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Abstract

Quantitative biomarkers derived from medical images are being used increasingly to help diagnose 

disease, guide treatment, and predict clinical outcomes. Measurement of quantitative imaging 

biomarkers is subject to bias and variability from multiple sources, including the scanner 

technologies that produce images, the approaches for identifying regions of interest in images, and 

the algorithms that calculate biomarkers from regions. Moreover, these sources may differ within 

and between the quantification methods employed by institutions, thus making it difficult to 

develop and implement multi-institutional standards. We present a Bayesian framework for 

assessing bias and variability in imaging biomarkers derived from different quantification 

methods, comparing agreement to a reference standard, studying prognostic performance, and 

estimating sample size for future clinical studies. The statistical methods are illustrated with data 

obtained from a positron emission tomography challenge conducted by members of the NCI’s 

Quantitative Imaging Network program, in which tumor volumes were measured manually and 

with seven different semi-automated segmentation algorithms. Estimates and comparisons of bias 

and variability in the resulting measurements are provided along with an R software package for 

the technical performance analysis and an online web application for sample size and power 

analysis.
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1 Introduction

Due to recent advances in medical imaging technology, the biological features of cancerous 

tumors can be characterized with large numbers of quantitative features, including measures 

of tumor image intensity, variability, texture, shape, and size. Radiomics is an emerging 

discipline that utilizes such features as quantitative imaging biomarkers (QIBs) to predict 

clinical outcomes. Unfortunately, radiomic extraction and analysis of QIBs is subject to 

measurement variability and bias. In particular, extracted biomarkers are affected by the 

imaging technologies themselves as well as the tumor segmentation methods used to define 

regions over which to calculate them. Moreover, institutions often differ with respect to 

quantification methods used, thus making it challenging to develop and implement multi-

institutional standards for the use of biomarkers to guide therapy or to diagnoses disease, 

guide treatment, and predict clinical outcomes.

The statistical methods presented in this paper are motivated by an application comparing 

biomarkers derived from different tumor segmentation methods. Tumor segmentation is the 

process of drawing a boundary around the anatomical structures on a medical image that are 

believed to be cancerous. Current medical practice is for segmentation to be performed 

manually by trained oncologists. However, semi and fully automated methods have been 

proposed to reduce segmentation time and potentially increase quality.1 Several such 

methods were employed in a recent positron emission tomography (PET) segmentation 

challenge conducted by center members of the NCI Quantitative Imaging Network (QIN).2 

The segmentations and biomarkers obtained from that challenge serve as the data application 

in this paper.

As noted by others, formal evaluations and comparisons of methods used to derive imaging 

biomarkers have received relatively little attention in the past.3 Nevertheless, there is a 

general understanding that assessment of method quality should take into account bias, 

defined as the expected difference between biomarker measurements and the true value, and 

variability, defined as the differences between biomarker measurements repeated on the 

same experimental unit. Moreover, appropriately designed studies are crucial for comparable 

quality assessments.4 A complicating factor in the study of imaging biomarkers measured on 

humans is that the true biomarker values are often unknown. When the truth is unknown, 

comparisons are often made to a reference standard. Such is the case in the motivating 

application.

In the following sections, statistical methods are developed and applied for the comparison 

of multiple quantitative methods. A measurement error modeling approach is taken, similar 

to the linear mixed effects reproducibility model considered in Raunig et al.5 However, 

separate inter and intra-operator variance components are added to the reproducibility 

model’s between and within-subject components, and all quantitative methods are modeled 

and compared simultaneously. From our proposed model, performance metrics commonly 

used in the technical validation of imaging biomarkers are derived and presented, including 

bias, operator variance, repeatability coefficient, intraclass correlation coefficient (ICC), 

coefficient of variation, and between-method correlation. The model is then extended to 

facilitate clinical validation where interest lies in estimating associations with health events.6 
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In particular, a model-based simulation approach is presented to assess the impact of 

quantification method measurement errors on odds ratio estimation in the context of a binary 

health event, such as presence or absence of a new disease, treatment response, or disease 

recurrence. An illustrative example is given for the simulation approach to show how the 

effects of measurement errors on bias, variability, study power, and sample size can be 

quantified. An understanding of these effects is important in practice to ensure proper design 

of studies, including clinical trials, to test imaging biomarkers in patient populations. 

Underlying the methods development in this paper is a Bayesian approach which allows 

direct probability statements to be made about performance metrics and avoids approximate 

inferential methods. In contract, previous statistical methods for imaging biomarker 

assessment have traditionally relied on large sample asymptotic theory, finite series 

approximations, and the bootstrap7 to estimate confidence intervals and test statistics.

