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ABSTRACT: Compounds with multitarget activity (promis-
cuity) are increasingly sought in drug discovery. However,
promiscuous compounds are often viewed controversially in
light of potential assay artifacts that may give rise to false-
positive activity annotations. We have reasoned that the
strongest evidence for true multitarget activity of small
molecules would be provided by experimentally determined
structures of ligand—target complexes. Therefore, we have
carried out a systematic search of currently available X-ray
structures for compounds forming complexes with different
targets. Rather unexpectedly, 1418 such crystallographic
ligands were identified, including 702 that formed complexes

with targets from different protein families (multifamily ligands). About half of these multifamily ligands originated from the
medicinal chemistry literature, making it possible to consider additional target annotations and search for analogues. From 168
distinct series of analogues containing one or more multifamily ligands, 133 unique analogue-series-based scaffolds were isolated
that can serve as templates for the design of new compounds with multitarget activity. As a part of our study, all of the
multifamily ligands we have identified and the analogue-series-based scaffolds are made freely available.

1. INTRODUCTION

Over the past decade, the interest in small molecules with
multitarget activity has been steadily on the rise,' ~ especially in
the context of polypharmacology.*™" This concept refers to
increasing evidence that the efficacy of drugs frequently
depends on engagement of multiple therapeutic targets."”’
Accordingly, the molecular foundation of polypharmacology,
which also includes undesired side effects, is provided by
specific interactions of compounds with multiple targets.’
However, while multitarget drug discovery is given prime
consideration in therapeutic areas such as neurodegenerative
diseases’ and oncology,” compound promiscuity per se is often
viewed controversially.” This is the case because it is generally
difficult to draw the line between true multitarget activity of
small molecules® and aggregation effects or potential reactivity
under assay conditions, *~"* which may or may not'*"* lead to
artifacts and false-positive assay signals.">'®'” Hence, differ-
entiating between multitarget activity and assay interference has
become a major task in biological screening and medicinal
chemistry."” In addition to their drug discovery relevance, small
molecules with true multitarget activity are also of high interest
for basic research in order to explore why and how such
chemical entities are capable of forming specific interactions
with multiple targets, especially if these targets are only
distantly related or unrelated and have different functions.
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We have been interested in identifying compounds that are
active against target proteins from different families. In light of
potential caveats associated with promiscuity analysis (vide
supra), we have reasoned that particularly strong evidence and
support for multitarget activity would be provided by structural
data confirming that compounds are indeed bound to active
sites of different target proteins. Therefore, we have carried out
a systematic search for X-ray structures of ligands bound to
multiple target proteins from different families. This search was
complemented by identifying and analyzing series of analogues
involving such ligands, thereby bridging between structural
biology and medicinal chemistry.

2. RESULTS AND DISCUSSION

2.1. Crystallographic Ligands. From 102 625 entries in
the RCSB Protein Data Bank (PDB),"® 23 580 crystallographic
ligands were extracted, which included 11039 organic
compounds with a molecular weight of at least 300 Da and
unique structures. This subset of PDB ligands provided the
basis for our analysis. The complete selection protocol is
summarized in Figure 1.
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Figure 1. Compound selection. The protocol applied to select
crystallographic ligands, multitarget and multifamily ligands, and
analogues from medicinal chemistry is summarized.

2.2. Multitarget and Multifamily Ligands. The selected
PDB ligands were found to contain 1418 compounds from X-
ray structures of complexes with at least two different target
proteins (i.e., multitarget ligands; Figure 1). We then
determined that these multitarget ligands contained a subset
of 702 compounds whose crystallographic targets originated
from different families (i.e., multifamily ligands; Figure 1). For
this subset, the median value was three targets per ligand.
Multifamily ligands were most interesting to us because their
structurally confirmed targets were only distantly related (if not

unrelated). Targets of multifamily ligands included 488 human
proteins, which were distributed across different families as
shown in Figure 2. The majority of targets were enzymes.
Among these, transferases were prevalent. This observation can
be explained by considering that the composition of the PDB is
biased toward targets that are straightforward to crystallize
(such as many cytoplasmic enzymes). Consequently, some
major classes of pharmaceutical targets such as G-protein-
coupled receptors and other membrane proteins continue to be
under-represented in the PDB. It is possible to compensate this
inherent target bias in part by mapping of multifamily ligands
from the PDB to ChEMBL and searching for additional target
annotations of these ligands and available structural analogues
from medicinal chemistry, as further discussed below.

