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ABSTRACT
Background: The olive tree is a typical crop of the Mediterranean basin where it

shows a wide diversity, accounting for more than 2,600 cultivars. The ability to

discriminate olive cultivars and determine their genetic variability is pivotal for an

optimal exploitation of olive genetic resources.

Methods:We investigated the genetic diversity within 128 olive accessions belonging

to four countries in the Mediterranean Basin (Italy, Algeria, Syria, and Malta), with

the purpose of better understanding the origin and spread of the olive genotypes

across Mediterranean Basin countries. Eleven highly polymorphic simple sequence

repeat (SSR) markers were used and proved to be very informative, producing a total

of 179 alleles.

Results: Cluster analysis distinguished three main groups according to their

geographical origin, with the current sample of Maltese accessions included in the

Italian group. Phylogenetic analysis further differentiated Italian and Maltese olive

accessions, clarifying the intermediate position of Maltese accessions along the

x/y-axes of principal coordinate analysis (PCoA). Model-based and neighbor

clustering, PCoA, and migration analysis suggested the existence of two different

gene pools (Algerian and Syrian) and that the genetic exchange occurred between the

Syrian, Italian and Maltese populations.

Discussion: The close relationship between Syrian and Italian andMaltese olives was

consistent with the historical domestication and migration of olive tree from the

North Levant to eastern Mediterranean basin. This study lays the foundations for a

better understanding of olive genetic diversity in the Mediterranean basin and

represents a step toward an optimal conservation and exploitation of olive genetic

resources.
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INTRODUCTION
The olive (Olea europaea L. subsp. europaea, 2n = 2x = 46) is a primary crop in all the

countries of the Mediterranean basin where most of the global production comes from

Southern Europe, North Africa, and the Near East (FAOSTAT). The olive germplasm

consists of a large number of varieties mainly used for oil or table olive production and

each country has a wide panorama of autochthonous cultivated varieties and wild

relatives that represents an enormous reservoir of biodiversity and a valuable economic

resource (Sardaro et al., 2016). Several studies have been performed to assess genetic

diversity as a key action for the valorization of olive genetic resources. Such studies

resulted in the description of more than 2,600 cultivars with a wide range of genetic

variability in terms of oil content, fruit shape and size, and adaptation to biotic and

abiotic stresses (Boucheffa et al., 2017; Khaleghi et al., 2017;Montemurro et al., 2005; Sakar,

Hulya & Sezai, 2016). It is well known that olive populations native to the Eastern and

Western Mediterranean basin are genetically differentiated most likely because they have

adapted to specific environments. The basis of this differentiation is due to gene flow from

wild types to cultivated, with the introgression of important alleles from oleaster or

from other O. europaea subspecies (Besnard et al., 2013; Dı́ez et al., 2015). Information on

phylogeny, domestication, and relationships between cultivated and wild forms represents

a basic prerequisite for olive breeding (Barazani et al., 2014). Moreover, the recovery

of uncommon cultivars is pivotal for preserving the genetic biodiversity from the risk of

erosion due to the extensive use of a few elite cultivars (Boucheffa et al., 2017; Rugini et al.,

2017). Recently, in different Mediterranean countries, regional projects on biodiversity

have led to the establishment of olive germplasm collections for a proper and wide

utilization (Dı́ez et al., 2016; Haouane et al., 2011; Muzzalupo, Vendramin & Chiappetta,

2014). This is the first step toward the definition of the role that a certain variety can play

in the frame of a sustainable production through its direct use or in breeding programs.

In this research, we focused on accessions deriving from four countries, that is, Italy,

Algeria, Syria, and Malta, all characterized by an important olive sector and a rich

germplasm heritage adapted to different environmental conditions. In Italy, the Apulia

region, which is one of the most important oil producing areas, has wide olive orchards

(more than 377,000 ha) spread from the temperate-hot climate coasts to the inner areas at

up to 600 m a.s.l., and accounts for more than 50 different varieties, most of which are

minor varieties (di Rienzo et al., 2018). Algeria is one of the largest contributors to the

Mediterranean oil and table olive production, in particular the region of Kabylie covers

54% of the cultivated area, where the most represented cultivars are Chemlal, Limli, and

Azeradj (Boucheffa et al., 2017). Syria is part of the original habitat of O. europaea, with 90

cultivars identified so far, although only five varieties, that is, Zaity, Sorani, Doebli,

Khoderi, and Kaissy, are extensively cultivated (Al-Ibrahem, Bari & Rashed, 2008; Tubeileh,

Abdeen & Al-Ibrahem, 2008). In the Maltese archipelago, three principal cultivars, namely

Bidnija, Maltija, and White olive or Bajda, were identified (Mazzitelli et al., 2015) in

addition to the rare wild olives characterized by small shrubs, short leaves, and small,

bitter-tasting fruits with low oil content. The Maltija variety is highly productive and it is
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the most common and widespread cultivar in the islands, while Bidnija (from the Bidnija

region) is believed to be one of the oldest olive cultivars, indicating that it may date back

from the Roman occupation (Buhagiar, 2012). The Bidnija produces oil of excellent

quality, is rich in polyphenols and shows high tolerance to environmental stresses such as

salinity and drought, and to olive fruit fly (Mazzitelli et al., 2015). “Bajda” produces

characteristic white drupes, and it was rediscovered in 2010, as a possible survivor of the

famous Maltese “Perlina” or “Pearls of Malta” referenced in Renaissance literature (Verde,

2017). In fact, back in the days of the Crusader Knights of the Order Saint John, known

also as the Knights of Malta, who held Malta from 1530 to 1798, the trees carrying these

white olives adorned the gardens of the wealthy noblemen (Verde, 2017).