2 QIN PET segmentation challenge

A medical imaging segmentation challenge was conducted among academic center members 

of the NCI’s QIN program.8 The QIN is designed to promote research and development of 

quantitative imaging methods for the measurement of tumor response to therapies in clinical 

trial settings, with an overall goal of facilitating clinical decision-making. Participating 

members of the challenge were presented with 47 lesions identified in pre-treatment PET 

scans of head and neck cancer patients acquired at the University of Iowa. Each member 

then used a method of their choosing to segment the lesions. Methods included manual 

segmentation as well as commercially available software and in-house-developed semi-

automated segmentation algorithms. An overview of the methods and credentials of the 

operator(s) of each is given in Table 1. Additional detail about the challenge, image 

acquisition, and segmentation methods are contained in the main findings paper.2

Challenge participants segmented all 47 lesions twice, with a waiting period of at least one 

week between repeated segmentation. Manual segmentation (Method 1) was performed by 

three experienced radiation oncologists; whereas, the other methods were performed by a 

single operator. Lesion volumes (ml) were derived from the segmentations and are the 

quantitative biomarker measurements upon which the methods and application of this paper 

focus. Their distributions are summarized with boxplots in Figure 1. The skewed nature of 

the plots reflect the inherently positive nature of tumor volumes and the relatively small 

number of large head and neck lesions. Also noteworthy are the volume measurements from 

Method 5 which stand out from the rest as being decidedly larger. Method 5 was ultimately 

excluded from parts of the main challenge findings due to its lack of consistency with other 

methods and concerns about the appropriateness of its segmentation approach. The method, 

however, will be included in the present analysis, which includes statistical methods that 

explicitly account for and characterize the impact of its volumetric differences.

3 Statistical methods

The methodological approach taken aims to characterize the bias and variability that can 

result when estimating the risk of clinical outcomes associated with an imaging biomarker 

derived from different quantification methods. In order to do so, an underlying Bayesian 

Smith and Beichel Page 3

Stat Methods Med Res. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



model is specified for the joint distribution of method-specific biomarker measurements and 

sources of measurement error. Based on the model, a measurement-error-free reference 

biomarker is obtained and used to simulate clinical outcomes for user-specified risk 

associations and sample sizes. Then, based on the modeled joint distribution, risks estimated 

from method-specific biomarkers measured with error are compared. Also provided in this 

section are software procedures for fitting the Bayesian model; algorithms for the risk 

simulations; and an online web application for interactive comparison of method-specific 

risk estimates, statistical powers, and coverage probabilities.

3.1 Quantitative imaging biomarker model

To begin the methodological development, a linear mixed effects statistical model is 

specified for the biomarker measurements of interest. In particular, measurements are 

modeled as a function of systematic and random sources of variability. The model is 

designed for settings in which biomarker measurement bmijk is obtained from method m = 1, 

… ,M applied to a common set of i = 1, … , I independent medical images by operator j = 1, 

… , Jm and repeatedly for k = 1, … ,Km number of times. Accordingly, measurements on the 

images are obtained from all methods, but the operators and number of repeats may vary by 

method. The functional form of the model is

bmijk = ιmi + ωm j + (ιω)mij + εmijk

(ι1i, …, ιMi)
⊤ NM(μ, ∑ι)

ωm j N(0, σωm
2 )

(ιω)mij N(0, σ(ιω)m
2 )

εmijk N(0, σεm
2 ),

(1)

where μ = (μ1, … ,μM)⊤ represent systematic method effects, ιmi a random image effect, 

ωmj and (ιω)mij random operator and image-by-operator interaction effects, and εmijk a 

repeat error. Normal distributions are specified for the random effects and repeat error. With 

respect to the image effect, the distribution is multivariate normal with an unstructured M × 

M covariance matrix Σι. Independent univariate normals are otherwise specified with 

method-specific operator variances σωm
2  and σ(ιω)m

2  and repeat error variance σεm
2 .

As noted above, sources of variability are incorporated with the systematic method, random, 

and repeat error model terms. Random effects ιmi represent image means within methods, 

ωmj) (ιω)mij observer deviations about the image means, and εmijk repeat deviations about 

the observer means. Moreover, the ιmi effects imply that the I measured images are a 

random sample from a larger population of images. For instance, quantitative biomarker 

measurements might be obtained from randomly selected cancer patients imaged at the time 

of diagnosis. The Σι matrix accounts for both between-image variances ( σιm
2 : = (∑ι)m, m

) 

and between-method covariances (σιm,m′ := (Σι)m,m′), the latter of which being a 
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consequence of the repeated application of different methods to the same set of images. 

Accordingly, covariances and correlations between biomarker measurements from different 

methods are represented by the model parameters

cov (bmijk, bm′i′ j′k′) = σιmm′
cor(bmijk, bm′i′ j′k′) = σιmm′

σιm
2 σιm′

2 .

The variance terms σωm
2 + σ(ιω)m

2  and σεm
2  can be viewed as inter and intra-operator 

variability, respectively. In general terms, the images are the study units, or subjects, with a 

population mean for method m of μm, between-subject variance σιm
2 , and within-subject 

variance σωm
2 + σ(ιω)m

2 + σεm
2 .

