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A model and method to accurately estimate the local speed of sound in tissue from pulse-echo ultra-

sound data is presented. The model relates the local speeds of sound along a wave propagation path

to the average speed of sound over the path, and allows one to avoid bias in the sound-speed esti-

mates that can result from overlying layers of subcutaneous fat and muscle tissue. Herein, the aver-

age speed of sound using the approach by Anderson and Trahey is measured, and then the authors

solve the proposed model for the local sound-speed via gradient descent. The sound-speed estima-

tor was tested in a series of simulation and ex vivo phantom experiments using two-layer media as a

simple model of abdominal tissue. The bias of the local sound-speed estimates from the bottom

layers is less than 6.2 m/s, while the bias of the matched Anderson’s estimates is as high as 66 m/s.

The local speed-of-sound estimates have higher standard deviation than the Anderson’s estimates.

When the mean local estimate is computed over a 5-by-5 mm region of interest, its standard

deviation is reduced to less than 7 m/s. VC 2018 Acoustical Society of America.
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I. INTRODUCTION

The speed of sound (SoS) in a medium influences several

important aspects of ultrasound imaging including travel-time

and strength of backscattered echoes. During (B-mode) image

reconstruction, echoes that are recorded on the transducer ele-

ments are delayed and summed to focus the energy coming

from a desired location. In order to sum the echoes in phase,

focal delays (that are meant to account for echo travel times)

are determined from the geometric distances between the focus

and the transducer elements, assuming a constant speed of

sound. In the presence of speed of sound inhomogeneities, dif-

ferent parts of the wavefront travel at different speeds and the

focal delays based on a constant sound-speed result in an aber-

rated shape of the wavefront, causing incoherent summation of

echoes across the aperture. The effects of phase aberration

include a loss of image resolution and contrast and an increase

in off-axis scattering and image clutter.1–5 Knowledge of the

local sound speeds along a wave propagation path would allow

one to more accurately predict the arrival times of backscat-

tered signals, and reconstruct a higher quality ultrasound

image.

The speed of sound as a tissue property directly impacts

scattering of waves (i.e., change in direction of wave propa-

gation), including backscattering, which is recorded on

receive elements. In particular, the speed of sound and the

density of a medium determine its acoustic impedance, and

the differences in acoustic impedance give rise to scattering.

Echoes due to a single scattering event can be traced back to

the location of target (i.e., tissue structure), while the waves

that undergo many scattering events take a longer time to

travel to transducer surface and are mistakenly assigned to

larger depths. Reverberation of waves (i.e., multipathing)

can lead to acoustic noise called clutter in the final image,

which is another significant source of image degradation.6–8

The speed of sound in tissue has also been used as a bio-

marker to help differentiate between healthy and diseased

tissues. For example, studies in excised human and animal

livers have shown a markedly lower sound speed in livers

that suffer from non-alcoholic fatty liver disease (NAFLD)

compared to healthy livers.9–16 In particular, Sehgal et al.9

showed an average SoS of 1528 m/s in fatty liver, compared

to 1567 m/s in normal liver. Furthermore, Tervola et al.12

and O’Brien et al.13 showed that the speed of sound

decreased by an average of 2.3 to 2.5 m/s per % fat concen-

tration in the liver. In a similar manner, Bamber et al.17,18

showed in excised human livers that, on average, the speed

of sound in hepatocellular carcinoma was 1.5% lower than

the sound-speed in normal liver tissue. SoS measurements

that are computed from the same pulse-echo data used to

reconstruct a B-mode image could thus help improve early

diagnosis and staging of the liver disease.

Current sound speed estimation techniques can be

grouped into two categories: average sound-speed estima-

tors, which estimate the average speed of sound between the

face of the transducer and the focal depth, and local sound-

speed estimators, which estimate the speed of sound in a

localized target region. The average sound-speed estimators

include techniques based on the apparent shift from two

angles,19,20 beam tracking,21 transaxial compression,22 phasea)Electronic mail: marko.jakovljevic@stanford.edu
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variance,23 and echo arrival times at the receive aper-

ture.24–26 These methods have low accuracy in the presence

of inhomogeneities, which makes them unsuitable for in vivo
measurement through layers of subcutaneous fat and connec-

tive tissue. For example, the average SoS estimator by

Anderson and Trahey25 yields highly accurate estimates in

homogeneous media (bias less than 0.2% and standard devi-

ation less than 0.52%); however, in a two-layer phantom

composed of water and agar-graphite, measured biases in the

bottom layer exceeded 30 m/s while the standard deviation

was approximately 10 m/s.

Sound speed estimators that can produce localized esti-

mates include both through-transmission and pulse-echo

based approaches. Ultrasound computed tomography (UCT)

uses through-transmission to yield highly accurate and local-

ized (i.e., with high spatial resolution) SoS estimates of com-

plex media, but it requires the target tissue to be inside a ring

of transducer elements, which narrows its applications.27–31

Local SoS estimators based on pulse-echo acquisition geom-

etry include the crossed-beam method,32 the modified beam

tracking method,33 registered virtual detectors,34 and ultra-

sound computed tomography in echo mode (CUTE).35 All of

these methods can be implemented on conventional ultra-

sound arrays, except for the modified beam-tracking method,

which requires two transducers. However, while these local

(pulse-echo-based) SoS estimators show reduced bias in the

presence of inhomogeneities compared to the gross sound-

speed estimators, their error is still too large to detect SoS

changes in the range of 5–10 m/s, which limits their diagnos-

tic use. For example, in Ref. 34, the method of registered vir-

tual detectors is shown to have the bias as large as 16 m/s for

a signal-to-noise ratio of 24 dB.

Here, we propose a model and method to estimate sound

speed in a localized region of tissue with high accuracy that

can be implemented on a pulse-echo ultrasound system. Our

model relates the average SoS between the transducer and

focus to the local SoS values along the wave propagation

path. In this implementation of our local SoS estimator, we

first compute the average SoS from arrival-time profiles

using the method by Anderson and Trahey, and then we

solve the proposed model for the local sound-speed using the

method of gradient descent. We validate the proposed SoS

model using the ideal and noisy arrival-times that are synthe-

sized directly from known average SoS maps. We also dem-

onstrate the local SoS estimator using synthetic aperture

ultrasound signals from fullwave simulations and phantom

experiments in homogeneous and two-layer media. In all

cases, the standard deviation and bias of the local SoS esti-

mates are measured and compared to the estimate statistics

obtained for the Anderson method.