The recently renewed interest, also economical, in the Maltese olive oil sector

contrasts with the scarcity of genetic studies carried out on local cultivars (Mazzitelli et al.,

2015). Basic questions relating to the migratory movements from which Maltese olive

germplasm originate and whether this olive germplasm shows a closed gene pool or an

affinity with other Mediterranean countries are still valid (Besnard et al., 2013; Mousavi

et al., 2017). In this framework, the purpose of this research was (i) to study the genetic

relationships in a collection of 128 wild and cultivated olive accessions from four

countries such as Algeria, Syria, Italy, and Malta, including white olives; (ii) to contribute

to the enlargement of our knowledge on the genetic differentiation within Mediterranean

olive germplasm, and (iii) to help discover the probable origins of Maltese germplasm.

MATERIALS AND METHODS
Samples
A total of 128 olive accessions, both cultivated and wild, were collected from Algeria, Syria,

Italy, and Malta (Table 1). The 25 Algerian olive cultivars were sampled from trees in the

experimental farm of the Institut Technique de l’Arboriculture Fruitière et de la Vigne

(Takarietz, Bejaia, Algeria), located 30 km from Algiers in the Birtouta district.

The 16 Algerian accessions, recognized as wild, were selected from different small

populations or from isolated trees in different areas in the province of Bejaia (Algeria),

where wild and cultivated forms coexist. A total of 33 Syrian accessions were sampled in

2005 from olive trees in the area of Aleppo by the Jussieh Biotechnology Laboratory of

the General Commission for Scientific Agricultural Research (Aleppo, Syria). Among the

50 Italian analyzed genotypes, four were collected in private farms from different

provinces of the Apulia region (southern Italy) in the frame of a project for the

valorization of the Apulian biodiversity (Re.Ger.O.P. project), whereas the remaining

were collected in the Pre-Moltiplication field located in Palagiano (Taranto, Italy) in the

frame of the OLVIVA project. For the Maltese samples, one was collected from the

San-Blas centre, in Zebbug, Malta. The remaining samples were collected from a

botanic garden in Attard and from a private garden in Lija, Malta, respectively.

Young leaves were collected and immediately frozen. For DNA extraction, 70 mg of

lyophilized leaf samples were processed according to Montemurro et al. (2015).

DNA quality and concentration were checked using a NanoDropTM ND2000C

(Thermo Fisher Scientific, Waltham, MA, USA); DNA was transferred into a 96-well
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Table 1 List of olive accessions collected in different areas of the Mediterranean basin.

Sample no. Olea europaea subsp.

europaea var.