3.2 Prior and posterior distributions

A Bayesian analysis approach is taken by specifying prior distributions, denoted p(·), on the 

biomarker model parameters so as to base inference on the joint posterior distribution

p(θ ∣ b) ∝ ∏
m, i, j, k

p bmijk ∣ μm, ιmi, ωm j, (ιω)mij, σεm
2 p ιi ∣ ∑ι p ωm j ∣ σωm

2

× p (ιω)mij ∣ σ(ιω)m
2 p(μm)p ∑ι p(σωm

2 )p σ(ιω)m
2 p σεm

2 ,

(2)

where θ = (μ, ι, ω, (ιω), ∑ι, σω
2 , σ(ιω)

2 , σε
2) is the collection of all model parameters. Markov 

chain Monte Carlo (MCMC) computational methods will be used to simulate draws from the 

posterior. MCMC provides autocorrelated draws of the model parameters that start with a set 

of initial values and must have converged to draws from the posterior distribution in order 

for their use in inference to be valid.9 Convergence will be assessed by generating three 

parallel MCMC chains started at different initial values and assessed visually with time 

series (trace) plots and analytically with the diagnostic of Gelman and Rubin.10 Prior 

distributions for the analysis include normals for μm, inverse-Wishart for Σι, and uniforms 

for σωm, σ(ιω)m, and σεm. Uniforms were employed for the standard deviation parameters to 

represent weakly informative priors, as suggested by Gelman.11 Semi-conjugate inverse-

gammas for the variance forms of these parameters are additionally available in our software 

implementation of the model to accommodate more informative priors. The overall choices 

of priors have the desirable properties of supporting a wide range of weak to strong prior 

information. Moreover, the mean normal and variance inverse-gamma priors are conjugate to 

the normal distributions on the random effects and repeat errors that condition on them. 

Conjugacy, in particular, tends to produce more efficient MCMC simulations by lowering 

autocorrelation and improving convergence.
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Bayesian rather than frequentist methods were selected for the statistical modeling due to 

several advantages offered for the intended application. First and foremost, inference is 

based on the joint posterior distribution and thus accounts for uncertainty and relationships 

among all biomarker model parameters. Thus, conclusions about the parameters are made in 

terms of probability statements, conditional on the observed biomarker measurements. 

Second, inference can be made about future biomarker measurements b ̃ based on the 

posterior predictive distribution p(b̃|b). This feature is utilized in subsequent sections to 

obtain method-specific disease risk estimates, powers, and coverage probabilities. Third, 

inference about transformations or combinations of model parameters is conceptually 

straightforward, given draws from the posterior distribution, and does not rely on large 

sample asymptotic theory or approximation methods. Other advantages include formal 

quantification and incorporation of prior information in the analysis and its ability to 

combine information from multiple sources. Conversely, criticisms of Bayesian approaches 

include subjectivity introduced through prior distributions and the extra computational 

burden of obtaining draws from the posterior.12 Computing for the proposed biomarker 

model is rather minimal since it can be implemented and fit with off-the-shelf software 

programs. With respect to priors, vague specifications will be employed to minimize 

subjectivity. The sensitivity of results to the priors can be examined over a range of 

specifications and also assessed with posterior predictive model checks.

3.3 Posterior predictive model checks

Model fit is assessed with posterior predictive p-values13 of the form

Pr (Tm(brep, θ) ≥ Tm(b, θ) ∣ b)

where b are observed biomarker measurements, brep are measurements replicated from the 

posterior predictive distribution p(b̃|b) and with the same structure as the observed, and Tm 

is the goodness-of-fit quantity for method m

Tm(b, θ) = ∑
i, j, k

(bmijk − E(bmijk))2

var (bmijk)

= ∑
i, j, k

(bmijk − (μm + ιmi + ωm j + (ιω)mij))
2

σεm
2

Separate posterior predictive checks are performed for each of the methods to assess their 

model fits individually. In general, posterior predictive p-values compare the test statistic 

distribution on the observed measurements to the distribution on observations replicated 

from the model with the same set of fixed and random effects. p-Values that deviate from 0.5 

indicate discrepancies in the test quantities Tm between observed and replicated data. Such 

discrepancies could be due to model misspecification or to differences in information 

contained in the prior specifications and data.
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3.4 Posterior predictive distributions

Bayesian inference provides the posterior predictive distribution of future observations on 

model parameters, data, or any function thereof that would be predicted based on the 

posterior distribution. The end goal of the proposed methodology is to characterize bias and 

uncertainty in risk estimates derived from different quantitative imaging methods. Two 

statistical algorithms are presented in this section to accomplish that goal: one which 

simulates posterior predictive odds ratios and another which uses the simulated values to 

estimate power and coverage probability. In essence, characteristics of odds ratio estimates 

are studied using a simulation approach in which the posterior predictive distribution serves 

as the data-generating mechanism and reflects the additional uncertainty in predicting future 

observations from available study data.

Algorithm 1, as shown, describes a process for simulating posterior predictive odds ratios 

estimated from the different quantification methods applied to a future study sample of 

specified size N. Clinical outcomes for the odds ratio estimation are simulated from a 

logistic model that relates outcome probability π to “reference” biomarker b according to

logit(π) = β0 + β1
b
Δ

where values of β0 and β1 are fixed based on user-specified (1) odds ratio OR = exp{β1} for 

a Δ unit increase in b and (2) outcome prevalence π̄ at biomarker value b̄. The “reference” 

biomarker is taken to be the posterior predictive image effects from one of the methods. 