II. THEORY

A. Local speed of sound model

In ultrasound imaging, it is typically assumed that the

speed of sound is constant, which results in a direct (i.e.,

interchangeable) relationship between travel time t and dis-

tance d of the received echoes (d¼ ct). This means that uni-

form sampling of the ultrasound signal in time implies

uniform sampling of the signal in space. To derive our model

for the local SoS, we start with the assumption that the signal

traces recorded on individual elements are uniformly sam-

pled in time, while the distances traveled between the sam-

ples might vary due to differences in the local speed of

sound. This assumption is consistent with how most ultra-

sound scanners collect the data. The total distance traveled

by the wave between the focus and transducer can then be

expressed as

dtotal ¼
XN

i¼1

di; (1)

where di is the length of tissue segment i traveled during one

sampling period Ts. Given that di¼ ciTs, where ci is the local

SoS, it follows that

cavg N Ts ¼
XN

i¼1

ciTs; (2)

cavg ¼
1

N

XN

i¼1

ci: (3)

Thus, the average speed of sound equals the arithmetic mean

of the local sound-speed values sampled along a wave propa-

gation path. The starting assumption for the proposed model

in Eq. (1) is also depicted in Fig. 1.

The relationship in Eq. (3) can be generalized as a linear

system of equations

cavg ¼ Ac local þ e meas; (4)

where each row of model matrix A encodes a single mea-

surement of average SoS and e meas is a vector of measure-

ment errors. For average SoS measurements collected along

the same direction of wave propagation (Fig. 1), A becomes

a lower triangular matrix and Eq. (4) can be solved for c local

via direct inversion. In other scenarios, such as when multi-

ple directions of wave propagation are included in the

model, A does not have a clear structure to exploit, so

numerical solvers may be necessary to solve for c local.

It is interesting to note that if the ultrasound signal is

sampled uniformly in space instead of in time, the expres-

sion ttotal ¼
PN

i¼1 ti is used in place of Eq. (1). The alterna-

tive model for the average speed of sound is then derived as

Eq. (5) instead of Eq. (3):

1

cavg

¼ 1

N

XN

i¼1

1

ci
: (5)

If slowness of a medium is defined as r¼ 1/c, the slowness

analog to Eq. (4) becomes

r avg ¼ Ar local þ e meas: (6)

The alternative model in Eq. (6) however, is not typically rep-

resentative of data acquired from pulse-echo ultrasound scan-

ners, which rely on a CPU (central processing unit) clock to

ensure uniform sampling in time, rather than space.48
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III. METHODS

A. Average speed of sound measurements

In the following, the average SoS measurements have

been obtained via the method by Anderson and Trahey,25

although the proposed sound-speed model could use

measurements by other average SoS estimators as well.

With the Anderson method, the average SoS from the

transmit focus to the transducer surface is computed

using the corresponding times of arrival at the transducer

elements.

Briefly, the arrival times at the individual elements are

inferred from time delays between the neighboring element

signals. Specifically, signals from a speckle target retain

high degree of similarity among the neighboring elements

and can be expressed as

sx1
ðtÞ ¼ sx2

ðtþ dx1;x2
Þ þ ex1;x2

; (7)

where sx1
and sx2

are signal traces recorded at locations x1

and x2 in the aperture (typically not more than five elements

apart), dx1;x2
is the associated time delay, and e is additive

noise. To measure the delays, one-dimensional (1-D) nor-

malized cross-correlation is applied to the corresponding sig-

nal traces around time t. An axial kernel of 481 samples and

a search region of 541 samples were used to compute cross-

correlations between the neighboring-element signals (which

were up-sampled to 300 MHz). The arrival-time profile of

the signals across the entire array is then formed from these

time-delays; to this end, we have utilized the multi-lag least-

squares method in a similar manner as outlined by Liu and

Waag36 and Dahl et al.37 More detailed explanations of

cross-correlation and the multi-lag least squares approach

are provided in Appendix A.

For a medium with the uniform speed of sound c, the

arrival times t can be also expressed in a closed-form, based

on the geometric distance between the focus and a transducer

element

tðxeÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xe � xfð Þ2 þ yf

2 þ zf
2

q
c

; (8)

where xf, yf, and zf are coordinates of the focal point, xe is the

x-coordinate of the transducer element and ye and ze are set

to zero (i.e., the transducer runs parallel to the x axis and is

centered at the origin). The expression in Eq. (8) can be

rewritten as the equation for parabola

t2ðxeÞ ¼ p1x2
e þ p2xe þ p3; (9)

with the coefficients

p1 ¼
1

c2
; p2 ¼ �

2xf

c2
; p3 ¼

x2
f þ y2

f þ z2
f

c2
:

Therefore, the average speed of sound is estimated by fitting

a parabola to the square of the arrival-time profile measured

in Eq. (A4), followed by taking the square root of the inverse

of the coefficient p1.

As a variation of the technique by Anderson and

Trahey, we use a multistatic synthetic transmit aperture

sequence to collect the data,38 and then utilize the principle

of acoustic reciprocity to estimate the arrival-time profiles

across the beamformed signals corresponding to different

transmit elements as explained in Ref. 39. The resulting esti-

mates are the same as those from the receive-element signals

described previously. The use of beamformed data enables

the estimation of arrival times (and average speed of sound)

on a clinical scanner without significant modifications to the

existing scanner architecture. In addition, the arrival-time

profiles across the transmit elements are used to improve

transmit focusing for subsequent iterations of the method

without necessitating additional transmit events. This modi-

fied arrival-time estimation approach is described in greater

detail in Ref. 40.

In the presented experiments, arrival-time profiles and

the resulting average sound speed estimates are computed at

the locations that are spaced half-a-wavelength apart in both

axial and lateral dimensions over a 130� 64 (axial x lateral)

grid of points. The average SoS values are then used to solve

for the local sound speeds in Eq. (4). The workflow of the

whole estimation process is diagrammed in Fig. 2.

B. Solving for local sound speeds

Equation (4) was solved using gradient descent in order

to demonstrate the use of a numerical solver for this type of

problem. While analytic techniques, such as the pseudoin-

verse, can be used to solve for the local speed of sound in

Eq. (4), numerical solvers can be advantageous when mod-

eled propagation paths are more complex, causing the model

matrix A to become too large to be inverted directly.