2.3. Exemplary Ligands and X-ray Structures. Figure 3
shows X-ray structures of ligands in complex with targets from
different families. Comparison of X-ray structures of the same
ligand in complex with different targets frequently revealed
differences in binding modes. For instance, the phenothiazine
derivative thioridazine shown in Figure 3a was found in five X-
ray complexes with four targets from four different families. As
an exemplary comparison, the binding mode of thioridazine
observed in mucosa-associated lymphoid tissue lymphoma
translocation protein 1 (MALT1),” a cysteine protease, clearly
differs from the one in aldehyde oxidase,”’ an unrelated
enzyme. While the tricyclic ring system of thioridazine is
located in a hydrophobic pocket of MALT]I, it is partially
solvent-exposed in the X-ray complex with aldehyde oxidase. In
addition, the positively charged N-methylpiperidinyl moiety
forms charge-assisted hydrogen bonds with Glu397 of MALT],
whereas the tertiary amine of the ligand forms backbone
interactions with the carbonyl oxygen of Argl064 in the active
site of aldehyde oxidase.

Figure 3b shows an example of an inverted ligand binding
mode in two different active sites. The flavonoid myricetin was
found in seven complex structures involving six targets from six
different families. It displays opposite head-to-tail orientations
when bound to human pancreas amylase”' and the ATP-
binding site of PIMI kinase.””
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Figure 2. Distribution of human targets of multifamily ligands. The pie chart on the left reports the distribution of human targets from complex X-
ray structures with multifamily ligands. For enzymes, the distribution of catalytic functions is shown in the pie chart on the right.
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Figure 3. Multifamily ligands and X-ray structures. In (a—c),
exemplary ligands and X-ray structures of their complexes with targets
from different families are shown. For each ligand, the total number of
complex X-ray structures, the number of PDB targets, and the number
of families from which these targets originated are reported. In the X-
ray structures, bound ligands are shown in stick representation with
standard atom coloring.

Binding modes can also be compared for multifamily ligands
when interactions with different targets lead to desired or
undesired functional effects. An example is shown in Figure 3c,
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where the thyroid hormone thyroxine (T4) is bound to the Ila
subdomain of human serum albumin® or the ligand binding
domain of thyroxine thyroid hormone receptor beta (TR), its
natural receptor.”” Binding to serum albumin causes hyper-
thyroxinemia.”* Notably, T4 reaches deep into the TR binding
pocket, where it interacts with three arginine residues via
charge-assisted hydrogen bonds. In addition, the iodine atoms
of T4 are accommodated in small subsites mostly formed by
the side chains of Phe459 and Phe4S5S. By contrast, T4 binds to
human serum albumin in a surface-directed manner and
predominantly interacts with residues that are partially
solvent-exposed.

2.4. Multifamily Ligands from Medicinal Chemistry. A
subset of 355 of the 702 multifamily ligands were detected in
the ChEMBL database,” the major public repository of
compounds and activity data from the medicinal chemistry
literature. For these ligands, ChEMBL target annotations from
high-confidence direct binding/inhibition assays were collected.
Taking these additional annotations into account represented
an expansion into medicinal chemistry target space and
increased the median value from three PDB (vide supra) to
17 unique PDB/ChEMBL targets per multifamily ligand. Thus,
crystallographic multifamily ligands were generally promiscuous
on the basis of medicinal chemistry data. Although it cannot be
excluded that some target annotations from assays might be
false positives, the availability of multiple X-ray structures of
these ligands in complex with different targets lends credence
to their promiscuous nature, strongly suggesting their relevance
for the study of multitarget activity and polypharmacology.

2.5. Analogues of Multifamily Ligands. For the 355
multifamily ligands available in ChEMBL, a systematic search
for analogue series (ASs) was carried out. For 243 of these
ligands, analogues were detected, yielding 168 unique ASs. Each
AS consisted of at least one X-ray ligand and varying numbers
of noncrystallographic analogues from ChEMBL. An exemplary
AS is depicted in Figure 4. This AS contains an X-ray ligand
and several ChEMBL compounds with multitarget annotations,
providing corroborating evidence for the promiscuity of the
multifamily ligand from the PDB.

2.6. Scaffolds and Design Templates. From ASs
containing multifamily ligands, analogue series-based (ASB)
scaffolds”™”” were derived. By design, ASB scaffolds take
retrosynthetic criteria into account and capture chemical
information on compound series, including the conserved
substructure and substitution sites where analogues are
distinguished.”®”” For 133 of the 168 ASs with multifamily
ligands ASB scaffolds could be derived. Exemplary scaffolds are
shown in Figure 5. Since ASs were associated with multiple
targets, further extending the set of PDB targets of multifamily
ligands, the corresponding ASB scaffolds also represent
templates for the design of compounds with different
multitarget activities. On the basis of each scaffold, different
target combinations can be explored. The ASB scaffolds also
make it possible to differentiate between template structures
with different degrees of promiscuity. For example, scaffolds
from highly promiscuous analogue series, as shown in Figure §,
might be deprioritized as template structures for the design of
compounds with desired activity against a few targets, even if
these targets are contained in the scaffold-associated target
profiles. Instead, scaffolds from other less promiscuous series
with desired targets might be considered. Furthermore, for ASB
scaffolds with target combinations of interest, it is advisible to
inspect the target annotations of individual analogues to
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Figure 4. Analogue series. Shown is an exemplary AS including a multifamily ligand (blue core). For the crystallographic ligand, the number of PDB
targets, the number of targets reported in ChEMBL, and the number of unique targets are given. For each ChEMBL analogue, the number of targets
from ChEMBL is provided. In each case, the corresponding number of target families is given in parentheses. ChEMBL analogues have no PDB
target annotations. Substituents that distinguish analogues are colored red.

