Skip to main content
. Author manuscript; available in PMC: 2020 Apr 1.
Published in final edited form as: Stat Methods Med Res. 2017 Dec 22;28(4):1003–1018. doi: 10.1177/0962280217741334

Algorithm 1.

Posterior predictive odds ratios.

Input:
 Odds ratio OR for a Δ unit increase in the reference biomarker.
 Outcome prevalence π̄ at reference biomarker value .
 Sample size N at which odds ratios are to be estimated.
Output: S simulated odds ratios ORm and geometric standard errors SEm for quantification methods m = 1, … ,M.
1: β1 ← log(OR) ▻ Reference logistic slope
2:
β0logit(π¯)-β1b¯Δ
▻ and intercept.
3: for s=1 to S do
4: Draw(μ(s),ι(s),σω2(s),σ(ιω)2(s),σε2(s))~p(θb)
5: for i=1 to N do
6: Draw(ι1i,,ιMi)~NM(μ(s),ι(s))
7:   for m=1 to M do
8:     Drawωmi~N(0,σωm2(s))
9:      Draw(ιω)mi~N(0,σ(ιω)m2(s))
10:     Drawεmi~N(0,σεm2(s))
11:      bmiιmi+ωmi+(ιω)mi+εmi
12:   end for
13:   iι̃1i ▻ Reference biomarker value,
14:    πiinvlogit(β0+β1biΔ) ▻ outcome probability,
15:   Draw i ~ Bernoulli(π̃i) ▻ and simulated outcome.
16: end for
17: for m=1 to M do
18:    (β^1m,se^(β^1m))estimatesfromlogisticregression
yi~Bernoulli(πmi);i=1,,Nlogit(πmi)=β0m+β1mbmiΔ
19:    ORm(s)exp{β^1m}
20:    SEm(s)exp{se^(β1m)}
21: end for
22: end for