Accession Locality Country Use

1 europaea Takesrith_BK Bakaro Algeria Oil and table olives

2 europaea Chemlal_SA SidiAyed Algeria Oil

3 europaea Azeradj_SA SidiAyed Algeria Oil and table olives

4 europaea AgrarezIT Takarietz Algeria Oil and table olives

5 europaea Aaleh_IT Takarietz Algeria Oil

6 europaea Akerma_IT Takarietz Algeria Oil and table olives

7 europaea Aberkan_IT Takarietz Algeria Oil and table olives

8 europaea Aghenfas_IT Takarietz Algeria Oil and table olives

9 europaea Abani_IT Takarietz Algeria Oil and table olives

10 europaea Azeradj_IT Takarietz Algeria Oil and table olives

11 europaea Boughenfous_IT Takarietz Algeria Oil

12 europaea Bouichret_IT Takarietz Algeria Oil

13 europaea BouchoukS_IT Takarietz Algeria Oil and table olives

14 europaea BouchoukL_IT Takarietz Algeria Oil and table olives

15 europaea Tabelout_IT Takarietz Algeria Oil

16 europaea Takesrith_IT Takarietz Algeria Oil

17 europaea Tefah_IT Takarietz Algeria Oil and table olives

18 europaea Aberkan_To Targua Ouzemour Algeria Oil and table olives

19 europaea Aharoun_TZ Tazemalt Algeria Oil and table olives

20 europaea Limli_TZ Tazemalt Algeria Oil

21 europaea Chemlal_TZ Tazemalt Algeria Oil

22 europaea Sigoise_TZ Tazemalt Algeria Oil and table olives

23 europaea Azeradj_TZ Tazemalt Algeria Oil and table olives

24 europaea Chemlal_Tdj Toudja Algeria Oil

25 europaea Azeradj_Tdj Toudja Algeria Oil and table olives

26 sylvestris WO_TH Tala Hamza Algeria Wild

27 sylvestris WO1_BK Bakaro Algeria Wild

28 sylvestris WO1_SA SidiAyed Algeria Wild

29 sylvestris WO1_Tdj Toudja Algeria Wild

30 sylvestris WO1_To TarguaOuzemour Algeria Wild

31 sylvestris WO1_TZ Tazemalt Algeria Wild

32 sylvestris WO2_BK Bakaro Algeria Wild

33 sylvestris WO2_SA SidiAyed Algeria Wild

34 sylvestris WO2_Tdj Toudja Algeria Wild

35 sylvestris WO2_To Targua Ouzemour Algeria Wild

36 sylvestris WO2_TZ Tazemalt Algeria Wild

37 sylvestris WO3_SA SidiAyed Algeria Wild

38 sylvestris WO3_Tdj Toudja Algeria Wild

39 sylvestris WO4_SA Sidi Ayed Algeria Wild

40 sylvestris WO5_SA Sidi Ayed Algeria Wild

41 sylvestris WO6_SA Sidi Ayed Algeria Wild
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Table 1 (continued).

Sample no. Olea europaea subsp.

europaea var.

Accession Locality Country Use

42 europaea Malti Leucocarpa Zebbug Malta Table

43 europaea Tree Malti Lija Lija Malta Oil and table

44 europaea Tree Malti San Anton L Attard Malta Oil

45 europaea Tree Malti San Anton I Attard Malta Ornamental

46 europaea Leucocarpa IT Puglia Italy Oil

47 europaea Oliva bianca IT Campania Italy Oil

48 europaea Leccino Toscana Italy Oil

49 europaea Frantoio Toscana Italy Oil

50 europaea Toscanina Puglia Italy Oil

51 europaea Cima di Melfi Basilicata Italy Oil

52 europaea Nociara Puglia Italy Oil

53 europaea Ascolana tenera Marche Italy Table olives

54 europaea S. Agostino Puglia Italy Table olives

55 europaea Pasola di Andria Puglia Italy Oil

56 europaea Cerasella Puglia Italy Oil and table olives

57 europaea Picholine Francia Italy Oil

58 europaea Cellina di Nardò Puglia Italy Oil

59 europaea Cima di Mola Puglia Italy Oil

60 europaea Coratina Puglia Italy Oil and table olives

61 europaea Carolea Calabria Italy Oil

62 europaea Bella di Cerignola Puglia Italy Oil

63 europaea Cima di Bitonto Puglia Italy Oil

64 europaea Maiatica Basilicata Italy Oil

65 europaea Nocellara del Belice Sicilia Italy Oil

66 europaea Termite di Bitetto Puglia Italy Oil and table olives

67 europaea Donna Giulietta Puglia Italy Oil

68 europaea Ogliarola Puglia Italy Oil

69 europaea Dolce di Cassano Puglia Italy Oil and table olives

70 europaea Cipressino Puglia Italy Oil

71 europaea Ogliarola Garganica Puglia Italy Oil

72 europaea Simona Puglia Italy Oil

73 europaea Pasola Puglia Italy Oil and table olives

74 europaea Nolca Puglia Italy Oil and table olives

75 europaea Olivarossa Puglia Italy Oil

76 europaea Cipressino Puglia Italy Oil

77 europaea Ogliastro Puglia Italy Oil

78 europaea RT1 Moraiolo Toscana Italy Oil

79 europaea RT2 Dritta Abruzzo Italy Oil

80 europaea RT3 Tonda iblea Sicilia Italy Oil

81 europaea RT4 Pendolino Toscana Italy Oil

82 europaea Corniola Calabria Italy Oil

(Continued)
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Table 1 (continued).

Sample no. Olea europaea subsp.

europaea var.