Because we intend to extend our work to these more com-

plex setups in the future, we decided to use an iterative

solver.

The field-of-view (FOV) was first decoupled into distinct

columns, with each column corresponding to a vertical ultra-

sound propagation path. Because only vertical propagation

FIG. 1. (Color online) Schematics of the wave propagation from focus to

the transducer surface under the assumption of uniform sampling in time.

Due to differences in the local speed of sound (in this example c1> c2), indi-

vidual distances di traveled between the time samples are different.
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paths were considered, there was no need to solve for the

speed of sound across the entire FOV jointly. The system cor-

responding to each column was solved independently, via gra-

dient descent. The regularization was a quadratic penalty

minimizing the differences (in sound-speed) of nearby pixels

in the least squares sense. This type of regularization was

intended to suppress any high-frequency noise in the

Anderson–Trahey estimates that could be caused by signal

variations due to speckle. The regularization weights were

derived from the output of an 11-tap low-pass filter based on

Hamming-window design with a normalized cutoff frequency

of 0.2. Step size was set to 0.001% of the initial guess for the

sound-speed value (1540 m/s for all simulations and experi-

ments) and the solver was run for 40 000 iterations until

approximate convergence was achieved. Equations outlining

the gradient descent algorithm used herein are presented in

Appendix B.

C. Model validation

The models in Eqs. (9) and (4) were validated against

ideal “synthetic” data obtained from known speed-of-sound

maps. Two-layer SoS maps were used as a simple model of

abdominal tissue; each map had a 15 mm-thick top layer

with the SoS of 1480 m/s, and the bottom layer with SoS of

1520, 1540, and 1570 m/s, respectively.

The exact arrival times were computed for each point in

the map (to the transducer surface) by solving the following

Eikonal equation41:

krT x; y; zð Þk ¼
1

c x; y; zð Þ
: (10)

In Eq. (10), c(x, y, z) is the local sound-speed and T(x, y, z) is

the shortest travel time to point (x, y, z) in space under a

high-frequency approximation. The equation was solved for

T(x, y, z) numerically via the fast marching method.42

The exact arrival times were used to compute the aver-

age SoS via Anderson’s method for each point in the map.

The local SoS values were then inferred from the average

SoS according to Eq. (4). The equation was solved for c local

numerically using the method of gradient descent as

described in Sec. III B, except that no regularization was

applied [k2¼ 0 in Eq. (B5)] because the arrival-time mea-

surements were exact. To assess inaccuracies in models (9)

and (4) the mean and standard deviation were computed for

both average and local sound-speed estimates.

To investigate error propagation in Eq. (4), the average

SoS values were also generated directly from true sound

speeds. The zero-mean, white, Gaussian noise with standard

deviation of 5 m/s was added to mimic measurement varia-

tions due to thermal noise and speckle. The local SoS was

then estimated from the synthetic average-SoS data using the

method of gradient descent. Different levels of L2-norm reg-

ularization were used in the numeric solver to reduce the

noise in the final estimates. Specifically, the regularization

weight k2 in Eq. (B5) was set to 0.0001% and 0.001% of the

initial guess for clocal of 1540 m/s.

D. Fullwave simulations

We simulated signals received on the individual ele-

ments of a linear 1-D array from scanning homogeneous and

two-layer phantoms. The signals were obtained using a full-

wave simulation tool by Pinton et al.,43 which models 2-D

acoustic wave propagation including the effects of non-

linearity, attenuation, and multiple scattering (reverberation).

In particular, a propagated medium is assigned a speed of

sound, attenuation, density, and non-linearity map, which

allows us to define a ground truth for speed-of-sound estima-

tion from complex imaging targets.

The homogeneous phantoms were created with 1480,

1540, and 1600 m/s speed of sound. The two-layer phantoms

each consisted of a top layer, which had 1480 m/s speed of

sound, and bottom layers with speed of sound of 1520, 1540,

and 1570 m/s, respectively. In order to simulate speckle,

small local variations in speed of sound (average variation of

5% from the surroundings) were introduced throughout the

modeled medium. The resulting point scatterers had a 40 um

diameter and were randomly distributed with average

FIG. 2. (Color online) Processing flow of the local sound speed estimator. The raw element signals are captured and the average speed of sound is estimated at

every point by parabolic fitting of the square of the arrival time profile. The average speed of sound values are then used to compute the local sound speed esti-

mates from the model in Eq. (4). Note that the images are for illustration purposes and do not represent actual data.
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density of twelve scatterers per resolution cell. The rest of

the parameters were uniform and the same between all phan-

toms: the attenuation was 0.5 dB/MHz/cm, the density was

1000 kg/m3, and the non-linearity (B/A) was 9, throughout

the medium.

Having specified the acoustic properties of phantoms, a

transmit event was simulated for each of 128 array elements to

create synthetic transmit aperture data sets. For each transmit,

the simulation code was run to numerically solve the full-wave

equation (via finite-difference time-domain, i.e., FDTD

method) giving the pressure field across the grid at all times.

Initial conditions for solving the equation were set by prescrib-

ing the transmit waveform at each transmit element location.

The transmit waveform was a two-cycle, Gaussian-weighted

sinusoid at 5 MHz center frequency. Receive element signals

were obtained by sampling the pressure field at the face of the

transducer and convolving it with the axial transducer impulse

response, which was set to yield fractional bandwidth of 0.5

at �6 dB level. The total aperture width was 1.92 cm.

Specifications of the modeled array are summarized in Table I.

The receive-element signals from each transmit event

were used to beamform 128 receive lines with k/2 spacing.

For each receive line, the principle of acoustic reciprocity

was applied to compute the arrival times across transmit ele-

ments, which were then used to iteratively improve synthetic

transmit focusing for subsequent arrival-time estimates, as

explained in Sec. III A. The arrival-time profiles computed

in this way after five iterations were used to estimate the

average and local sound speeds following the procedure out-

lined in Fig. 2 and Sec. III B.