Without loss of generality, the ι̃11, … , ι̃1N from method 1 are taken. By using the image 

effects, measurement error due to within-image variability is removed from the simulation of 

clinical outcomes. Simulation results will vary depending on the choice of reference method 

since they are affected by differences in the population mean effects μm and between-image 

variances σιm
2 . Ideally, a ground truth method would be used as the reference. However, the 

ground truth is often unknowable in patient-imaging studies, in which case a reference 

standard, such as manual segmentation, might be a desirable alternative. Once Bernoulli 

outcomes ỹi are simulated from the reference biomarker as indicated on line 15 of the 

algorithm, a logistic regression model is fit to the posterior predictive biomarker values b̃mi 

from each method, and estimated odds ratio ORm and geometric standard error SEm are 

obtained. The process is repeated to simulate S posterior predictive draws of the odds ratios.

Method-specific odds ratio estimates are expected to reflect similarities and differences in 

the posterior predictive biomarker measurements according to their shared and individual 

variance components. With respect to shared components, the image random effects for all 

measurements are drawn from a multivariate normal distribution with covariance matrix Σι. 

This matrix controls the method-specific variances between image means and the 

correlations in means between methods, the largest sources of variability in biomarker 

measurements. Thus, methods with similar between-subject variances and with high 

correlations will tend to be similar with respect to their biomarker measurements and 

resulting odds ratios. The mean effects μm represent systematic differences between method 
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measurements. Mean shifts like these will not affect odds ratio estimates. On the other hand, 

differences in the inter and intra-observer variability can have an effect since measurement 

error tends to attenuate risk estimates.14,15

Algorithm 1

Posterior predictive odds ratios.

Input:

 Odds ratio OR for a Δ unit increase in the reference biomarker.

 Outcome prevalence π̄ at reference biomarker value b̄.

 Sample size N at which odds ratios are to be estimated.

Output: S simulated odds ratios ORm and geometric standard errors SEm for quantification methods m = 1, … ,M.

1: β1 ← log(OR) ▻ Reference logistic slope

2:

β0 logit(π) − β1
b
Δ

▻ and intercept.

3: for s=1 to S do

4:
  Draw (μ(s), ∑ι

(s), σω
2(s), σ(ιω)

2(s), σε
2(s)) p(θ ∣ b)

5:  for i=1 to N do

6:
  Draw ( ι∼1i, …, ι∼Mi)

⊤ NM(μ(s), ∑ι
(s))

7:   for m=1 to M do

8:
    Draw ω∼mi N(0, σωm

2(s))

9:
     Draw (ιω)mi N(0, σ(ιω)m

2(s) )

10:
    Draw ε∼mi N(0, σεm

2(s))

11:
     b

∼
mi ι∼mi + ω∼mi + (ιω)mi + ε∼mi

12:   end for

13:   b̃i ← ι̃1i ▻ Reference biomarker value,

14:

   π∼i invlogit(β0 + β1
b
∼

i
Δ )

▻ outcome probability,

15:   Draw ỹi ~ Bernoulli(π̃i) ▻ and simulated outcome.

16:  end for

17:  for m=1 to M do
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18:
   (β1m, se(β1m)) estimates from logistic regression

y∼i Bernoulli(πmi); i = 1, …, N

logit(πmi) = β0m + β1m
b
∼

mi
Δ

19:
   ORm

(s) exp {β1m}

20:
   SEm

(s) exp {se(β1m)}

21:  end for

22: end for

In Algorithm 2, method-specific power and (1 − α)100% confidence interval coverage 

probability are computed from the S posterior predictive odds ratios simulated by Algorithm 

1. Power is defined as the probability of rejecting the null hypothesis H0 : OR = 1 or, 

equivalently, H0 : β1 = 0 of no association between the biomarker and clinical outcome. User 

inputs to the algorithm include the direction of the alternative hypothesis (one or two-sided), 

the α level at which to assess statistical significance and construct confidence intervals, and 

the reference odds ratio under which method-specific odds ratios were estimated. Statistical 

testing and confidence intervals are based on the Wald test statistic

β1
se(βi)

∼
H0 N(0, 1) .

A test is performed and confidence interval constructed for each of the S posterior predictive 

draws. As presented, testing is done by checking whether the Wald confidence interval 

includes the null odds ratio value of 1. If not, then the test is rejected. Power is thus 

estimated as the proportion of times the null is rejected. Coverage probability is the 

proportion of times the confidence intervals contain the reference odds ratio.

Algorithm 2

Posterior predictive power and coverage.

Input:

 S simulated odds ratios ORm and geometric standard errors SEm for quantification methods m = 1, … ,M.

 Level α at which to assess significance of statistical testing and to compute 100(1 − α)% confidence intervals.

 Specification of a one or two-sided alternative HA to the null hypothesis H0 : OR = 1.

 Reference odds ratio OR.

Output: Statistical powerm to accept the alternative hypothesis, and confidence interval coveragem of the reference odds 
ratio.

1: if HA : OR ≠ 1 then
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2:  α ← α2

3: end if

4: for m = 1 to M do

5:  powerm ← 0

6:  coveragem ← 0

7:  for s = 1 to S do

8:   lower ← 0 ▻ Initialize interval lower

9:   upper ← ∞ ▻ and upper bounds.