Accession Locality Country Use

83 europaea Zafarana Calabria Italy Oil

84 europaea Silletta Puglia Italy Oil

85 europaea Grappolo Puglia Italy Oil

86 europaea Frantoiana Calabria Italy Oil and table olives

87 europaea Nostrale Umbria Italy Oil and table olives

88 europaea Coratina_simile Puglia Italy Oil and table olives

89 europaea Ogliarola Salentina Puglia Italy Oil

90 europaea Racioppa Basilicata Italy Oil

91 europaea Rotondella-DPV Basilicata Italy Oil

92 europaea Peranzana-DPV Puglia Italy Oil and table olives

93 europaea Colmona Puglia Italy Oil

94 europaea Pizzutella Sicilia Italy Oil

95 europaea Leucocarpa Pol IT Puglia Italy Oil

96 europaea Mossabi Southern region Syria Oil and table olives

97 europaea Doebli Coastal region Syria Oil and table olives

98 europaea Safrawi Dar’a Syria Oil

99 europaea Sorani Dar’a Syria Oil and table olives

100 europaea Jlot Dar’a Syria Table olives

101 europaea Khodery Dar’a Syria Oil and table olives

102 europaea Mossabi Aleppo Syria Oil and table olives

103 europaea Kaissi yahmoul Yahmoul Syria Table olives

104 europaea Khodery Idlib Syria Oil and table olives

105 europaea Drmalaly Qmenas Syria Oil and table olives

106 europaea Sorani Yahmoul Syria Oil and table olives

107 europaea Mossabi Qmenas Syria Oil and table olives

108 europaea Mossabi Aleppo Syria Oil and table olives

109 europaea Kaissi Dar’a Syria Table olives

110 europaea Zaity Dar’a Syria Oil

111 europaea Safrawi Dar’a Syria Oil

112 europaea Tufahi Dar’a Syria Oil

113 europaea Jlot Aleppo Syria Table olives

114 europaea Mossabi Yahmoul Syria Oil and table olives

115 europaea Sorani Aleppo Syria Oil and table olives

116 europaea Safrawi Yahmoul Syria Oil

117 europaea Doebli Aleppo Syria Oil and table olives

118 europaea Tufahi Qmenas Syria Oil and table olives

119 europaea Zayti Yahmoul Syria Oil

120 europaea Kaissi Aleppo Syria Table olives

121 europaea Kaissi Dar’a Syria Table olives

122 europaea Mousabi Aleppo Syria Wild

123 europaea Jlot shami Yahmoul Syria Wild
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plate and normalized to a standard concentration of 50 ng/ml by adding HPLC water

(Sigma–Aldrich, St. Louis, MO, USA).

Microsatellite assays
A set of 11 microsatellite markers [simple sequence repeat (SSR)] was selected as the most

effective in differentiating the olive accessions (Table S1) (Boucheffa et al., 2017). PCR

reactions were performed in a C1000 TouchTM Thermal Cycler (Bio-Rad, Hercules, CA,

USA) following the protocol described inMontemurro et al. (2015). In order to verify PCR

efficiency, PCR products for each of the 11 SSR markers were randomly checked by

electrophoresis on 2.5% SeaKem LE Agarose gel (Lonza, Visp, Switzerland). The

amplification products were detected by the automatic sequencer ABI PRISM 3100

Avant Genetic Analyzer (Applied Biosystems, Foster City, CA, USA), and the sample

analyses were carried out using the GeneMapper genotyping software v3.7 (Applied

Biosystems, Foster City, CA, USA). The internal molecular weight standard was

GeneScanTM 500 ROX dye Size Standard (Applied Biosystems, Foster City, CA, USA).

Statistical analyses for genetic diversity assessment
A total of 11 SSR markers provided clear and unambiguous molecular patterns used to

estimate: number of alleles (Na), effective number of alleles (Ne), Shannon’s information

index (I), observed (Ho) and expected (He) heterozygosity, and fixation index (F), using

the GENALEX software v.6.5 (http://biology-assets.anu.edu.au/GenAlEx/Welcome.html)

(Peakall & Smouse, 2012). The efficiency of each SSR marker to distinguish among the

olive accessions was estimated on the basis of allele frequencies by calculating the resolving

power (Rp), which considers the number of polymorphic alleles and the informativeness

of a single amplified peak according to Prevost & Wilkinson (1999). Moreover, as

additional SSR informativeness, the polymorphic information content (PIC)

(Botstein et al., 1980) was calculated by using Cervus v 2.0 (Kalinowski, Taper &

Marshall, 2007). The same software was used to estimate the frequency of null alleles.

The analysis of molecular variance (AMOVA) was performed using GenAlex 6.1 in

order to estimate the partitioning of the total molecular variance among and within

populations. To test the significance of partitioned variance components, F-statistic

(Wright, 1949) values (Fis, Fit, and Fst) were used with 9,999 permutations for binary

data sets (Peakall & Smouse, 2012). GenAlex 6.1 was used also to perform the principal

coordinate analysis (PCoA), that gives the inter-individual relationship using Nei’s

Table 1 (continued).

Sample no. Olea europaea subsp.

europaea var.

Accession Locality Country Use

124 europaea Jlot shami Qmenas Syria Wild

125 europaea Khoder Aleppo Syria Wild

126 europaea Doebli Yahmoul Syria Wild

127 europaea Khodery Qmenas Syria Wild

128 europaea Dan Qmenas Syria Oil and table olives
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unbiased genetic distance pairwise population matrix, to determine whether observed

patterns in molecular data support the partitioning of the olive samples into specific

groupings.

Frequency-based genetic distances were calculated to construct an unweighted

neighbor-joining dendrogram for the 128 olive accessions, using DARWIN v 6.0.010

(http://darwin.cirad.fr) (Perrier, Flori & Bonnot, 2003). The resulting tree was

bootstrapped with 1,000 replicates (Felsenstein, 1985) and viewed using FigTree

2016-10-04-v1.4.3 available at http://tree.bio.ed.ac.uk/software/figtree/.

Genetic population structure was assessed by using the Bayesian clustering method

implemented in the STRUCTURE software version 2.3.4 (https://web.stanford.edu/

group/pritchardlab/structure.html) (Pritchard, Stephens & Donnelly, 2000), which

assigned accessions in populations (K) based on the Markov Chain Monte Carlo

(MCMC) algorithm.