E. Phantom acquisitions

The experiments were also performed on a speckle gener-

ating phantom (model 534, ATS, Norfolk, VA) using a

L12–3v linear array attached to a Verasonics Vantage 256

scanner. Multistatic synthetic aperture data were acquired with

the transducer placed directly on the phantom and also through

a 4 mm-thick layer of porcine tissue and through a 10 mm layer

of bovine tissue. The data were acquired at a transmit center-

frequency of 7 MHz. The speed of sound in the speckle phan-

tom was calibrated to 1460 m/s by imaging a point target and

maximizing its resolution and brightness. The degassed tissue

samples contained skin, fat, muscle, and connective tissue and

were used to mimic subcutaneous layers that induces speed of

sound heterogeneity in the region of interest. The arrival time

profiles were estimated across transmit elements (via the prin-

ciple of acoustic reciprocity) similar as in Sec. III D. The aver-

age and local sound speeds were then estimated following the

procedure outlined in Fig. 2 and Sec. III B.

IV. RESULTS

A. Model validation

An example of one-way arrival times computed via the

Eikonal equation in Eq. (10) is shown in Fig. 3. In Fig. 3(a),

the arrival time contours are overlayed on a two-layer speed

of sound map to illustrate wavefronts originating from a

focal point in the middle of FOV, at 30 mm depth. The speed

of sound of the top layer is 1480 m/s and that of the bottom

layer is 1520 m/s. The arrival times used to compute the

average speed of sound via Anderson’s method correspond

to the cross-section of contours at the transducer surface. In

Fig. 3(b), the arrival times at the transducer surface are plot-

ted together with the square root of the corresponding para-

bolic fit in Eq. (9). For the two-layer medium used in this

example, the model in Eq. (9) does not deviate significantly

from true arrival-time profiles.

Average and local sound-speed estimates computed

from the exact arrival times are displayed in Fig. 4 for the

1480/1520 m/s SoS map. The average (i.e., Anderson) SoS

estimates gradually increase beyond 15 mm depth. The local

SoS estimates show a clear separation between the two

layers and are uniform within each layer. In this case, the

arrival times are measured exactly and the models in Eqs.

(9) and (4) yield local sound-speed estimates that are close

to true SoS values. The statistics of the SoS estimates com-

puted using the exact arrival times are presented in Table II

TABLE I. Simulated transducer properties.

Array width 19.2 mm

Number of elements 128

Element pitch 0.15 mm

Center frequency 5 MHz

Bandwidth at �6 dB 50%

FIG. 3. (Color online) Example of

one-way arrival times computed for a

two-layer speed of sound map using

the Eikonal equation in Eq. (10). The

sound speed of the top and bottom

layers is 1480 m/s and 1520 m/s,

respectively. (a) Arrival-time contours

for waves emanating from a focal point

located in the center of FOV, at 30 mm

depth. The color bar displays the color

map used for contours and has units of

seconds. (b) Arrival times correspond-

ing to the cross-section of contours at

the transducer surface. A second-order

polynomial fit used to compute the

average speed of sound [Eq. (9)] is an

accurate model for the arrival-time

profiles in this example.
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for all two-layer SoS maps. The region-of-interest (ROI)

used to compute the estimate statistics is shown in the first

map in Fig. 4 using a blue square. The bias of the Anderson

estimates is not less than 26 m/s, and it increases as the dif-

ference in sound-speed between the two layers becomes

larger. The local SoS estimates have a low bias (less than

5 m/s) and low standard deviation (0.3 m/s) that are consis-

tent between the maps.

The plots in Fig. 5 show variations in the local SoS esti-

mates caused by noise in the associated average SoS mea-

surements. The average sound speeds are synthesized from

true sound speed values using the forward model in Eq. (4).

To facilitate interpretation of results, the SoS estimates are

shown only along a single line. When there is no noise in the

synthetic data, the average and local SoS estimates behave

in a similar way as in Fig. 4; the average estimates increase

gradually past the interface, and the local estimates are close

to the true SoS values. When noise is added to the synthetic

average SoS data, the local SoS estimates show increased

error compared to the average SoS noise. In particular, when

added noise has a standard deviation of 5 m/s, the standard

deviation of the local SoS (computed between 20 and 40 mm

depth) is 9.7 m/s. Increasing the weight of the l2-norm regu-

larization term used in the solver [k2 in Eq. (B5)] by a factor

of 10 helps reduce the standard deviation in the local SoS

estimates to 2.7 m/s, but at the expense of resolution.

B. Fullwave simulations

Examples of SoS maps estimated from the simulated

ultrasound signals are shown in Figs. 6 and 7 for the homo-

geneous and two-layer media, respectively. For each

medium, the SoS estimates are computed starting at 10 mm

depth in order to omit noisy data close to the transducer sur-

face. We report the SoS estimates averaged over a 5-by-

5 mm ROI that is centered at 22.5 mm depth, and is denoted

with a blue square in the first map of each figure. To obtain

estimate statistics, we compute the mean and standard devia-

tion of the ROI-averaged SoS estimates across six different

scatterer distributions for each type of medium. These values

are presented in Tables III and IV for the homogeneous and

two-layer media, respectively. The standard deviation for an

individual SoS estimate is also computed within each ROI,

and is reported as “ROI SD” in both Tables.

In Fig. 6, the average (i.e., Anderson) and local SoS esti-

mates are displayed for a simulated homogeneous medium

with true sound speed of 1540 m/s. The local estimates show

larger variation than the matching Anderson estimates, but on

average, both are close to the true sound-speed value. These

trends are confirmed by the estimate statistics in Table III. The

local and Anderson estimates have comparable bias, which is

less than 7 m/s for all maps. The standard deviations of the

local estimates are smaller than 7 m/s, but they are larger than

the standard deviations of the corresponding Anderson esti-

mates (less than 2 m/s). The per-point (within ROI) standard

deviation is also larger for the local estimates than for the

Anderson estimates approximately by a factor of 2, which is

similar to the trend observed in synthetic data in Fig. 5.

Examples of Anderson and local SoS estimates from

simulated two-layer media are shown in Fig. 7. The corre-

sponding ground-truth SoS maps are also shown in the left-

most column, with the top layer of 1480 m/s and the bottom

layers of 1520 and 1570 m/s for the first and second row of

images, respectively. In both examples, the Anderson and

local estimates obtained from the top layer appear close to

the true sound-speed value (1480 m/s). Furthemore, in both

examples, the Anderson estimates gradually increase beyond

15 mm depth resulting in a large negative bias in the bottom

layers. The local SoS maps show a clear separation between

the layers and the local estimates from the bottom layers are

close to their respective true SoS values. The bottom layers

FIG. 4. (Color online) Example two-layer SoS maps used to validate the models in Eqs. (9) and (4). (Left) Ground-truth SoS map used to compute the exact

one-way arrival times via the Eikonal equation. (Middle) The corresponding average SoS estimates computed from the arrival times via Anderson’s method.