10:  if HA : OR ≠ 1 or HA : OR > 1 then

11:

    lower ORm
(s)/(SEm

(s))
z1 − α

12:   end if

13:   if HA : OR ≠ 1 or HA : OR < 1 then

14:

    upper ORm
(s) × (SEm

(s))
z1 − α

15:   end if

16:   A ← {x : lower < x < upper}

17:   powerm ← powerm + 1Ā (1)/S

18:   coveragem ← coveragem + 1A(OR)/S

19:  end for

20: end for

3.5 Posterior simulation

In the proposed approach, MCMC methods will be used to draw samples from the joint 

posterior distribution. Posterior predictive samples will then be simulated from the posterior 

draws. Since the process of simulating draws can be computationally intensive, several 

strategies are employed to improve computing runtimes. First, MCMC draws will be 

obtained once, prior to their use in Algorithm 1, since the joint posterior does not depend on 

any user inputs to the algorithms. Second, Algorithm 1 is executed only if its user inputs for 

the reference odds ratio (OR, Δ, π̄, or b̄) or sample size (N) change. Algorithm 2 depends 

only on output from the first algorithm and the user inputs for statistical inference (α level 

and alternative hypothesis direction). Thus, it is only executed if those change. By 

partitioning and conditionally executing these tasks, the greater computational expenses of 

joint posterior simulation with MCMC and posterior predictive simulation with Algorithm 1 

are minimized. Likewise, power and coverage probabilities can be estimated quickly for 

different testing scenarios with the computationally inexpensive Algorithm 2.

Another practical computational consideration is the number of posterior samples S to 

simulate. Posterior inference will be based on summary statistics computed from the 

samples. In particular, posterior predictive power and coverage probability will be estimated 

with sample proportions. As estimates, each proportion p is subject to sampling variability 

which could be quantified with the standard error
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se(p) = p(1 − p)
S

if the simulated samples were independent. However, the MCMC samples obtained are not 

independent. Rather, the standard error is increased due to lag-s autocorrelation (ρs) 

generally exhibited by MCMC sequences and is better approximated by replacing S with an 

estimate of the effective sample size16

ESS = S

1 + 2∑s = 1
∞ ρs

.

Terms “naive error” and “simulation error” will be used to distinguish between the standard 

error formulations for independence and autocorrelation, respectively. Values of S are 

typically sought to keep simulation error below some desired upper bound, say errupper. 

Finding such values is challenging since the ESS, sample proportions p, and thus the 

resulting errors are not known prior to the simulation, when the choice of S must be made. 

The approach taken here is to set the maximum naive error, which occurs at p=0.5, equal to 

the desired upper bound and solve to obtain S = (0.5 × errupper)2. Although this solution for 

S guarantees an upper bound on the naive error, the actual simulation error will be larger due 

to MCMC autocorrelation. Therefore, thinning of MCMC sequences will be employed in 

which the S values are taken at set intervals of the sampler to reduce autocorrelation and 

help ensure that the simulation error is close to the bounded naive error.

3.6 Software

Statistical programming and analysis were conducted with the R environment17 in 

conjunction with the following software. JAGS18 and the rjags R interface19 were used to 

implement and execute the Bayesian models. Convergence diagnostics and assessment of 

MCMC output from the Bayesian analyses was performed with the coda package.20 An R 

package for fitting the Bayesian model is available at https://github.com/brian-j-smith/qibm 

and was used to perform the data application analysis (see Supplementary material). Finally, 

a web application for power and sample size calculations was created with the R Studio 

shiny package.21

4 Application

4.1 Modeled tumor volumes

The Bayesian biomarker model was applied to log-transformed tumor volume measurements 

from the 8 QIN PET challenge methods each used to segment a common set of 47 head and 

neck cancer lesions. The log-transformation was needed to satisfy the model assumption of 

normally distributed, homoscedastic, and additive errors. Manual segmentation was 

considered the reference standard in the challenge and thus designated as Method 1 in the 

model. All images were segmented manually by each of three trained operators, whereas 

segmentation with each of the other methods was performed by separate individual 
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operators. Accordingly, operator random effects were included for Method 1 but not for the 

others. Operators segmented the images twice to produce replicate measurements. Vague 

prior distributions on the model parameters were specified as

μm N(0, 1e6)
∑ι Inverse − Wishart(IM, M)
σω1

, σ(ιω)1
, σεm

Uniform(0, 2)

(3)

for m = 1, … , 8. Draws from the posterior distribution were simulated with MCMC 

methods. An initial burn-in sequence of 5000 iterations was discarded to allow for 

convergence, and 10,000 subsequent iterations with a thinning interval of 20 iterations were 

retained for inference. Model parameters are summarized with posterior means and 95% 

highest posterior density credible intervals (CrI) computed with the method of Chen and 

Shao.22

Model fit was assessed with posterior predictive p-values based on the goodness-of-fit 

quantity described in the Methods Section. Fit was assessed separately for each of the 

methods and resulted in p-values of 0.517, 0.515, 0.514, 0.517, 0.523, 0.519, 0.521, and 

0.521 for Methods 1–8, respectively. The values being close to 0.5 suggest good model fit 

and prior information that is consistent with that in the data. Figure 2 shows a plot of the 

observed versus replicated data distributions of the goodness-of-fit statistic for Method 1. 

