

namely phosphorylation of Thr187 located 100 residues away in the C-terminal disordered 

domain. Thr187 phosphorylation is entirely dependent on the flexibility of p27Kip1 both in 

its free state and in its complex with Cdk2/CyclinA [85, 86]. It has been proposed that this 

flexibility allows for threonine phosphorylation by a unimolecular mechanism in which full 

dissociation of p27Kip1 is not required for conformational remodeling to allow the C-

terminal threonine residue to access the Cdk2 active site.
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Multi-site phosphorylation of the intrinsically disordered protein Sic1 provides a 

prototypical example of a threshold response. Sic1 functions as an inhibitor of Cdk1, 

blocking cell cycle progression [87]. Sic1 possesses nine distinct phosphorylation sites, and 

phosphorylation of at least six of these sites is required to target Sic1 for degradation 

through interaction with the Cdc4 subunit of the SCF ubiquitin ligase [88], thus allowing 

successful entry into S phase of the cell cycle. Surprisingly, this molecular switch is not 

driven by changes in the conformational ensemble, as phosphorylated forms of Sic1 retain 

high levels of flexibility and conformational disorder [89, 90]. Instead, Sic1 relies on the 

cumulative electrostatic contributions of the phosphoryl groups to produce a switch-like 

response once the phosphorylation threshold has been met [87, 88]. Individual 

phosphodegron motifs of Sic1 participate in weak, transient interactions with Cdc4 that are 

insufficient to target Sic1 for degradation, but six or more phosphorylation sites function 

cooperatively to facilitate robust interactions with Cdc4 to initiate cell cycle progression and 

DNA replication. Further studies identified that Sic1 phosphodegron motifs can recognize a 

negative allosteric site on Cdc4 in addition to the primary phosphodegron binding pocket. 

Negative allostery between the primary and allosteric sites on Cdc4 facilitates exchange of 

phosphodegron motifs that bind to the allosteric site, enabling conformational remodeling 

and increasing the probability of additional phosphodegron binding events at the primary 

interaction site [91].

A similar allosteric threshold response to phosphorylation was recently described in the 

context of T-cell receptor (TCR) activation [92]. The early stages of TCR signaling are 

driven by tyrosine phosphorylation events in the linker for activation of T-cells (LAT) 

protein by the kinase ZAP-70 [93, 94]. LAT functions as a signaling scaffold and possesses 

multiple tyrosine residues that can be phosphorylated to recruit downstream signaling 

partners such as the SH2-domain containing adaptor protein Grb2 [94]. Using a cleverly 

designed kinetic assay, Groves and coworkers were able to show that there is a nonlinear 

relationship between the binding kinetics of LAT:Grb2 and the number of phosphorylated 

tyrosine residues on LAT [92]. The nonlinearity of the response implies that binding of 

individual phosphorylated tyrosine residues is coupled, such that single phosphorylation 

events are not sufficient for Grb2 recruitment and activation of downstream signaling events, 

but that the signal for Grb2 binding must be amplified by additional phosphorylation events. 

The kinetics of the process suggest that ZAP-70 phosphorylates LAT in a weakly processive 

manner, indicating that phosphorylation of a single tyrosine residue in LAT accelerates 

phosphorylation of successive tyrosines. This processivity enables a sensitive response to 

upstream signals without unnecessarily triggering downstream signal amplification through 

single site phosphorylation events [92]. While the structural origins of this allosteric process 

are still unknown, it is intriguing to speculate that multi-site phosphorylation of LAT leads to 

remodeling of the conformational ensemble to favor interactions with Grb2 and other 

cellular partners [92].