(Right) The corresponding local SoS estimates. When the arrival times are known, the local sound-speed estimates are close to ground truth. A colorbar is

used to show the dynamic range for SoS maps and has units of m/s. The region used to compute the mean and standard deviation of Anderson and local SoS

estimates is denoted with a blue square. The estimate statistics for all SoS maps are summarized in Table II.

TABLE II. Bias and standard deviation of SoS estimates computed from the

exact arrival times in two-layer media.

Sound speed

in bottom

layer

1520 m/s 1540 m/s 1570 m/s

Local Anderson Local Anderson Local Anderson

Mean 1523.0 1493.8 1543.4 1500.3 1574.3 1509.9

Bias 3.0 �26.2 3.4 �39.7 4.3 �60.1

ROI SD 0.3 1.9 0.3 2.7 0.3 4.0
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in the local SoS maps appear noisier than the corresponding

Anderson estimates.

The statistics of SoS estimates in Table IV support the

observations in Fig. 7. The bias of Anderson estimates in the

bottom layer is much larger than the bias of matching local

estimates and increases with the difference in sound speed

between the two layers. The smallest bias magnitude of the

Anderson estimates is 33.2 m/s (computed for the 1480/

1520 m/s map), while the largest bias of the local estimates

is 4.7 m/s (computed for the same map). Furthermore, the

standard deviations of the local estimates are larger than the

standard deviations of the corresponding Anderson esti-

mates, but none exceed 7 m/s. The mean SoS estimates com-

puted from the simulated ultrasound signals (Table IV) are

similar to the mean SoS estimates obtained from the syn-

thetic arrival-time profiles (Table II).

C. Ex vivo experiments

The SoS estimates from the speckle phantom obtained

with and without tissue layers in the wave propagation path

are shown in Fig. 8, and the corresponding estimate statistics

is presented in Table V. In Fig. 8, the sound speed estimates

are overlayed on top of the corresponding B-mode images.

From left to right, sound speeds are estimated with the trans-

ducer placed directly on the phantom, with a 4 mm layer of

porcine tissue, and with a 10 mm layer of bovine tissue

placed between the transducer and the phantom. In the

absence of tissue, both local and Anderson SoS estimates are

close to the calibrated sound speed in the phantom (1460 m/s).

When the ultrasound signals are acquired through the 4 mm

tissue-layer, the average SoS estimates at 10 mm depth are

above 1500 m/s and they gradually decrease with depth, while

the matching local SoS estimates remain close to 1460 m/s.

These trends are confirmed by the measured mean estimates

in Table V. For the acquisition through the 10 mm-tissue

layer, the Anderson measurements from 10 to 20 mm are

noisy, and the corresponding B-mode image shows reverbera-

tion from the tissue-phantom interface at approximately

20 mm depth. In order to minimize the impact of reverbera-

tion on the local SoS estimates, the noisy Anderson measure-

ments are omitted from the gradient descent solver and the

local sound-speed is computed starting at 21 mm depth. The

standard deviation of the local SoS estimates for this acquisi-

tion is 27.8 m/s.

The degradation of ultrasound signal from the speckle

phantom due to tissue layers in Fig. 8 is measured in terms

of“lag-one” correlation44 (i.e., the normalized cross-

correlation between the neighboring-element signals), the

RMS error of the parabolic fit to the squared arrival-times,

the RMS value of the aberrator, and signal-to-clutter ratio

(SCR). These metrics are summarized in Table VI. Phase

aberration profiles are measured so to exclude the gross

sound-speed error; in other words, they account only for the

second-order variations of the wavefronts. SCR is computed

using Eq. (9) from,45 with average lag-one correlation from

the no-tissue acquisition used as true cross-correlation

between the channel signals. All metrics are computed at

23 mm depth, except for the SCR, which is estimated at

5 mm below the phantom surface. For the 4 mm tissue acqui-

sition, all metrics have similar values as for the no-tissue

case, indicating low level of acoustic noise. For the acquisi-

tion through the 10 mm tissue-layer, low lag-one correlation

FIG. 5. (Color online) The impact of average sound speed measurement error on local sound speed estimates. When there is no noise in the synthetic data (i.e.,

standard deviation is r¼ 0), the estimated local sound speed closely matches the true values. When Gaussian noise is added to the data (r¼ 5 m/s), the gradi-

ent descent solver increases the noise in the estimates, especially at large depths. Increasing the weight of the regularization term in the solver [k2 in Eq. (B5)]

by a factor of 10 suppresses the noise in the local SoS estimates, but blurs the boundary between the two layers. The standard deviation of the local SoS esti-

mates at the bottom layer (between 20 and 40 mm) is computed to be rk2
¼ 9:7 m=s and r10k2

¼ 2:7 m=s for the two regularization weights, respectively.

FIG. 6. (Color online) Sound speed estimates from a simulated homoge-

neous medium. (Left) The average SoS estimates computed via Anderson’s

method. (Right) The proposed local SoS estimator. The true sound speed in

the medium is 1540 m/s. Color bar units are m/s. The local SoS estimates

are computed starting at 10 mm depth in order to omit noisy data close to

the transducer surface. The 5-by-5 mm region of interest used to compute

the estimate statistics (Table III) is denoted with a blue square.
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and low SCR indicate that ultrasound signal is corrupted by

strong reverberation clutter, which is estimated to be two

times higher than clutter levels from the 4 mm tissue-layer.

V. DISCUSSION

The proposed SoS estimator, as implemented in this

paper is suitable for quantitative ultrasound applications in the

liver, where a single-number measurement can assist with the

diagnosis and staging of fatty liver disease. We envision that

the method would be applied during a normal ultrasound

scan, in a similar manner as a shear-wave velocity estimator

typically used in the clinic. Relying on a B-mode image for

guidance, the user would select a region of homogeneous

tissue several centimeters underneath the liver capsule to

avoid reverberation noise from the superficial layers that can

impact the estimate. The method would then produce an esti-

mate of the local speed of sound within the selected region of

interest. We illustrate such approach with the sound-speed

estimates from the speckle phantom in Fig. 8.