The apparent random scattering about the 45-degree line is consistent with the p-value in 

suggesting good model fit. Similar patterns occur for the other methods (not shown).

4.2 Posterior summaries of model parameters

Posterior summaries of the model parameters are given in Table 2. Care should be exercised 

when interpreting the parameters since Methods 2–8 each involved a single operator. As 

such, the mean effect μm for each of these methods is confounded with the corresponding 

operator. In other words, the mean effects of the operator and method are inseparable. 

Likewise, the image variances for these methods include variability due to interaction 

between the operator and method which cannot be separated. Conversely, Method 1 mean μ1 

averages over the three operators, and inter-operator variability is separated out as 

σω1
2 + σ(ιω)1

2 . Therefore, the mean and image variance are most comparable across Methods 

2–8. The intra-operator variability σεm is comparable across all methods as the variability in 

repeated segmentations about the corresponding operator mean. The approach taken for 

interpretation will be to view the results within the study context in which they were 

obtained. In particular, Method 2–8 results reflect performance when each is applied by a 

single operator. Method 1 is the reference standard whose image mean effect is free of inter 

and intra-operator variability and reflects the ideal in this study.

Since modeling was performed on log-transformed volumes, posterior estimates are reported 

for exponentiated (geometric) means and standard deviations on the original scale. Relative 
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to the manual reference, Method 5 appears to be the most dissimilar. Its measured volumes 

are systematically larger (10.99 vs. 5.09), indicating that the segmentations produced are 

more liberal in their inclusion of tumor and surrounding structures. Likewise, image 

variability is higher (6.51 vs. 2.96), although repeat variability is advantageously lower (1.14 

vs. 1.29). Method 3 is the most similar in performance to the reference, followed closely by 

Method 8. Associations between the methods are summarized with correlations in Table 3. 

Consistent with the other posterior summaries, Method 3 exhibits a high degree of 

correlation with the reference (0.945), as do Methods 4 (0.939) and 7 (0.900); and Method 5 

exhibits the least amount of correlation (0.346). Method 8, which had similar mean and 

variances, exhibits only moderate correlation (0.605). Inter-operator standard deviation 

exp σω1
2 + σ(ιω)1

2  was additional available for Method 1 and had posterior mean of 1.35 

(95% CrI 1.02–2.26). As discussed in the next section, analogous similarities and differences 

show up in the odds ratio estimates predicted from the posterior distribution obtained and 

summarized here.

4.3 Performance of quantification methods

In addition to posterior inference on the model parameters, the Bayesian approach allows for 

posterior inference on any transformation or combination of model parameters. Furthermore, 

posterior statistics, such as means and credible intervals, can be computed directly from the 

MCMC samples and do not require large sample asymptotic theory, finite series 

approximations, numerical optimization routines, or resampling from approximating 

distributions. Posterior summaries of several metrics for evaluating and comparing imaging 

method performances are given in Table 4.

Three agreement metrics are provided: population Bias, C-Index, and ICC. Bias is computed 

as the differences

Biasm = exp {μm} − exp {μ1}

between population means (on the original scale) relative to the reference standard. C-Index 

is a non-parametric (rank) measure of concordance23,24 comparing the I model-derived 

biomarker measurements b
∼′mi = ιmi + ω∼mi + (ιω)mi + ε∼mi from Method m to those from the 

reference standard, where ε̃ mi , (ιω)mi, and ω ̃mi are as defined in Algorithm 1. Concordance 

values of 1 and 0.5 represent perfect and chance rank agreement, respectively. Given next is 

the ICC defined as the variance between images relative to the total.

ICCm =
σιm

2

σιm
2 + σω

2 + σιω
2 + σε

2
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It is a measure of the consistency in repeated measurements relative to the total population 

variability.25,26 The agreement metrics differ in that ICC measures consistency within 

methods, whereas Bias and C-Index measure consistency between. With respect to the latter 

two, Bias measures mean shifts between methods that are not captured by the shift and scale 

invariant C-Index. Differences in the metrics are particularly evident for Method 5, which 

has nearly perfect ICC (0.99), but very low concordance (0.58) and high bias (5.90). 

Conversely, Method 3 has consistently high agreement internally and with the reference 

(Bias=−0.43, C-Index=0.83, ICC=0.95). Method 7 has relatively high concordance (0.79) 

but also high bias (−2.79).

The reported precision metrics are within-subject coefficient of variation (wCV), 

reproducibility coefficient (RDC), and repeatability coefficient (RC). In our setting, wCV is 

the inter and intra-operator standard deviation divided by the population mean. Since 

measurements were log-transformed for the analysis, wCV can be computed on the original 

scale27 as

wCV = exp { σω
2 + σιω

2 + σε
2} − 1 .

The reproducibility and repeatability coefficients measure variability between two 

measurements taken on the same image. The former applies to measurements taken under 

two different conditions while the latter applies when the condition is the same.4,28, Both 

represent the interval within which the two measurements are expected to occur 95% of the 

time. Here, operators represent different conditions so that

RDC = 1.96 2(σω
2 + σιω

2 + σε
2)

RC = 1.96 2σε
2 .