To evaluate the optimal number of populations (K), ten independent runs for each K

(from 1 to 10) were performed, using 100,000 MCMC repetitions and 10,000 burn-in

periods. Resulting data were analyzed by the Structure Harvester software (Earl & von

Holdt, 2012), which is based on ad hoc statistic dK test (Evanno, Regnaut & Goudet, 2005).

Accessions were assigned to defined populations if the value of the corresponding

membership coefficient (qi) was higher than 0.7, otherwise they were considered to be of

admixed ancestry. Based on the groups defined by STRUCTURE analysis, the pairwise Fst

between groups was calculated by using the Genalex software.

In order to infer the phylogenetic relationships and historical admixture events

amongst populations, we adopted tree-based approach implemented in TREEMIX

(Pickrell & Pritchard, 2012). Firstly, we ran TreeMix on the olive collection, with accessions

classified into four populations according to geographical origin. Then, we added ten

migration events (M) and the M value that reached an asymptote and simultaneously

provided the smallest residual variance was selected as the most predictive model.

RESULTS
Molecular diversity
The genetic variability among 128 Mediterranean olive accessions was analyzed with a set

of 11 SSR markers suitable for olive cultivar discrimination (Boucheffa et al., 2017) and the

results are showed in Table 2. A total number (Na) of 179 alleles were detected with a mean

of 16.27 alleles per locus, ranging from 9 at EMO90 locus and 25 at DCA16 locus.

The number of effective alleles (Ne) per SSR ranged from 3.03 (DCA15) to 13.58

(DCA09), with a mean of 7.4. For the same markers, Shannon’s information index (I)

ranged from 1.51 (DCA15) to 2.74 (DCA09). The Ho ranged between 0.42 for DCA15 and

0.89 for UDO43, whereas the He, which corresponds to heterozygosity at a single locus in a

theoric panmictic population, ranged between 0.67 (DCA15) and 0.92 (DCA09). In all the

accessions under investigation, the mean observed heterozygosity (Ho = 0.697) was

lower than the mean expected heterozygosity (He = 0.830), determining a significant

positive value for the fixation indices (mean F = 0.142) at all loci with the exception of

UDO43 that showed a negative value (Table 2). The null allele frequencies were lower than
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0.20 for the majority of the loci, except for DCA15 (0.243). Null allele frequency

greater than 0.20 can be considered as a threshold over which a significant

underestimation of He can be found (Muzzalupo, Vendramin & Chiappetta, 2014). For

this reason, both DCA15 and DCA17 (null allele frequency 0.191) were not considered for

downstream analyses.

The number of allele combinations ranged from 16 at the locus DCA15 to 47 at locus

DCA09 (Table 2). The efficiency of the SSR markers in distinguishing the accessions was

estimated calculating the Rp and the PIC indices. Both indices indicated a powerful

discrimination ability of markers. In fact, Rp ranged from 2.00 (DCA13 and DCA16) to

3.06 (DCA15) (Table 2). PIC values were between 0.68 and 0.92 for DCA15 and DCA09,

respectively, with an average of 0.82, indicating that all loci were highly informative

(PIC > 0.50).

Genetic diversity analysis
The genetic relationships between the Mediterranean olive accessions were investigated by

using PCoA performed on Nei’s unbiased genetic distance matrix (Fig. 1). A total of four

different groups were obtained corresponding to the geographical area of origin: Italy,

Malta, Algeria, and Syria. The first (PCo1) and the second principal coordinates (PCo2)

explained 16.99% and the 12.44% of the variance in the molecular data, respectively.

In particular, the PCo2 clearly discriminated the Syrian genotypes from the Italian ones,

whereas PCo1 separated the Algerian accessions from the remaining ones. The Maltese

samples remained in the middle between the Italian and Syrian genotypes and all of them

were very distant from the Algerian. The AMOVA analysis assigned most of the molecular

variance to individuals (73%) and only 12% and 15% among individuals and among the

Table 2 Diversity indices of 11 SSR markers detected in a set of 128 olive accessions from Algeria,

Italy, Malta, and Syria.

SSR ID Size range Na Ne I Ho He F NAC Rp PIC F nulli (%)