We validated the proposed SoS model and the associ-

ated local sound-speed estimator using the two-layer media

as an approximation to abdominal tissue. Specifically, when

average sound speeds are computed using the exact arrival

times, the local sound speeds that are inferred from the

model in Eq. (4) appear almost identical to true SoS maps

(Fig. 4). This can be explained by the following reasons. The

FIG. 7. (Color online) Example SoS

maps of the simulated two-layer media.

(Left column) Ground-truth SoS maps.

(Middle column) The corresponding

Anderson estimates. (Right column)

The corresponding local sound-speed

estimates. The true sound-speed in the

bottom layer is 1520 m/s in the first

example (top row) and 1570 m/s in the

second example (bottom row). Color

bar units are m/s. In both examples, the

local SoS estimates from the bottom

layer indicate lower bias than the corre-

sponding Anderson estimates. The

region of interest used to compute the

estimate statistics is denoted with a blue

square. The estimate statistics for all

two-layer simulations is summarized in

Table IV.

TABLE III. Bias and standard deviation of estimates in simulated homoge-

neous media.

True sound

speed

1540 m/s 1480 m/s 1600 m/s

Local Anderson Local Anderson Local Anderson

Mean 1542.2 1535.9 1486.2 1475.2 1600.2 1598.4

Bias 2.2 �4.1 6.2 �4.8 0.2 �1.6

SD 4.0 0.8 6.5 1.4 4.7 1.5

ROI SD 11.1 5.0 12.8 6.3 17.6 8.7

TABLE IV. Bias and standard deviation of estimates in simulated two-layer

media.

Sound speed

in bottom layer

1520 m/s 1540 m/s 1570 m/s

Local Anderson Local Anderson Local Anderson

mean 1524.7 1486.8 1538.7 1493.1 1571.5 1503.3

bias 4.7 �33.2 �1.3 �46.9 1.5 �66.7

SD 6.8 1.2 3.2 1.2 3.9 1.4

ROI SD 12.3 7.3 11.9 7.0 11.5 7.5
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average SoS measurements herein are obtained along a sin-

gle direction of propagation, so the model matrix A, which

encodes averaging (i.e., integration) of the local SoS values

is a lower triangular matrix. Such a system of equations has

a unique solution. In the absence of noise, the local sound

speeds can be then estimated exactly, via direct differentia-

tion of the adjacent measurements, or numerically (e.g., via

gradient descent) with a high level of precision. When echo

arrival-times are computed from the speckle targets, the

Anderson SoS measurements are noisy, but the estimated

local sound speed still conveys the structure of insonified

media without significant artifacts (Figs. 6 and 7). In particu-

lar, the local SoS maps of simulated two-layer media display

a clear boundary between the layers (Fig. 7). Regularization

in the gradient descent solver is used to restrict the noise

level of the final local SoS estimates (Figs. 5).

The local sound-speed estimates exhibit low bias in the

presence of inhomogeneities compared to the matching

Anderson estimates. In the homogeneous media, the bias of

local SoS estimates is not larger than 6.2 m/s and is compara-

ble to the bias of Anderson estimates (Table III). In the two-

layer media, the bias of the local SoS estimates in the bottom

layers is lower by up to 60 m/s than the bias of matching

Anderson estimates and is generally unaffected by the

sound-speed of the top layer (Tables II and IV). This trend

can be explained by Eq. (4), which models Anderson (i.e.,

average) sound-speed as an average of local sound-speeds

along the propagation path. Therefore, the bias of Anderson

estimates from the bottom layers is expected to increase with

the difference in sound-speed between the two layers. The

local sound-speed is computed by taking a difference of

average sound-speed measurements, which is expected to

annul their individual biases (caused by preceding layers in

the propagation path). However, the bias of a local SoS

FIG. 8. (Color online) Sound speed

estimates and the corresponding B-

mode images of the speckle phantom,

with and without tissue layers in the

acoustic path. (Top row) The Anderson

sound-speed estimates. (Bottom row)

The proposed local SoS estimator.

From left to right the data were

acquired directly on the phantom,

through a 4 mm-thick layer of porcine

tissue, and through a 10-mm-thick layer

of bovine tissue. The Anderson esti-

mates obtained through the tissue layers

are higher than the Anderson estimates

for the no-tissue case, while the local

SoS estimates are similar between the

acquisitions. The 5-by-5 mm region of

interest used to compute the estimate

statistics (Table V) is denoted with a

blue square. For the acquisition through

the 10-mm-tissue layer, the Anderson

estimates are noisy down to 21 mm

depth, and the B-mode image shows

reverberation from the tissue-phantom

interface at approximately 20 mm

depth. The local SoS estimates are

therefore computed starting at 21 mm

depth in order to omit the data cor-

rupted by reverberation clutter. The

ROI for this acquisition is adjusted to

be centered at 25 mm depth. Color bars

are shown for the speed-of-sound maps

in units m/s. B-mode images are dis-

played using a dynamic range of 50 dB.

TABLE V. Bias and standard deviation of SoS estimates in the speckle

phantom with and without tissue layers in the acoustic path.

Tissue layer

Homogeneous 4 mm 10 mma

Local Anderson Local Anderson Local Anderson

Mean 1459.9 1466.1 1465.8 1494.5 1463.6 1510.7

Bias �0.1 6.1 5.8 34.5 3.6 50.7

ROI SD 13.6 5.0 11.1 6.5 27.8 9.7

aFor this acquisition, the ultrasound signals from 0 to 21 mm depth are cor-

rupted by clutter and are omitted from the local SoS computation.

TABLE VI. Degradation of ultrasound signal from the speckle phantom

measured with and without tissue layers in the acoustic path. Metrics include

lag-one normalized cross-correlation (q), RMS error of parabolic fit to

squared arrival-times, RMS value of the aberrator, and signal-to-clutter ratio

(SCR). SCR is estimated at 5 mm below the phantom surface, while other

metrics are computed at 23 mm depth.

Tissue layer Homogeneous 4 mm 10 mm

q mean 0.974 0.965 0.912

q SD 0.008 0.010 0.014

RMS error (s2) 1.25� 10�13 1.57� 10�13 5.14� 10�13

RMS phase ab. (s) 4.0� 10�9 5.10� 10�9 17.0� 10�9

SCR (dB) Inf 16.7 8.5
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estimate is low and independent of preceding inhomogenei-

ties only if the neighboring measurements of average SoS

are accurate. If inhomogeneities along the propagation path

cause strong reverberation and noise in the average SoS

measurements, the resulting local SoS estimates may suffer

from increased bias and standard deviation (Fig. 8).