Since the non-reference methods were evaluated in the present study as being performed by 

a single operator, their inter-operator variances are zero, resulting in RDC and RC being the 

same. Lower wCV, RDC, and RC values are desirable in a method as they indicate less 

operator measurement variability. In looking at the precision measures, Method 5 exhibits 

the lowest variability (wCV=0.14, RDC=RC=0.37) and hence the highest precision. This is 

in contrast to its poor measures of agreement with the reference. Overall, its measurements 

are precise but not in accord with the reference. Method 3 has the second highest precision 

(wCV=0.25, RDC=RC=0.68) to accompany its high agreement with the reference.

4.4 Posterior predictive odds ratios, power, and coverage

Posterior predictive odds ratios, powers, and coverage probabilities were simulated 

according to Algorithms 1 and 2. Posterior predictive samples were generated for the 

S=10,000 joint posterior draws described in the previous section. The number of samples 

ensures a maximum naive error of 0.005 for posterior power and coverage probability 

estimates. Observed simulation errors were also less than the maximum. Manual 
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segmentation was utilized as the reference method designated in the study. A reference odds 

ratio of OR=1.5 and an outcome prevalence of 0.5 at the reference biomarker mean were 

specified. Method-specific odds ratios were then estimated for sample sizes of N=250 and 

500, and power and coverage probabilities computed for two-sided α = 0.05 level statistical 

testing and confidence intervals. Posterior predictive results are presented in Table 5.

The posterior predictive odds ratio estimates reflect method-specific measurement error due 

to inter and intra-operator variability as well as correlations between the manual reference 

and other methods. Deviations (bias) in their posterior means from the 1.5 reference odds 

ratio value and the credible interval widths (variability) are measures of the degrees to which 

an underlying biomarker-disease relationship can be estimated with the different 

quantification methods. Lower bias and variability are indicative of better estimation. The 

manual odds ratio is closest to the reference odds ratio as expected. However, the posterior 

means (1.45 and 1.44) are attenuated as is known to happen for a logistic regression 

covariate measured with error. Odds ratio estimates for Method 3 are just as close, which 

can be attributed to its relatively low measurement errors and high correlation with the 

manual method. Methods 2, 4, and 6–8 odds ratios are further shifted to the 1.3–1.4 range, 

and the Method 5 odds ratios (1.09) are clearly the most affected by its measurement error 

and low correlation with the manual method. As noted previously, the methods differ with 

respect to their systematic mean effects. These differences are unlikely to have impacted the 

results, since odds ratios are invariant to mean shifts in the covariate.

Also presented are root mean squared error (RMSE), power, and coverage estimates. RMSE 

is computed as the square root of the bias squared plus variance

RMSEm = (E(ORm) − OR)2 + var (ORm) .

It provides a composite performance measure of bias and variability in estimated odds ratios. 

As such, Methods 1, 3, and 7 are judged to have the best performance based on their low 

RMSE values. Power is the probability of rejecting the null hypothesis of no biomarker 

association (H0: OR=1). If designing a study, the differences in power identify which 

methods would require a smaller or larger sample size to achieve a desired study power. 

Methods 1, 3, 4, and 7 are clearly leading the pack with advantageously high powers. 

Coverage is the probability that 95% confidence intervals contain the reference odds ratio. 

Ideally, 0.95 coverage would be achieved to match the confidence level. However, biases and 

unaccounted-for measurement error can lead to confidence intervals with incorrect 

coverages. Such is the case here, with all methods falling short of the 0.95 nominal level, 

although Method 3 is relatively close. Moreover, the shortfalls get worse as the sample size 

gets larger.

An online web application was developed to provide interactive estimation of odds ratios, 

powers, and coverage probabilities; and is available directly at https://ph-

shiny.iowa.uiowa.edu/bjsmith/QIB/PET/HNC/Power/ or through the University of Iowa QIN 
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website at http://qin.iibi.uiowa.edu. As shown in Figure 3, the application interface consists 

of three main components.

1. User inputs: Controls for specifying the segmentation methods and biomarker 

for which to simulate odds ratios as well as simulation parameter values for the 

sample size, reference odds ratio, outcome prevalence, alternative hypothesis, 

and significance level.

2. Power curves: Plots of simulated power estimates as a function of the specified 

sample sizes.

3. Tabular summaries: Under the plots are “Power” and “Odds Ratios” tabs 

containing simulation estimates. The first tab provides a sortable and subsettable 

table of the power estimates displayed graphically in the power curves as well as 

the associated simulation errors. Likewise, the second tab provides a table of 

odds ratio estimates, posterior CrI, RMSE, and coverage probabilities.

To improve responsiveness, a slider input is included for users to set the maximum naive 

error for power estimates. Larger values reduce the number of posterior predictive samples S 
used for estimation and decrease the time needed to update the application. Ten-thousand 

previously generated posterior samples are supplied to the application at startup to eliminate 

the need for them to be generated at runtime. Otherwise, the application executes 

Algorithms 1 and 2 as described previously and does so only when their respective inputs 

change. For instance, if the reference odds ratio is changed, both algorithms are executed; 

whereas, if the alternative hypothesis or significance level change, only the second algorithm 

is run. Since the latter runtime is much shorter, the application reduces update times when it 

can. Overall, the application is designed to be plug-and-play so that other segmentation 

methods or biomarkers can be added or the data updated without needing to make changes 

to the implementation.