DCA03 232–257 12 8.24 2.24 0.87 0.87 0.009 30 2.33 0.87 0.37

DCA05 194–220 11 6.25 2.00 0.72 0.84 0.138 28 2.02 0.82 7.17

DCA09 162–210 20 13.58 2.74 0.81 0.92 0.116 47 2.18 0.92 6.07

DCA13 110–156 13 3.67 1.74 0.58 0.72 0.194 22 2.00 0.70 12.70

DCA15 246–275 10 3.03 1.51 0.42 0.67 0.371 16 3.06 0.68 24.25

DCA16 120–191 25 11.21 2.71 0.87 0.91 0.038 45 2.00 0.91 1.88

DCA17 107–189 23 5.36 2.16 0.55 0.81 0.321 34 2.01 0.80 19.09

DCA18 116–207 19 7.72 2.29 0.80 0.87 0.081 39 2.10 0.86 4.30

UDO43 170–222 22 9.27 2.58 0.89 0.89 -0.007 39 2.02 0.89 0.95

GAPU101 180–219 15 7.18 2.18 0.75 0.86 0.121 32 2.01 0.84 6.58

EMO90 182–202 9 6.09 1.91 0.68 0.83 0.185 23 2.35 0.82 10.70

Total 179

Mean 16.27 7.4 0.72 0.830 0.142 0.82

Note:
Na, number of observed alleles; Ne, effective alleles; I, Shannon’s information index; Ho, observed heterozygosity;
He, expected heterozygosity; F, fixation index; NAC, number of allele combinations; Rp, resolving power;
PIC, polymorphic information content; F nulli, frequency of nulli alleles.
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four groups, respectively (Table 3). The F-statistic test, that relates the diversity

within-population to the total genetic diversity, confirmed the significance of the

partitioned variance components, with values of Fst = 0.152, Fit = 0.268, and Fis = 0.137.

Genetic structure of Mediterranean olive genotypes
Population structure was investigated by the Bayesian-based STRUCTURE analysis.

The analysis showed a clear maximum for �K at K = 3 and as result all accessions were

grouped into three different populations, with four accessions assigned to the admixed

Figure 1 Principal coordinates analysis (PCoA). Differentiation among 128 Mediterranean olive

accessions based on nine polymorphic SSR markers. Full-size DOI: 10.7717/peerj.5260/fig-1

Table 3 Analysis of molecular variance (AMOVA)*.

Source of variance Df Sum Sq Mean Sq Variance components % P

Among groups 3 157.540 52.513 0.819 15.0 <0.001

Among individuals 124 642.343 5.180 0.623 12.0 <0.001

Within individuals 128 503.500 3.934 3.934 73.0 <0.001

F-statistics Value

Fst (among populations) 0.152

Fis (within populations) 0.137

Fit (total) 0.268

Fst max 0.241

F ’st 0.632

Notes:
P-value is based on 1,000 permutations.
Df, degree of freedom; SS, sum of squares; MN, mean squares; %, percentage of total variation.
* The partitioning of genetic variation within and between groups obtained with PCoA, and F-statistic values for the 128
olive accessions collected from Algeria, Italy, Malta, and Syria.
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group (Fig. 2A). Populations could be discriminated to a great extent on the basis of the

geographical origin. In more detail, population 1 is comprised of 41 accessions from

Algerian cultivars and wild oleasters; population 2 includes all the 32 Syrian accessions,

unless sample Dan 128 that falls in the admixed group. Population 3 groups 50 Italian

accessions along with the Maltese cultivars (Maltija San Anton Inner, Malti Leucocarpa,

and Tree Malti Lija), with the exception of Maltija San Anton, which shares admixed allele

frequencies. A good differentiation among groups was also indicated by pairwise

Fst estimates among the three groups, thus confirming a territorial distinctiveness of the

gene pools. Indeed, Fst value was 0.088 between population 1 (Algeria) and population 3

(Italy), Fst was 0.122 between population 1 (Algeria) and population 2 (Syria), and

Fst was 0.079 between population 2 (Syria) and population 3 (Italy). Ho, He, and the

fixation index (F) were also calculated within each group (Table S2).

For population 1, the mean values were 0.805 (Ho), 0.779 (He), and -0.037 (F); for

population 2: 0.772 (Ho), 0.801 (He), 0.038 (F); for population 3: 0.771 (Ho), 0.713 (He),

and -0.075 (F).

The neighbor-joining dendrogram partially supports the results from population

structure analysis, showing high to moderate differentiation within the olive collection

with a total of four groups, attributable to common geographical origin (Fig. 2B). A first

node separates Maltese accessions from the remaining ones, which in turn are divided by a

second node: Algerian and Syrian olives from Italian germplasm. Cluster 1 consists of

41 Algerian accessions that are divided into two distinct branches depending on whether

they are cultivated varieties or wild oleasters. The wild accessions WO2_Tdj, WO5_SA, and

WO_TH cluster along with the cultivated accessions, while the cultivated varieties

Chemlal_Sa, Chemlal_Tz, and Sigoise_TZ group with the wild accessions (Fig. 2B).

This suggests that wild olive genotypes are strictly genetically related to cultivated

germplasm and may represent feral forms resulting from gene flow between local cultivars

and oleaster genotypes, as expected in areas where the two botanical varieties share a

common environment with the oleaster trees located in close proximity to the cultivated

fields (Boucheffa et al., 2017). Cluster 2 is composed by 31 Syrians accessions. Kaissi 109

(Southern Syria) and Dan 128 (Northern Syria) clearly split out of the group. A total of

five out of six wild accessions, named Jlot shami (123 and 124), Khoder_125, Doebli_126,

and Khodery_127, all collected from the Northern Syrian areas (Aleppo, Dar’a, Yahmoul,

and Qmenas), were clustered together in the same subgroup along with the table olive variety

Kaissi, thus suggesting a common genetic background. One exception was represented by

the wild accession Mousabi_122, showing relatedness with other Syrian cultivars.