The proposed local sound-speed estimator has a higher

standard deviation compared to Anderson’s average SoS esti-

mator. Specifically, the standard deviation (SD) of the esti-

mates (denoted as “ROI SD” in Tables III, IV, and V)

increases between the average and local SoS estimates in our

simulation and phantom experiments by roughly a factor of 2.

As stated earlier, because the model matrix A in Eq. (4) is an

integration operator, solving for the local SoS implies differ-

entiation of average SoS measurements, which increases the

noise in the estimates. If no regularization is employed and

the average SoS measurements are independent, the standard

deviation of the resulting local estimates can be predicted asffiffiffi
2
p

NA S, where NA is the number of average SoS measure-

ments sampled along a path and S is the standard deviation of

an individual measurement; meaning, the proposed local esti-

mator accumulates measurement error with depth. In practice,

vertically adjacent Anderson measurements show modest cor-

relation as their associated wave-propagation paths overlap,

which causes a decrease in standard deviation of local esti-

mates from the levels predicted above. In addition, correla-

tions of vertically adjacent Anderson measurements cause

streaks of error in the local SoS maps (see Figs. 6 and 7),

where positive and negative errors show as vertical stripes

due to the correlations of measurement noise.

To reduce the standard deviation of local estimates and

enable their potential use in clinic as a quantitative metric, we

reported the mean local estimate over a 5-by-5 mm ROI. This

size of ROI was chosen empirically to achieve the necessary

precision for fatty liver diagnosis and staging, while at the same

time, allowing for an easy capture of homogeneous regions in

the tissue (a typical ROI selected during the liver scan to mea-

sure shear wave velocity is 1–2 cm.). Indeed, the standard devia-

tion of the local SoS averaged over the ROI (denoted as SD) is

two to three times smaller than the standard deviation of individ-

ual local estimates (Tables III and IV). Under such conditions,

the local estimator is sensitive to sound-speed changes of

5–10 m/s, making it a promising method to distinguish between

different levels of fat concentration in the liver.12,13 However,

the extent of error-reduction achieved by ROI-averaging is spe-

cific to the acquisition setup employed and depends on factors

such as the amount of beam overlap from adjacent average SoS

measurements and regularization weight applied along the axial

dimension. To use local sound speed for phase aberration cor-

rection, further refinements of the method are needed that would

reduce the standard deviation of individual local SoS estimates

and help preserve spatial resolution of SoS maps.

While the proposed local estimator produces accurate

sound-speed estimates in the presence of mild noise, its perfor-

mance can be compromised when the ultrasound signal is cor-

rupted by strong reverberation clutter. In particular, when the

ultrasound signal is acquired through a 4 mm tissue layer, the

level of acoustic noise is low (Table VI) and the local SoS esti-

mates from the speckle phantom show similar mean and

standard deviation as when the data are collected directly on

the phantom (Fig. 8 and Table V). However, in the presence of

a 10 mm tissue layer, estimated signal-to-clutter ratio decreases

by a factor of 2 (with respect to the levels for the 4 mm tissue-

layer; Table VI) and the standard deviation of local SoS esti-

mates is 15 m/s higher than in the no-tissue case (Table V). As

the level of acoustic noise increases, the arrival-time estimates

become less accurate, which in turn diminishes accuracy of

Anderson and local SoS estimates. The large error in estimated

arrival times for the 10 mm-tissue case is directly reflected in

low lag-one correlation values and decreased quality of the

parabolic fit to the squared arrival-time profiles (Table VI). To

improve the method’s performance in the presence of strong

clutter, clutter reduction techniques that preserve the

individual-element signals, such as ADMIRE46 and spatial pre-

diction filtering47 may be used. In addition, a focused transmit

may be employed instead of synthetic-transmit-aperture acqui-

sition to improve the ratio of signal to electronic noise at larger

depths, where data contains less reverberation clutter and can

be used to compute average and local SoS.

The proposed sound-speed model and estimator face

several limitations due to the physics of wave propagation in

inhomogeneous media. First, the model assumes wave prop-

agation along a straight line (see Fig. 1), not accounting for

the lateral extent of the ultrasound beam, or for the effects of

diffraction and refraction as the wave passes through media

with different sound speeds. Second, the existing implemen-

tation of the local estimator uses the method by Anderson

and Trahey to measure average SoS; this method assumes

propagation through a homogeneous medium in order to

model (the square of) arrival-times as a second-order poly-

nomial [Eqs. (8) and (9)]. In two-layer media, these imper-

fections in the model(s) are not significant enough to

compromise the accuracy of local sound-speed estimates.

For example, the exact arrival times computed for the two-

layer SoS maps (by solving the Eikonal equation) show little

deviation from their parabolic fit that is used to find the

Anderson estimates (see Fig. 3). As a result, the local sound-

speeds look almost identical to the ground-truth (Fig. 4).

When the ultrasound data are acquired through more com-

plex media, the effects of refraction, diffraction, and a loss of

focus may result in average sound-speed measurements at loca-

tions that deviate from the straight path of interest (along which

local sound-speeds are estimated). In addition, because the adja-

cent beams are likely to overlap, the corresponding average

sound-speed measurements may be correlated across the FOV

in both lateral and axial dimensions. Finally, geometries more

complex than a two-layer medium may produce strong devia-

tions of arrival-times from a parabola, further diminishing the

accuracy of average SoS measurements. One way to mitigate

these problems is by omitting the Anderson measurements from

inhomogeneous layers and computing local sound speeds at

larger depths, as was done for the phantom acquisition through

the 10 mm-layer of bovine tissue (Fig. 8). Furthermore, the

model in Eq. (4) can be modified to include multiple directions

of wave propagation (including paths at non-zero angles) and to

account for the correlation between the adjacent Anderson mea-

surements. That way, local sound speeds can be estimated
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jointly across the FOV using a larger number of average sound-

speed measurements to further reduce noise in the estimates.

VI. CONCLUSION

We have presented a model and method to estimate

sound speed in a localized region of tissue with high accu-

racy that can be implemented on a clinical pulse-echo ultra-

sound scanner. The model relates the average SoS between

the transducer and focus to the local SoS values along the

wave propagation path. In this implementation of our local

estimator, the average SoS was measured from arrival-time

profiles using the method by Anderson and Trahey, and the

proposed model was then solved for the local sound-speed

via gradient descent. We tested our estimator using two-

layer media as a simple representation of abdominal tissue.