In other systems, accumulation of post-translational modifications does not result in an 

abrupt molecular switch; instead, additional modifications function as a molecular rheostat 

to control signal output. In the case of the transcription factor Ets-1, transcriptional activity 

is regulated by a partially disordered auto-inhibitory domain that functions by reducing the 

affinity of Ets-1 for DNA [95, 96]. Cooperative binding interactions of Ets-1 with its binding 
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partner RUNX1 and DNA allow for relief of auto-inhibition [97] and enable transcription to 

proceed. Transcriptional inhibition is restored by a series of calcium-dependent 

phosphorylation events in a serine-rich disordered region, in which successive 

phosphorylation of serine residues yields a graded increase in transcriptional auto-inhibition 

[98]. Serine phosphorylation alters the conformational ensemble of Ets-1 by favoring 

coupled folding and binding of the Ets-1 H1 helix to its own auto-inhibitory module such 

that DNA binding becomes less favorable and the auto-inhibited state becomes the dominant 

state in solution. Phosphorylation-induced changes in the conformational ensemble are 

transmitted through an allosteric network connecting the auto-inhibitory module to the DNA 

binding site [98, 99].

Allostery in phase separation

There is currently great interest in the role played by intrinsically disordered proteins in 

liquid-liquid phase separation processes, which mediate compartmentalization and spatial 

organization of proteins and nucleic acids within the cell through formation of structures 

commonly referred to as membraneless organelles or, more recently, biomolecular 

condensates [100–102]. IDPs rely upon weak, multivalent interactions to form these 

macromolecular assemblies that can function as reserves of critical signaling components 

[15, 103]. The protein components of biomolecular condensates associate through 

multivalent interactions that rely on synergy between tandem repeats of modular domains as 

well as the disordered linkers between them. The neuronal Wiskott-Aldrich syndrome 

protein (N-WASP) integrates a wide range of cellular inputs to control formation of actin 

filaments via interactions with the Arp2/3 complex [104]. Interactions between N-WASP 

and its biological partners Nck and nephrin were shown to promote phase separation in 
vitro, with the propensity for phase transition depending on the valency of the ligands [103]. 

The signaling adaptor protein Nck utilizes its three SH3 domains to interact with the six 

proline-rich motifs of the neuronal Wiskott-Aldrich syndrome protein (N-WASP) [105]. Nck 

also binds to nephrin through its SH2 domain, which can recognize three tyrosine 

phosphorylation sites on the cytoplasmic tail of nephrin [106, 107]. Phase separation of Nck, 

N-WASP, and nephrin is also dependent on a disordered linker between the first two SH3 

domains of Nck [108]. Intriguingly, this disordered linker enables Nck to function not only 

as a driver of phase separation, but also as an allosteric activator of N-WASP—the Nck 

linker region binds to the N-WASP GTPase binding domain and competes with binding of 

the N-WASP VCA segment to relieve autoinhibition and promote interactions with the 

Arp2/3 complex [109]. The multiple functions of the disordered linker between the Nck SH3 

domains illustrates the complexity of cellular regulatory processes and suggests that 

allosteric regulation involving disordered regions may play a major role in phase separation 

processes.

III. FUTURE PERSPECTIVES

The examples discussed in this review constitute only a first glimpse into the functions of 

intrinsically disordered proteins in allosteric regulation of cellular signaling. Given the 

abundance of IDPs and their central role in regulation of the cell, these examples 

undoubtedly represent only the tip of the iceberg. With growing knowledge of the myriad 
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biological functions of intrinsically disordered proteins, we can anticipate rapid advances in 

our understanding of the mechanisms by which IDPs exert allosteric control over key 

cellular processes. Identifying novel allosteric regulatory processes and providing 

quantitative descriptions of their molecular mechanisms will undoubtedly be challenging. 

Integrated approaches bridging biological, physical, and chemical disciplines, as already 

applied in a number of detailed functional studies of disordered proteins [110–115] 

(including those that participate in allosteric regulatory mechanisms [116, 117]) will be 

instrumental in expanding our views of how IDPs function within the confines of pre-

existing paradigms regarding protein structure and function, including allostery.