Cluster 3 included the Italian varieties originated from Abruzzo, Apulia, Basilicata,

Calabria, Campania, Marche, Sicily, and Tuscany. Different cases of homonymy have been

identified. Olive trees under the “Cipressino_70” and “Cipressino_76” denomination

Figure 2 Genetic structure and phylogenetic tree of Mediterranean olive genotypes. (A) Bar plot

showing clusters inferred by STRUCTURE. Each vertical line stands for a single accession and it is

divided into K colored segments that represent the estimated membership coefficient (q). Maltese

accessions are grouped with Italian genotypes. (B) Neighbor-Joining dendrogram obtained with

DARWIN v 6.0.010. Full-size DOI: 10.7717/peerj.5260/fig-2
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(Apulia region) were classified into two molecular profiles and were different at eight SSR

alleles; “Ogliarola_68” and “Ogliarola Garganica_71” (Apulia region) were differentiated

by 10 SSR alleles; “Ogliarola_68” and “Ogliarola Salentina_89” were differentiated by

three SSR alleles, whereas “Ogliarola Garganica_71” and “Ogliarola Salentina_89” were

differentiated by nine SSR alleles. “Coratina_60” and “Coratina_simile_88” (Apulia

region) were differentiated by 11 SSR alleles.

The rare white cv. Oliva Bianca IT and Leucocarpa IT clustered together and were

clearly separate from the other Italian accessions such as LeucoarpaPal, indicating that the

probability of the same mutation affecting anthocyanin synthesis, responsible for the

white color of ripened olives, occurred in different accessions (Pasqualone et al., 2012).

Moreover, these white cultivars were genetically distinct from Leucocarpa Malti (Bajda).

A strong relationship was found between cultivar Toscanina and Bella di Cerignola

(both from Apulian region), and between Cima di Mola (Apulia region) and Racioppa

(Basilicata region). In the last case, the two adjacent regions might provide evidence for

the movement and exchange of germplasm. A group of varieties characterized by both

high fruit weight and table use of the drupes clustered close in two subgroups originating

from cluster 3: Termite di Bitetto, Pasola di Andria, and Cerasella on one side, and

Sant’Agostino, Tonda Iblea, Ascolana Tenera, and Picholine on the other. Cluster 4

includes four Maltese accessions, consisting of cultivated (Leucocarpa) and (Malti-Lija)

and wild oleaster (Malti San Anton L and Malti San Anton I).

Based on log-likelihood and residual variance values, the most predictive model

suggested the presence of two migration events (Fig. 3). The significant migration edge

Figure 3 Predictive model based on log-likelihood and residual variance values obtained with

TreeMix. The first migration event was predicted by TreeMix software from Syrian population

(Pop4) toward the Italian population (Pop3) and a second migration edge was directed from the Syrian

population (Pop4) to the Maltese population (Pop2). No migration events occurred between the

Algerian population (Pop1) and the others. Full-size DOI: 10.7717/peerj.5260/fig-3
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with the highest weight (0.47) was directed from the root of Syrian population (Pop4)

toward the Italian population (Pop3). A second migration edge (0.36) was directed from

Syrian population (Pop4) to the root of the Maltese population (Pop2). No migration

events occurred between the Algerian population and the others.

DISCUSSION
Mediterranean landscape and culture has in the olive tree its distinctive element, and olive

oil production is among the sectors of high economic significance in the area. Indeed,

olive tree cultivation and marketing of olive oil and table olives are major sources of

employment and income in the Mediterranean Basin. For these reasons, many projects

addressing the characterization, conservation and utilization of olive genetic resources

have been recently funded by local administrations in several Mediterranean countries

(Sardaro et al., 2016). Genetic diversity represents a heritage of high scientific value and

the availability of autochthonous germplasm can help to improve the long-term

productivity potential of olive orchards and enhance the competitiveness of the sector in a

globalized market. Together the four Mediterranean countries considered in this research,

that is, Italy, Malta, Algeria, Syria, own valuable reservoirs of olive germplasm that are

largely unexploited in terms of morphological, phenological, bio-agronomical, and

productive traits (Tubeileh, Abdeen & Al-Ibrahem, 2008; Linos et al., 2014). Successful

breeding programs for yield and quality require deep knowledge on the genetic diversity

of the available germplasm that provide also insights into the ability of the species to cope

with environmental changes. A detailed and unequivocal characterization of the

germplasm cannot be achieved through only morphological descriptions, whereas

molecular markers, such as microsatellites, still allow a more precise determination of

cultivars (Dı́ez et al., 2011; Erre et al., 2010; Fendri et al., 2014). Indeed, SSRs have being

extensively used in genetic studies, marker-assisted selection, cultivar identification, and

varietal traceability of olive oil and table olives (Pasqualone et al., 2016) due to their

versatility in providing a quick assay and for their high informativeness related to high

repeatability, codominant nature, specificity, and multiple alleles (Cheng et al., 2009;

Sakar, Hulya & Sezai, 2016).