In a series of simulation and ex vivo phantom experiments,

the estimated local SoS maps clearly conveyed the extent of

two layers and the local estimates from the bottom layers

had a significantly lower bias than their matched Anderson

estimates. One of the potential applications of the proposed

local estimator is in human livers, where the local SoS esti-

mates could be used to help differentiate between fatty and

healthy liver tissues. To use the local speed of sound for

phase aberration correction, the standard deviation of our

estimator has to be reduced further, and one way to achieve

this would be to include multiple directions of wave propa-

gation in the SoS model.
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APPENDIX A

A. Multi-lag least-squares arrival-time estimator

To compute the arrival-time profiles across the aperture,

we assume that the neighboring-element signals have a high

degree of similarity. This assumption is expressed in Eq. (7),

which is rewritten here for convenience,

sx1
ðtÞ ¼ sx2

ðtþ dx1;x2
Þ þ e:

Here, sx1
and sx2

are signal traces recorded on elements x1

and x2, dx1;x2
is the associated time delay, and e is additive

noise. The delay d corresponds to the peak of the normalized

cross-correlation function between the two signals

d̂x1;x2
¼ arg max

s
rðsÞ; (A1)

where

rðsÞ ¼

Xn2

n¼n1

sx1
nTð Þsx2

nT þ sð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn2

n¼n1

s2
x1

nTð Þ
Xn2

n¼n1

s2
x2

nT þ sð Þ
s :

In Eq. (A1), T is the sampling period of the element signals,

n is a sample number with the difference n2 � n1 determin-

ing the size of axial kernel over which cross correlation is

measured, and s is the amount of kernel shift over the search

region. In this implementation, the individual element sig-

nals are up-sampled to 300 MHz, the axial kernel is 481 sam-

ples long, and s is allowed to vary from �9 to þ9 ns (630

samples). To reduce peak-hopping, the signal within the

search region is tapered using a decaying exponential with

the time constant of 1/(3f0).

Time delays estimated via cross-correlation can also be

expressed in terms of the arrival-times at individual

elements,

dx1;x2
¼ d̂x1;x2

¼ tx1
� tx2

þ ex1;x2
: (A2)

In Eq. (A2), dx1;x2
is the estimated delay, tx1

and tx2
are

desired arrival times, and ex1;x2
is the associated estimation

error. The “hat” symbol is used to denote the estimated

value. The Eq. (A2) can be written in the matrix form for all

neighboring receive-element-pairs

1 �1 0 0 ��� 0

1 0 �1 0 ��� 0

1 0 0 �1 ��� 0

..

. ..
.

0 0 ��� 0 1 �1

2
666664

3
777775

M

t1

t2

t3

..

.

tN�1

2
666664

3
777775

t

þ

e1;1

e1;2

e1;3

..

.

eN�1;L

2
6666664

3
7777775

e

¼

d1;1

d1;2

d1;3

..

.

dN�1;L

2
6666664

3
7777775

d

;

(A3)

where each row of the model matrix M encodes a pair of

receive elements, N is the number of elements in the array,

vectors d and e contain all measured delays and the associ-

ated errors, respectively, and the vector t contains the arrival

times. The vector t is finally estimated as the least-squares

solution

t̂ ¼ ðMTMÞ�1MTd: (A4)

In Eq. (A3), M was designed to encode pairs of the neighbor-

ing elements that were no more than five elements apart on

the receive aperture (i.e., the maximum lag of five).

Equations (A1) and (A4) were solved to compute the arrival-

time profile at each location in a 130� 64 (axial� lateral)

grid, spaced by half-a-wavelength in both axial and lateral

dimensions.

APPENDIX B

A. Gradient descent solver for the local sound speed
estimates

To compute the local speed of sound, the FOV was first

decoupled into distinct columns, with each column corre-

sponding to a vertical ultrasound propagation path. Equation

(4) was then solved for each column independently by mini-

mizing the following cost function:

Cfc localg ¼ kA clocal � cavgk
2 þ kkC c localk2: (B1)
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In Eq. (B1), the first quadratic term is square of the L2-norm

of the forward propagation error and the second term is regu-

larization, with C derived to minimize the differences of adja-

cent estimates (in the least-square sense) and k is used to set

relative weighting on the regularizer. Because average SoS

measurements were sampled along the same direction of

wave propagation, A was posed as a lower triangular matrix,

A ¼

1 0

1

2

1

2

..

. ..
. . .

.

1

N

1

N
� � � 1

N

2
666666664

3
777777775
;

where N is the number average SoS measurements.

In this implementation of the local sound speed estima-

tor, which considers only a wave propagating normal to the

transducer surface, the model matrix A is simple and direct

matrix inversion could be an effective way to compute the

estimates. However, when multiple directions of wave prop-

agation are included in the estimator, A can become large, in

which case direct inversion would be time-consuming or

even computationally unfeasible. In such cases, numerical

solvers (like the method outlined below) become necessary,

because they reduce the cost function iteratively and without

the use of expensive operators.

The gradient descent solver involved the following key

steps:

(1) setting the initial local SoS estimates to 1540 m/s

ĉlocalð0Þ ¼ 1540 m=s; (B2)

(2) evaluating the gradient of the forward-propagation-error

term

GðnÞ ¼ 2ATðA ĉ localðnÞ � c avgÞ; (B3)

where n refers to iteration number;

(3) evaluating the regularization term

RðnÞ ¼ C ĉ localðnÞ ¼ LPFfĉ localðnÞg � ĉ localðnÞ; (B4)

where LPF denotes a low-pass filter used to convolve the

local SoS estimates at each iteration;

(4) updating the local SoS estimates

ĉ localðnþ 1Þ ¼ ĉ localðnÞ þ k1GðnÞ þ k2RðnÞ; (B5)

(5) repeating steps (2)–(4) until the convergence is

achieved.

In Eq. (B4), an 11-tap low-pass filter based on Hamming-

window design was used with a normalized cutoff frequency

of 0.2. In Eq. (B5), k1 and k2 can be adjusted relative to each

other to adjust the smoothness of the solution; both were set

to 0.001% of the initial clocal value of 1540 m/s. The algo-

rithm was run for 40 000 iterations. A procedure similar to

the one outlined above can be applied to solve for the local

slowness under the alternative model in Eq. (6).
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