5 Conclusion

With this paper, a unified Bayesian approach has been presented for the assessment, 

comparison, and clinical study design of quantitative imaging biomarkers. At the core is a 

mixed-effects model that characterizes sources of systematic and random variability within 

and between different quantification methods. As demonstrated in the application, the 

covariance matrix specified on the image random effects allows for direct estimation of 

correlations between methods. Likewise, measures of bias and concordance relative to a 

reference standard are directly estimable from the model parameters, as are measures of 

intraclass correlation and precisions (within-subject coefficient of variation, reproducibility 

coefficient, and repeatability coefficient). The importance of reporting more than one 

performance metric was discussed in relation to complementary information provided by 

bias, concordance, and precision measures. With respect to inference, the joint posterior 

distribution provided by the Bayesian approach allows for probability statements to be made 

about measures of interest, including credible intervals that can be interpreted as containing 

the true value with a specified probability. Computationally, credible intervals and any other 

posterior statistic are straightforward to calculate given MCMC samples, and do not require 

asymptotic, numerical, or resampling approximations. Potential downsides to the Bayesian 
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approach include prior specification which may be criticized as being subjective and 

computational challenges of obtaining MCMC samples. The former is minimized with the 

use of vague priors, and the latter due to standard Bayesian software that can fit the proposed 

model and the accessible R model-fitting function provided.

For study design, algorithms and an online web application are provided to determine power 

for and to assess the effects of estimating odds ratios with different quantification methods. 

The results from these provide another means of comparing method performances. Whereas 

the mixed model assesses performance on the measurement scale, the study design metrics 

assess performance in predicting clinical outcomes — the ultimate goal of a biomarker. For 

instance, bias, precision, mean-squared error, power, and probability coverage can be 

compared to study the accuracies and precisions in risk estimates. The power algorithms can 

aid in the design of clinical trials to directly study the prognostic performance of biomarkers.

Although the application in this paper focused on tumor volume as the biomarker, the 

analytic methods and software can be applied to other biomarkers. Indeed, several others can 

be derived from the QIN PET challenge and analyzed with the approach presented. Of 

particular interest will be the robustness of different biomarkers in estimating risk. One 

might expect that the commonly used SUVmax, which is a maximum voxel value, would be 

more similar across different segmentation methods than biomarkers that take into account 

all values within the segmented region. Nevertheless, rigorous statistical comparisons of 

such biomarkers will be crucial given the growing number of quantification methods and 

increasing interest in using biomarkers in clinical research and practice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Distributions of segmented tumor volumes from different quantitative image analysis 

methods.
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Figure 2. 
Distribution of posterior predictive goodness-of-fit quantities evaluated at replicated data 

from the fitted Bayesian model and observed study data. Values of the posterior predictive p-

value Pr(T(yrep|θ) ≥ T(y|θ)| y) close to 0.5 indicate agreement between the model and data.
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Figure 3. 
Power and sample size web application for quantitative imaging biomarkers.
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Table 1

Summary of quantitative image analysis methods and operators in the QIN PET segmentation challenge.

Method Description Operator

1 Manual segmentation Radiation oncologists

2 Active contour segmentationa PhD research scientist

3 Graph-based optimizationa Radiation oncologist

4 Mirada Medical RTxb Imaging physicist

5 VCAR and PMODb Medical physics postdoc

6 MIMb Imaging physicist

7 PMODb Image analyst

8 3D level-set segmentationa Medical image analysis graduate student

a
In-house algorithm.

b
Commercial software.
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Table 2

Posterior means (95% CrI) of the method-specific mean and variance parameters from the joint Bayesian 

analysis of segmented tumor volumes (ml).

Method Mean volume exp{μm} Between-image variability exp{σιm} Repeat error exp{σm}

1a 5.09 (2.65, 7.48) 2.96 (2.33, 3.65) 1.29 (1.25, 1.33)

2 7.01 (5.58, 8.51) 1.91 (1.60, 2.24) 1.62 (1.48, 1.78)

3 4.67 (3.32, 6.18) 2.98 (2.35, 3.71) 1.28 (1.22, 1.34)

4 3.55 (2.39, 4.87) 3.30 (2.52, 4.27) 1.74 (1.58, 1.91)

5 10.99 (5.46, 17.27) 6.51 (4.18, 9.38) 1.14 (1.11, 1.18)

6 3.60 (2.67, 4.65) 2.41 (1.93, 2.94) 1.82 (1.64, 2.01)

7 2.30 (1.64, 3.11) 3.06 (2.40, 3.86) 1.42 (1.33, 1.53)

8 5.55 (4.13, 6.94) 2.36 (1.96, 2.85) 1.33 (1.25, 1.41)

a
Inter-operator variability: exp σ

ω1 + σ(ιω)1
2

2 = 1.35 (1.02, 2.26).
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