The goal of our research was to shed light on the genetic relationships of 128 varieties,

including wild accessions, from four countries of the Mediterranean Basin. This was

achieved using the best possible set of SSR markers retrieved from recent literature on the

topic (Boucheffa et al., 2017; Fernández i Martı́ et al., 2015). Besides, the majority of the

microsatellites used were proposed by a collaborative study between four independent

laboratories for high power of discrimination and reproducibility due to low peak

stuttering, strong peak signal, and absence of null alleles (Baldoni et al., 2009). The

markers were confirmed to be very effective, showing high Rp and PIC. The values of Rp

were in the range observed in a previous work (Pasqualone et al., 2013). In particular,

DCA09 and DCA16 produced the highest number of allelic combinations and number of

distinguished accessions. Across the 128 analyzed olive accessions, a certain genetic

diversity was detected, but it was lower than that indicated in olives grown in the

Mediterranean area in similar works (Abdessemed, Muzzalupo & Benbouza, 2015;
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Fernández i Martı́ et al., 2015;Muzzalupo, Vendramin & Chiappetta, 2014). High values of

heterozygosity are expected in olive, a species that is mainly propagated via vegetative

growth, but that is subjected to natural crossing (olive tree is allogamous), somatic

mutation events that contribute to expand its genetic variability (di Rienzo et al., 2018;

Martins-Lopes et al., 2009). In our collection, we obtained positive fixation indices at all

SSR markers (except at locus UDO43), indicating a defect of heterozygosity in the

collection. Dı́ez et al. (2016) described higher values of Ho over He and other authors have

reported a defect of heterozygosity in olive, ascribing it to differences in plant samples and

in the set of genetic markers (Lumaret et al., 2004; Rugini et al., 2017), resulting in

numerous null alleles (Erre et al., 2010), exactly like in this study. In fact, even removing

the loci with nulli allele frequencies >20, the heterozygosity remained at a low level.

Moreover, we found an excess of heterozygosity in the Algerian (cluster I) and Italian

(cluster III) accessions, but not in the Syrian (cluster II) accessions. This result could be

due to the limited area of origin of the Syrian accessions, and to the selection operated on

some alleles (Lumaret & Ouazzani, 2001). Regarding the clustering, the Bayesian analysis

grouped accessions into three main gene pools, clearly corresponding to their

geographical origin Algeria, Italy and Malta, and Syria. By contrast, in the dendrogram,

the split of Maltese accessions at 0.15 of similarity index from the rest of the accessions

under investigation is evident, thus supporting the hypothesis of a local differentiation, as

already reported by Mazzitelli et al. (2015) and as occurred in Cyprus island (Anestiadou

et al., 2017), even though the number of genotypes is small and the Maltese germplasm

will require more investigation. We detected two migration events, which are consistent

with gene flow that occurred between Syrian, Italian, and Maltese populations and allow

to speculate about olive differentiation. The most well-substantiated hypothesis on the

origin and spread of cultivated olive trees across the Mediterranean basin is based on the

existence of three main genetic pools that match the geographical areas of West (namely

Q1), Centre (Q2), and East (Q3) of the Mediterranean basin (Dı́ez et al., 2015, 2016),

where olive cultivation developed around 5,000 years ago (Breton et al., 2009; Belaj et al.,

2012; Besnard et al., 2013; Chalak et al., 2014). We suggested a probable scenario about the

origin and spread of olive germplasm under study. Considering that Italian and Maltese

accessions shared the same allelic frequencies and the Maltese accessions are genetically

distant from the others in the dendrogram, two main gene pools might be present in our

collection. The first gene pool includes only the Algerian accessions, whereas the second

gene pool comprises Syrian, Italian and Maltese accessions. It is interesting to observe that

both Italian and Maltese population seem to derive from the Syrian population, probably

before the Roman colonization and dating back to the navigation routes made by the

Phoenicians (Fig. 4). In fact, historically the Phoenicians came from the Lebanese

seacoast, at the edge with the modern Syria, which is considered the place where the first

domestication of olive tree occurred (Fig. 4). Therefore, the same allelic frequencies

between Italian and Maltese accessions can arise from the common Syrian ancestor.

Overall, our results showed that each country is characterized by a particular gene pool

and this is in agreement with many studies on the genetic diversity of cultivated olive,

which indicate how critical the geographical origin is in determining the grouping of
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accessions on a genetic basis (Besnard et al., 2013; Biton et al., 2015; Marra et al., 2013;

Yoruk & Tuskin, 2014; Taranto et al., 2018; D’Agostino et al., 2017).

CONCLUSION
The use of SSRs has proved useful for the detection of genetic differences and relationships

among the Mediterranean olive cultivars, confirming that each country has a germplasm

that needs to be preserved and valued. Our research, studying the genetic relationships in

a collection of 128 wild and cultivated olive accessions from Algeria, Syria, Italy, and

Malta, contributes to the enlargement of our knowledge on the genetic differentiation

within Mediterranean olive germplasm.
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