Given their role in key cellular regulatory pathways and their involvement in numerous 

debilitating diseases, intrinsically disordered proteins and their binding partners are of great 

interest as potential therapeutic targets. The realization that many IDPs function 

allosterically makes them even more attractive targets for drug design. Indeed, initial success 

has been reported in development of an allosteric inhibitor that effectively targets the 

disordered C-terminal region of a protein tyrosine phosphatase [118]. Given the abundance 

of proteins in the human proteome that contain both ordered and disordered regions that 

function synergistically to regulate biological activity, this could be a valuable strategy for 

development of allosteric inhibitors of challenging drug targets. Further studies of allosteric 

mechanisms involving IDPs will undoubtedly enhance our understanding of this functionally 

significant class of proteins, shedding new light on their role in regulation and organization 

of the cell and providing new opportunities for therapeutic intervention.
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HIGHLIGHTS

• Intrinsically disordered proteins (IDPs) are important for cellular signaling 

and regulation

• Recent studies highlight the many roles of IDPs in allosteric processes
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Figure 1. 
Schematic representation of the ensemble allosteric model for a two domain protein. Ligand 

binding stabilizes the active conformation of the effector domain (shown in green) to 

thermodynamically favor the population of the functional protein (with both green and 

purple domains in the folded state). Disordered domains are represented as black lines and 

the functional domain is shown in purple. ΔGligand represents the free energy change 

between apo and ligand bound states. (Adapted from refs. 10 and 23).
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Figure 2. 
Allosteric regulation of transcription of the phd/doc operon. The Phd dimer (blue and green) 

weakly binds to DNA through its partially ordered N-terminal DNA binding domains (left). 

The C-terminal domains of Phd fold upon binding Doc (purple), resulting in further 

stabilization of DNA binding (middle left). The stabilized Phd-Doc-Phd complex recruits 

additional Doc molecules to DNA (middle right), eventually resulting in steric clash between 

neighboring Doc molecules and dissociation of Phd and Doc from the DNA (right).
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Figure 3. 
Structural basis of positive cooperativity for ligand binding by the KIX domain of CBP/

p300. (A) The structures of the binary KIX:c-Myb complex (left, PDB ID: 1SB0) and the 

ternary MLL:KIX:c-Myb complex (right, PDB ID: 2AGH). For the binary complex, KIX is 

shown in gray and c-Myb is shown in orange. For the ternary complex, KIX is shown in 

blue, c-Myb is shown in purple, and MLL is shown in green. (B) Comparison of the 

structure of KIX in the binary (gray) and ternary (blue) complexes.
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Figure 4. 
Unidirectional allosteric regulation of the hypoxic response by CITED2. (Left) HIF-1α 
(orange) binds to the TAZ1 domain of CBP/p300 (gray) using three motifs (αA, LPQL-αB, 

and αC). (Middle left) The CITED2 αA helix (blue) binds to the TAZ1:HIF-1α complex, 

displacing the flexible HIF-1α αA motif. (Middle right) CITED2 further destabilizes the 

TAZ1:HIF-1α complex by competing for a shared binding site with its LPEL motif and 

triggering a conformational change in TAZ1. (Right) CITED2 successfully displaces 

HIF-1α to form a stable complex with TAZ1. All helices are represented as cylinders, with 

the α2 helix of TAZ1 omitted for clarity. ΔgC represents the thermodynamic coupling 

between the CITED2 αA and LPEL motifs. ΔgH represents the thermodynamic coupling 

between the LPQL-αB and αC motifs of HIF-1α. First published in Nature, vol. 543, p. 450, 

2017 by Springer Nature.
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Figure 5. 
A cooperativity switch in the adenoviral oncoprotein E1A. Phase diagrams for pRb and 

TAZ2 binding illustrate how formation of pRb:E1A:TAZ2 ternary complexes can be 

described by either negative (left) or positive cooperativity (right), depending on the 

availability of binding sites. Kd values for formation of various complexes with the E1A 

constructs shown above the phase diagrams are indicated at the phase boundaries. First 

published in Nature, vol. 498, p. 392, 2013 by Springer Nature.
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