rationalize the series-based target profile in more detail
Analogues can be easily obtained by substructure searching
using ASB scaffolds.

2.7. Conclusions. We have systematically searched for
crystallographic ligands bound to multiple targets from different
families. Such X-ray data were thought to provide firm evidence
for true multitarget activity of compounds. An unexpectedly
large number of qualifying ligands (702) were identified that
covered targets from a variety of families. Approximately half of
these ligands originated from the medicinal chemistry literature,
which yielded additional target annotations. Moreover, a total
of 168 distinct series of analogues that contained X-ray ligands
were identified. From these, 133 analogue-series-based scaffolds
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were extracted that captured chemical and target information
on individual series. Crystallographic multifamily ligands
represent a large, high-confidence knowledge base for multi-
target activity. Scaffolds derived from ASs containing such
ligands can be considered as templates for compound design.
Therefore, multifamily ligands, scaffolds, and associated target
information are made freely available as a part of this study. We
also note that a variety of computational methods are available
to predict targets of test compounds. The uncertainties
associated with target predictions go much beyond exper-
imental uncertainties associated with compound data. However,
searching for compounds with true multitarget activities is
difficult on the basis of experimental activity data, taking assay-
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Figure S. Exemplary scaffolds. Shown are examples of ASB scaffolds
representing series of promiscuous structural analogues, including
multifamily ligands. For each scaffold, the total number of unique
targets against which the analogues were active and (in parentheses)
the number of corresponding target families are reported. Substitution
sites in ASB scaffolds are highlighted.

dependent activity readouts and potential artifacts into account.
For these reasons, X-ray structures of ligand—target complexes
provided the initial focal point of our analysis and were
complemented by taking medicinal chemistry data into
account. By contrast, possible computational predictions were
deliberately avoided, given the motivation and scope of our
analysis.

3. MATERIALS AND METHODS

All calculations were carried out using in-house Perl and
Python scripts with the aid of the OpenEye chemistry toolkit,”®
KNIME protocols,” and RStudio.’® X-ray structures were
graphically analyzed using the Molecular Operating Environ-
ment.”!

3.1. Ligands from X-ray Structures. X-ray structures and
associated compound data were extracted from the Ligand
Expo section” of the PDB.'"® Salts and other buffer
components were removed, and ligands with a molecular
weight of at least 300 Da yielding unique aromatic nonstereo
SMILES® representations were retained. Application of the
molecular weight cutoff ensured that small organic components
and fragments were excluded from further consideration. All of
the selected complex X-ray structures were visually inspected.

3.2. Compounds and Activity Data. From ChEMBL
(release 23)™ a total of 853533 unique compounds were
extracted for which activity data from direct binding/inhibition
assays (target relationship type “D”) were available.

3.3. Target Family Distribution. For crystallographic
targets of human origin, family assignments were obtained by
combining the classification schemes of UniProt’* and
ChEMBL. In addition, known targets of all of the selected
ChEMBL compounds were determined on the basis of unique
UniProt identifiers.

3.4. Analogue Series and Scaffolds. From combined
PDB and CHEMBL compounds, ASs were systematically
extracted using a recently developed algorithm™ utilizing the
matched molecular pair (MMP) formalism.*® An MMP is
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defined as a pair of compounds that are distinguished only by a
structural change at a single site,® often termed a chemical
transformation.”” To generate MMPs, compounds were
systematically fragmented”” according to retrosynthetic
rules,” yielding RECAP-MMPs.” From ASs, recently intro-
duced ASB scaffolds”™*” were extracted, which capture the
conserved substructure of a series and all substitution sites.
3.5. Data Deposition. All of the multifamily ligands have
been made available, together with their crystallographic
targets, PDB identifiers, and total numbers of targets, including
annotations from ChEMBL (if available). In addition, all of the
ASB scaffolds derived from ASs containing multifamily ligands
are provided. The collection of ligands and scaffolds is freely
available in a deposition on the Zenodo open access platform.*’
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